
A Genetic Programming Approach to Cost-Sensitive
Control in Resource Constrained Sensor Systems

Afsoon Yousefi Zowj
Dept. of Computer Science

University of Vermont
ayousef1@uvm.edu

Josh C Bongard
Dept. of Computer Science

University of Vermont
jbongard@uvm.edu

Christian Skalka
Dept. of Computer Science

University of Vermont
skalka@cs.uvm.edu

ABSTRACT
Resource constrained sensor systems are an increasingly attractive
option in a variety of environmental monitoring domains, due to
continued improvements in sensor technology. However, sensors
for the same measurement application can differ in terms of cost
and accuracy, while fluctuations in environmental conditions can
impact both application requirements and available energy. This
raises the problem of automatically controlling heterogeneous sen-
sor suites in resource constrained sensor system applications, in a
manner that balances cost and accuracy of available sensors. We
present a method that employs a hierarchy of model ensembles
trained by genetic programming (GP): if model ensembles that poll
low-cost sensors exhibit too much prediction uncertainty, they au-
tomatically transfer the burden of prediction to other GP-trained
model ensembles that poll more expensive and accurate sensors.
We show that, for increasingly challenging datasets, this hierarchi-
cal approach makes predictions with equivalent accuracy yet lower
cost than a similar yet non-hierarchical method in which a sin-
gle GP-generated model determines which sensors to poll at any
given time. Our results thus show that a hierarchy of GP-trained
ensembles can serve as a control algorithm for heterogeneous sen-
sor suites in resource constrained sensor system applications that
balances cost and accuracy.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Artificial Intelligence

Keywords
Genetic Programming, Resource Constrained Sensor Systems, Cost-
Sensitive Control, Sensor Fusion

1. INTRODUCTION
Resource constrained sensor systems (RCSS) such as Wireless

Sensor Networks have revolutionized environmental monitoring by
combining low cost with flexibility in sensor capabilities [29]. They
have been used in diverse environmental monitoring applications
and continue to be adapted in new fields. Because RCSS are often,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’15, July 11 - 15, 2015, Madrid, Spain
c© 2015 ACM. ISBN 978-1-4503-3472-3/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739480.2754751

even typically, deployed in remote locations, and thus rely on com-
binations of battery power and energy harvesting, a major challenge
in RCSS design is to minimize system power consumption.

Minimizing power consumption can be accomplished in a vari-
ety of ways, in particular by adapting sensor control strategies that
optimize the balance between measurement accuracy and the cost
of powering sensors [28]. In this paper, we propose new sensor con-
trol algorithms for RCSS with heterogeneous sensor suites that bal-
ance cost and accuracy, obtained using genetic programming (GP)
techniques.

By “heterogeneous sensor suite”, we mean RCSS equipped with
multiple types of sensors for prediction of the same phenomena.
Each of these sensors is characterized by its accuracy in relation
to the phenomena, and a cost of use which is often measured by
its power consumption. Such systems support multi-modal sensor
fusion, a well-studied technique where data from multiple sensor
modalities (types) is combined to predict a single variable [28]. The
contribution of our work is a consideration of cost in multi-modal
sensor fusion, and the development and testing of associated con-
trol algorithms. These algorithms will call upon particular sensors
only when needed, and otherwise rely on the cheapest available
sensors at any given time. Our problem is distinguished from adap-
tive sampling [28], in that the latter is concerned with optimally
modulating sampling frequency of a given sensor, not choosing be-
tween a suite of possible sensors.

While various multi-modal sensor fusion applications exist, we
are especially interested in the Snowcloud system which combines
snow density telemetry with snow depth and air temperature sen-
sors to predict areal snow water equivalent (SWE) [22]. We envi-
sion extending Snowcloud to incorporate ground based light detec-
tion and ranging (LIDAR) scanning [4] to be used for SWE esti-
mation as part of its sensor suite. However, while LIDAR yields
more accurate data than existing Snowcloud telemetry, it does so
at significant additional power cost. Thus, the challenge is to com-
mit these resources only at optimal times. It is also a refinement
of multi-modal sensor fusion, since we are mainly interested in set-
tings where available data gathering techniques differ in accuracy,
with less accurate sensors being cheaper than more accurate ones.

A fundamental component of our approach is the use of pre-
diction uncertainty to drive sensor usage. We propose a scheme
whereby predictions are attempted using lower-cost sensors at first.
If uncertainty is below an acceptable threshold, then the predic-
tion is used. Otherwise we switch to higher-cost sensors, make a
new prediction based on those inputs, evaluate uncertainty again,
and continue to move the burden of prediction to more accurate
and costly sensors as needed. This scheme is discussed in detail in
Section 3.4 and described graphically in Figure 2. Note that while
the Snowcloud system is an intended application of this scheme, it

can be generalized to any RCSS application using heterogeneous
sensor suites comprising sensors with varying cost and accuracy.

To quantify uncertainty we are aided by machine learning en-
semble methods– we use entropy in ensemble predictions as a proxy
for uncertainty [21]. To obtain predictive models themselves, in
this work we use genetic programming (GP). This is largely due
to characteristics of our intended application space. Previous work
has demonstrated that the relationships between snow cover and
the topographic and meteorological factors that influence it include
nonlinearities [24], while the spatial distribution of SWE is non-
linear because it is influenced simultaneously by various forcing
effects [25]. Nonlinear predictors are therefore desirable. Further-
more, recent results [6] show that GP has advantages over other ap-
proaches (such as C4.5) due to associated techniques for preventing
overfitting, e.g. treating model size minimization as an objective
[11]. Although C4.5 only supports classification, sufficiently fine
classification granularity can achieve competitive performance on
regression problems, and this approach is popular in the environ-
mental science community [6]. Finally, GP is appealing due to its
white-box nature: it can potentially provide physical insights into
modeled phenomena.

An alternative approach to our problem is to not rely on external
measures of entropy to switch between sensors, but to treat cost as
an additional objective in a multi-objective optimization problem.
We explore this option in our work, in direct comparison to the hier-
archical approach. However, due to the “curse of dimensionality”,
adding another optimization dimension may have deleterious ef-
fects on prediction performance, especially since selection for size
to avoid overfitting already imposes a multi-objective optimization
regime [5]. We therefore hypothesize that a hierarchical approach
will outperform a non-hierarchical approach in settings where mul-
tiple sensors with differing predictive abilities, and we explore this
comparison in our experiments.

2. RELATED WORK
Previous work on adaptive sampling [28] has aimed to reduce

sampling rates in RCSS applications to balance sensor cost and ac-
curacy. In particular, Alippi et al. [3] have tried to find the optimal
adaptive frequency of sampling for avalanche monitoring. It has
further been claimed that compressed sensing — sending aggre-
gated data instead of raw data — performs better in conjunction
with reducing sampling rates, rather than just reducing the sam-
pling rate alone [15]. A variety of methods for compressed sensing
[8] have been proposed. Although these methods have achieved
cost reduction in monitoring, they are not applicable to our problem
since we intend not to change the rate of sampling one sensor type,
but rather to reduce sampling cost by switching between available
sensors of different type and accuracy.

Another line of work focuses on finding the optimal location for
sensors in distributed deployments, in order to maximize accuracy
while minimizing deployment densities. Krause et al. [13] have
used a probabilistic method to predict the communication cost for
a given deployment topology. Papadimitriou et al. [17] have em-
ployed GP and a Bayesian statistical method to minimize entropy
over a set of sensor locations. In contrast, our work is concerned
with reducing the cost of sampling from an available set of sensors
at any given time, not with reducing the densities of sensor topolo-
gies.

In work on so-called multi-modal sensor fusion, data from mul-
tiple sensors in a potentially heterogeneous suite are aggregated to
monitor a specific measurement application [26, 9]. This method
has been widely used, for example in visual monitoring [16, 18]
and target tracking [19, 23]. Data-fusion focuses on sensor appli-

cations that need to compute the correlation between multiple sen-
sor modules and cannot be measured by a single sensor. However,
these works do not consider the cost of using different sensors, or
minimizing cost.

Cost sensitive multi-modal sensor fusion methods have been de-
veloped to balance cost against accuracy, with an eye towards pro-
viding fault tolerance [12]. However, we are not concerned with
fault tolerance, but strictly between selecting sensors from hetero-
geneous suites. Willett et al. [28] use a small number of sensors to
send their readings to a fusion center, and based on the correlation
among the sensed data, the fusion center decides which additional
sensors should be activated. The same concept has also been tried
in a distributed fashion [14]. However, sensing costs in these cases
are a function of the number of sensors sampled, not their type.

Perhaps most related to our work is that of Wang et al. [27].
They propose a method to find the optimal set of sensors to be
polled, using a hybrid tree, where non-leaf nodes act as a deci-
sion tree and leaves are standard regression models using a subset
of sensors. However, these trees support decision making based on
external constraints, i.e. which sensors to use depending on an orga-
nization’s goals and resources. In contrast, our models are intended
to support sensor control in RCSS during deployments.

Outside of the adaptive sampling and sensor fusion fields, multi-
objective optimization has been used for cost-sensitive modeling.
For example Kim [11] set error as one objective and tree size as
another, as we do here. Zhao [30] sets the false negative rate and
false positive rate as the two objectives. However, these works do
not consider the hierarchical approach that we do.

3. METHODS
This section provides a formalization of the problem, how ge-

netic programming is applied to solve it, and the two variants of
genetic programming that we compare in this work. All of the ma-
terial for replicating the work described here is available online [1].

3.1 Problem Formalization
Let us assume that t values of some environmental phenomenon

g (the ground truth) are known at time steps 1, . . . t. These values
are stored in g = g1, . . . gt. Let us further assume there are k
sensors s1, . . . sk available that can be used to predict g. Let r(t)i

denote the reading of sensor i taken at time t. Moreover, let s(t)

and r(t) denote a subset of sensors, and readings taken from them,
at time t. We denote the amount of variance of g explained by
sensor i as v(g)ri . This value is determined by linearly regressing
only ri against g. Finally, let ei = 100(1− v(g)ri) and ci represent
the prediction error and cost of using sensor i respectively. Using
this formulation, ei represents the percentage of prediction error
incurred by just using sensor i to predict g.

The cost of a sensor ci is usually inversely proportional to its er-
ror ei, so for the work reported below, we set ci = v

(g)
ri for each

sensor. In certain sensor deployments there may be other factors
that affect ci such as power consumption, market price, effort re-
quired to collect a sensor’s reading, proprietary issues, and so on.

We suppose that an ordering of sensors exists such that s1 is the
least expensive sensor with the highest error and sk is the most
expensive sensor with the lowest error. Formally,

∀i, j . 1 ≤ i < j ≤ k → ei > ej ∧ ci < cj .

Let us denote the prediction of a model using a subset of sensors
at time t by p(t), i.e., p(t) is a function on r(t). Then, the error of

each sampling e(t) would be

e(t) , |p(t) − g(t)|.

The cost of each sampling, c(t) is the cumulated cost of all sen-
sors si ∈ s(t) that were polled for that sampling:

c(t) ,
∑

j∈{i|si∈s(t)}

cj .

It is desired that each sampling s(t) entails low error and cost.
That is, the following equality is desirable:

argmin
s(t)

e(t) = argmin
s(t)

c(t).

Our goal is to design models which combine and transform sen-
sor readings to accurately predict the outcome measure, but can
also intelligently determine which sensors to poll when cheap, less
accurate sensors exhibit uncertainty about the current prediction.

3.2 General Genetic Programming approach
Genetic programming has widely been employed for regression

tasks in which the functional form of the equations relating inputs
to outputs is unknown. Here, inputs are sensor values and output is
a prediction for a given outcome measurement.

Although many recent improvements have been proposed for GP,
here we have kept the genetic programming algorithm simple and
instead focused on comparing GP-generated hierarchical and non-
hierarchical models. Thus, GP is restricted to the four simple al-
gebraic operators, and each evolutionary trial is initialized with a
fixed-sized population of randomly-generated solutions containing
three nodes. Maximum tree depth is not set since the tree size is
considered as an objective in multi-objective optimization. The
crossover rate is set to 0.2 and no fitness stall is considered. If the
number of non-dominated solutions reaches 50% of the population
size, the training restarts. At the conclusion of each generation,
four values are computed for each solution: (1) error on training
data as defined below, (2) the combined cost of the sensors used to
make the prediction, (3) the size of the solution, and (4) the age of
the solution. We now discuss each in turn.

Error: Let n be the population size and j range over {1, · · · , n}.
Let tj be some solution tree. We represent the error of sampling at
time t using solution tj with e(t)tj

. Moreover, dtrain and dtest denote
the training dataset and testing dataset, respectively. Then, we de-
fine the error on training data using solution tj by etrain

tj and as the

average of e(t)tj
on all samples in dtrain, i.e.,

etrain
tj ,

∑
g(t)∈dtrain

e
(t)
tj

|dtrain| .

Each solution tj was allowed to use a subset (possibly empty) of
available sensors. The cost of each solution depends on the sensors
that are employed and the sampling.

Cost: As described in the following sub-sections, the current
readings of the sensors may trigger readings from additional sen-
sors. Thus, different r(t)i may cause tj to need different s(t). The
average cost of a tree on training data ctrain

tj is thus defined as the
cost of all of the sensors that have been used to predict the out-
come for each training instance, averaged over all instances in the
training data set:

ctrain
tj ,

∑
r(t)∈dtrain

∑
l∈{i|si∈s(t)}

cl
|dtrain| .

If a solution uses a sensor more than once, no extra cost is incurred:
because the sensor has already been polled, its output is already
available and can thus be re-used as often as required.

Size: To avoid bloat, solution size was incorporated into the fit-
ness objectives during the optimization process [7].

Age: We employed the Age-Fitness Pareto Optimization (AFPO)
method [20], which injects a new randomly-generated solution into
the population at each generation and compares the solutions with
same age in an effort to guard against convergence. Each solution’s
age is defined as the number of generations since its oldest ances-
tor was injected into the population. A new solution produced by
mutating an existing solution inherits the same age as its parent. If
two existing parents are crossed to produce two new offspring, the
offspring inherit the age of the older of the two parents. AFPO is
an multiobjective optimization method as solution age is used as an
additional fitness objective during optimization.

Optimization. At the end of each generation, the Pareto front
is computed according to the objectives used, and the dominated
solutions are discarded. Multi-objective optimization with all four
objectives described above could easily lead to population collapse
in the sense that all members of the population could become non-
dominated. To guard against this eventuality, one possibility is to
restart the evolutionary run with new solutions if no dominated so-
lutions are detected in the population at the end of a given genera-
tion. Alternatively, a very large population size can be employed.
However, both of these solutions greatly increase the computational
effort required to obtain satisfactory solutions to the given prob-
lem. To avoid this situation, different multi-objective optimization
approaches has been proposed. One of the simplest non-parametric
approaches is to reduce the number of objectives by multiplying
objectives together and using the result in the optimization process
[10]. In this experiment, since error is the most important outcome,
error is used for the primary objective and the second objective is
the result of multiplying cost, size and age together.

Once the dominated solutions are deleted, the empty slots in the
population are then filled by mutating and crossing copies of the
non-dominated solutions. Tournament selection is used to select
parents from the front for these operations. After the last genera-
tion, age is discarded when computing members of the Pareto front,
since the goal is to use only small, accurate and cost-effective solu-
tions for prediction, regardless of their age.

3.3 Non-hierarchical GP
A naive approach to cost-sensitive modeling using GP would be

to evolve individual trees that add conditional and comparative op-
erators to the base set of operators, and allow the tree to poll the val-
ues of all sensors if desired, as shown in Figure 1.A. In this way, dif-
ferent parts of the solution tree will be visited depending on the cur-
rent values of the sensors. Successful solutions may evolve which
only visit nodes containing references to expensive sensors—which
are then polled—if less expensive sensors report certain combina-
tions of values that signal these sensors are unlikely to predict well
given the current circumstances. etrain

tj and ctrain
tj ∗ age ∗ size are em-

ployed as the two main objectives in the optimization process.
Figure 1.B shows an hypothetical example of a GP solution tj

that has evolved to encode a useful conditional. In this example,
an inexpensive sensor s1 is first polled. If its reported value r(t)1

is below some threshold, the reading of a more expensive sensor
s2 is going to be used. It is assumed here that s1 tends to make
poor predictions of the outcome if its reading is below 1.43. If this
threshold is exceeded, r(t)1 is then used to predict the outcome.

Conditional operators should, indirectly, encode the differential
effects on the available sensors, and the relative costs of those sen-

Figure 1:A)Non-hierarchical framework.B)A non-hierarchical
sample solution.

Figure 2: Hierarchical framework.

sors. Note that this is possible even if GP does not have direct
access to these differential effects and costs, as they are indirectly
reflected in the errors and costs incurred when each solution is
evaluated. This issue is worth mentioning in that these effects are
complex, non-linear and noisy, and even field experts cannot define
them precisely.

3.4 Hierarchical GP
An alternative approach to reconciling prediction error and pre-

diction cost is to build a hierarchy of models: models in the lower
layers only have access to inexpensive sensors, while models in the
upper layers have access to a greater subset of the sensors, includ-
ing more expensive ones. When deployed, the overall model re-
turns a prediction from a lower layer if the inexpensive sensors are
confident of their combined prediction. If they are not, predictions
are drawn from a higher layer.

Briefly, constructing such a model proceeds in two phases:

1. First, build a set of k layers, one for each sensor modal-
ity. For each layer i, run GP to find a set of accurate and
low-cost solutions that use one or more sensors from the set
s1, s2, . . . si.

2. Define conditions which determine which layer should be al-
lowed to provide the prediction, given the current environ-
mental conditions.

Figure 2 illustrates what such a hierarchical model looks like.
At the outset of attempting to provide a prediction for the current
environmental conditions, the models stored in the lowest layer are
evaluated, which only have access to the least expensive sensor s1.

If the certainty of their combined predictions is acceptable, return
the combined prediction of these models. Otherwise, evaluate the
models at the next layer, which have access to s1 and the next least
expensive sensor s2. If these models are acceptably confident in the
prediction, return their combined prediction; otherwise, evaluate
the solutions at the next layer, and so on. If the top layer is reached,
the combined predictions of the models found there are returned
as the overall prediction, regardless of their level of certainty. The
incremental construction of these models is described next.

Starting with the least expensive sensor s1, GP is used to find
the best models for converting r(t)1 to g(t). When GP terminates,
the final non-dominated solutions are then organized as a group
named layer L1. The same process is repeated for s2, except for
the fact that since s1 is already polled in L1, it may be incorporated
into models during evolution without incurring an extra cost for the
solution tree that makes use of it. Similarly, for each sensor si,
a separate GP run is performed with sensors s1 to si available as
input to construct layer Li. These layers are then organized in a
hierarchical fashion. The order of layers is based on the cost of
the most expensive sensor they are representing, from L1 to Lk.
Suppose each layer Li consists of ni solutions and the jth solution
tj in Li is denoted as ti,j . Let p(t)ti,j

denote the prediction of g(t)

that ti,j provides. Then, the final prediction of layer Li for g(t) is

p
(t)
Li

,
ni∑
j=1

p
(t)
ti,j

ni
.

The error that corresponds to p(t)Li
is

e
(t)
Li

, |p(t)Li
− g(t)|.

In the second phase, a conditional must be formulated to de-
termine whether the current layer should return its prediction, or
whether the burden of prediction should be passed up to the next
layer. One common method for measuring how confident an en-
semble of models is, is to compute the variance in their predictions
[21]: if variance is low, and those models are sufficiently indepen-
dent of one another, there is a greater likelihood that their combined
predictions can be trusted. If variance is high, this is likely the re-
sult of differing assumptions encoded in the models, which cannot
all be true reflections of the hidden relationship being modeled.
Note the assumption here that the models are relatively indepen-
dent: a set of identical models will never exhibit a variance in their
predictions, regardless of how accurate the individual models are.
We can be somewhat confident of the independence of our models,
as they are produced by the AFPO algorithm: models with differing
ages are likely to arrive on the final Pareto front used to build each
layer, and such differently-aged genomes are likely to be somewhat
independent because of their different genetic origins.

Formally: Let ptrain(t)
Li

and etrain(t)
Li

denote p(t)Li
and e(t)Li

using r(t) on
dtrain, respectively. Similarly, ptest(t)

Li
and etest(t)

Li
respectively denote

p
(t)
Li

and e(t)Li
using r(t) on dtest. Moreover, assume vtrain(t)

i and vtest(t)
i

are the variances of all p(t)ti,j
s on dtrain and dtest. Also, vtrain

i denotes

vtrain(t)
i averaged over all the samplings in dtrain.
To determine whether the burden of prediction should remain

with the current layer or passed off to a higher layer, we measure
the difference in prediction variance between the models when pre-
sented with the training data (vtrain

i) or with the testing data, i.e. the
current environmental conditions (vtest(t)

i). When vtest(t)
i is almost

the same as vtrain
i , there is a high probability that etest(t)

Li
is an ap-

proximation of etrain(t)
Li

, and we can be relatively confident that these

Figure 3: Using the difference between training data prediction
variance and test data prediction variance as the condition for
switching between model layers.

models will yield a good collective prediction of g(t). When the
variance of test data prediction is significantly higher than predic-
tion on the training data, this signals that the solutions in that layer
are exhibiting increased disagreement regarding the current envi-
ronmental conditions. This could be due to the fact that a specific
sensor is not physically able to predict under the current conditions,
or the solutions have not been trained for the current situation. In
such an eventuality it would be advantageous to switch to the next
layer, in the hope that its models will exhibit more confidence in
their ability to predict the current conditions. In this paper, the
variance is considered as a proxy for entropy, but any other entropy
related metric could be used instead. Figure 3 illustrates how this
intuition is encoded into the switching condition in the hierarchy of
layers.

By considering the amount of difference between prediction vari-
ance on training and testing data, we can dynamically tune how
conservative or liberal the overall hierarchical model is: if little dif-
ference is tolerated, the burden of prediction will often be passed
to higher layers, resulting in expensive yet accurate predictions;
if much difference is tolerated, lower levels will tend to predict,
resulting in less expensive and less accurate predictions. The ad-
vantage of this approach is that the amount of tolerance could be
dynamically tuned based on the current available budget for sens-
ing.

For example, for larger budgets, more cost could be expended in
order to obtain more accurate results. In this regard, the tolerance of
the difference between variances could be decreased, transferring
the burden of prediction to higher layers. Similarly for small bud-
gets, the tolerance would be increased. Through this adjustment,
more disagreement would be tolerated and less accurate predictions
would be obtained for lower cost. To implement this dynamic tun-
ing given a fluctuating budget, a tolerance parameter τ ∈ [0, 1] is
defined, reflecting the tolerance of disagreement between the so-
lutions of a given layer. Equation (1) demonstrates how this pa-
rameter is used to determine which level should be activated for
prediction.

p(t) =

{
p
(t)
Li

if vtrain
i < |1− τ | · vtest(t)

i

p
(t)
Li+1

otherwise
(1)

It should be noted that in the present work, the same value for τ is
used at the interstices between each pair of layers. However, dif-
ferent values for τ could be employed between different layers to
enable the model to respond better to changes in the overall avail-
able budget. The extreme cases occur when τ = 0 or τ = 1.
The former ensures that the conditional is only true when the pre-
diction variance on the testing data is greater than the prediction
variance on the training data which has a high probability of oc-
curring. Thus, the method tends to extract the predictions from the
solutions on the uppermost layer. The latter ensures that the condi-
tional is only true whenever the variance on the testing data is finite,
which is always true. In this case, the first layer always provides the

Table 1: Available sensors and their features.
Name Equation Template of r(t)i Cost
s3 g(t) 3
s2 b2,1g

(t) + b2,2 2
s1 b1,1(g

(t))
2
+ b1,2g

(t) + b1,3 1

prediction. Values greater than τ = 1 are not investigated in this
work, but are possible. Greater τ value increases the probability of
the conditional to be true. τ =∞ causes the conditional to always
be true, thus the method always collects predictions from the last
layer.

4. RESULTS
The proposed methods are evaluated over two set of experiments,

using a synthesized dataset and ten actual datasets. This section
summarizes these datasets, experimental setups, and quantitative
results.

4.1 Synthesized Data
In these experiment, the proposed methods have been evaluated

on a synthetic system monitored by three different sensors. Table
1 shows these three sensors, their readings in relation to g(t), and
their cost.

To create the training and testing datasets, at first coefficients
in the equations of the sensor relations, i.e., bi,js, were randomly
selected in the range [0, 1]. Then, random numbers were generated
for g(t), and used to calculate the sensor readings based on the
given template and selected coefficients. The training and testing
dataset sizes were 150 and 50, respectively, and each experiment
were repeated 40 times.

Non-hierarchical setup. The population size is 100 and is trained
for 300 generations. The optimization process during the last gen-
eration does not consider age as an objective and Pareto front is
selected using error and cost× size as two separate objectives. Af-
ter training, the knee of the non-dominated solutions is selected and
tested using the testing dataset.

Hierarchical setup. The population size for each layer is 100
and each layer was trained for 100 generations, for the sake of
fairness in comparisons. Similarly to the non-hierarchical setup,
during the last generation, age is not considered in the Pareto opti-
mization process, and non-dominated solutions are selected based
on error and cost× size as two separate objectives. After training,
for each layer Li, the variance of the solutions output on train-
ing data vtrain

i is computed and stored as the threshold of switch-
ing to the next layer Li+1. This variance is not computed for the
layer corresponding to the most expensive sensor, i.e., L3, since
there are no more sensors to be called. The experiment was re-
peated 40 times for each of the different tolerance parameters τ =
0.0, 0.1, 0.2, 0.4, 0.6, 0.8.

4.1.1 Results on Synthesized Data
Average error. The average error of the non-hierarchical method

is etest
tj , where tj is the final selected solution. The average error

of the hierarchical method is the average of etest
Li

, where Li is the
last layer reached in the hierarchy, during the sampling. As can be
seen in Figure 4, the largest difference in error occurs at maximum
tolerance i.e. τ = 0.8 where the error of the hierarchical method is
1.34% higher than the non-hierarchical method. The hierarchical
method tends to achieve lower average error when the tolerance
parameter is τ < 0.4. P -values obtained for different tolerance

Figure 4:. Average error on the test data for the non-hierarchical
and the hierarchical methods with different tolerance parame-
ters. Statistical significance of these results are represented in
Table 2.A)

Table 2: A) P -values considering error of the non-hierarchical
and the hierarchical methods with different tolerance parame-
ters. B) P -values considering cost of the non-hierarchical and
the hierarchical methods with different tolerance parameters.

A P -values B P -values
τ = 0.8 0.013414 τ = 0.8 � 0.001
τ = 0.6 0.046626 τ = 0.6 � 0.001
τ = 0.4 0.635566 τ = 0.4 � 0.001
τ = 0.2 0.001309 τ = 0.2 � 0.001
τ = 0.1 � 0.001 τ = 0.1 � 0.001
τ = 0.0 � 0.001 τ = 0.0 � 0.001

parameters are represented in Table 2.A) and show that τ = 0.4 is
the boundary where the hierarchical method begins to outperform
the non-hierarchical method.

Average cost. By considering tj as the final selected solution
in the non-hierarchical method, the average cost is ctest

tj . The aver-
age cost of the hierarchical method is the average of ctest

Li
, when the

last layer reached during the sampling is Li. In order to compare
both methods and understand how much of the potential cost each
method uses, the cost of each method is represented as the percent-
age of cost of using all available sensors. Figure 5 shows that the
average cost of the hierarchical method is significantly lower than
the non-hierarchical method (at most 54.88% and at least 33.81%
lower cost). Table 2.B) summarizes the p-values to show how sig-
nificantly the cost of the hierarchical method is lower than the non-
hierarchical method.

4.2 Actual Data
In this experiment, ten datasets are selected from the UCI database

repository [2] based on the number of instances and features from
the regression section. Table 3 summarizes these datasets and their
features. For these datasets, we treat the individual features as in-
dividual sensors. Each experiment in this section were repeated 30
times.

In order to determine the accuracy of each sensor si in predicting

Figure 5:The average cost on the test data for the non-
hierarchical and the hierarchical methods with different tol-
erance parameters. Statistical significance of these results are
represented in Table 2.B)

Table 3: Used UCI datasets.
DS No. DS Name No. of Instances No. of sensors g(t) Average
DS1 Auto MPG 398 7 23.51457
DS2 Housing 506 13 22.53281
DS3 Forest Fires 517 12 0.031663
DS4 Energy Efficiency 768 8 22.3072
DS5 Concrete Compressive Strength 1030 8 35.81796
DS6 Solar Flare 1389 9 0.300188
DS7 Airfoil Self-Noise 1503 5 124.8359
DS8 SkilCraft1 Master Table Dataset 3395 19 4.184094
DS9 Wine Quality 4898 11 5.877909
DS10 Parkinson’s Telemonitoring 5875 17 29.01894

Table 4: Value of v(g)ri for all the sensors of Auto MPG dataset.
DS No. s1 s2 s3 s4 s5 s6 s7

Auto MPG 0.1766 0.3175 0.3356 0.5951 0.6012 0.6467 0.6918

Table 5: Minimum and maximum amount of variance a sensor
accounts for, in each dataset.

DS No. min v
(g)
ri max v

(g)
ri

DS1 0.1766 0.6918
DS2 0.0307 0.5441
DS3 0.0002 0.2578
DS4 0.0076 0.7911
DS5 0.0112 0.2478
DS6 0.000 0.096
DS7 0.0157 0.1527
DS8 0.0005 0.4542
DS9 0.0001 0.1897
DS10 0.0037 0.0263

g(t), the value of v(g)ri is calculated for each available sensor of each
dataset, using linear regression. The greater v(g)ri is, the better that
sensor can predict g(t).Table 4 summarizes the values of v(g)ri for all
of the sensors of the Auto MPG dataset, as an exampl. We define
the cost of each sensor in these datasets as v(g)ri .

Table 6: Average error percentages and the corresponding P -
values for the hierarchical and the non-hierarchical methods.

DS No. NH: error % H: error % P -value
DS1 20.85 25.81 � 0.001
DS2 25.90 28.93 � 0.001
DS3 126.49 202.12 0.565
DS4 29.19 36.70 � 0.001
DS5 35.29 39.68 0.393
DS6 110.63 111.08 0.223
DS7 0.00 0.00 0.082
DS8 37.59 28.65 0.194
DS9 10.79 10.67 0.197
DS10 32.11 29.88 0.423

Table 7: Average cost percentages and the corresponding P -
values for the hierarchical and the non-hierarchical methods.

DS No. NH: cost % H: cost % P -value
DS1 38.89 12.33 0.022
DS2 23.18 1.26 � 0.001
DS3 6.83 15.81 � 0.001
DS4 32.90 4.18 � 0.001
DS5 53.63 28.63 0.004
DS6 0.00 0.98 0.040
DS7 11.58 7.35 0.005
DS8 2.55 0.00 � 0.001
DS9 0.02 0.00 � 0.001
DS10 20.62 3.88 0.009

Non-hierarchical setup. The population size is 200 and for each
dataset with k features, it is trained for 200 ∗ k generations.

Hierarchical setup. The population size for each layer is 200.
Similar to synthesized data experiments, In order to equalize search
effort in both methods, each layer was trained for 200 generation.
After training, a subset of the non-dominated solutions with least
error are selected and organized in the corresponding layer. The
cardinality of this subset is 2% of the population size. This experi-
ment was conductedof for tolerance parameter τ = 0.1. This value
is selected based on the results in 4.1 and will be discussed in more
detail in Section 5.1.

4.2.1 Results on Actual Data
Average error. The average error for the non-hierarchical and

the hierarchical methods are etest
tj and etest

Li
respectively, where tj

is the final selected solution in the non-hierarchical method and
Li is the last layer reached during the sampling in the hierarchical
method. Table 6 summarizes the average error of both methods on
all the datasets as a percentage of error. It can be seen that for some
datasets, the average error of the hierarchical method is higher than
the average error of the non-hierarchical method. However, the P -
value for the two-tailed t-test shows that generally, this difference
is not significant. There are three cases where the difference is
significant i.e., DS1, DS2 and DS4.

Average cost. Similar to 4.1.1, the average cost is represented as
the percentage of the maximum possible cost. Table 7 summarizes
the percentage of the average cost each method uses for predic-
tion. The cost of the hierarchical method is significantly lower in
all cases except for DS3 and DS6.

5. DISCUSSION
Our results in all experiments suggest that the hierarchical method

is better at balancing cost and accuracy than the non-hierarchical
approach. We believe this is because meaningful sensor control
conditions for managing cost are complex and require consider-
able computational effort to be discovered. Using hand-tuned pre-
diction uncertainty to drive sensor control is more effective. Fur-
thermore, our results show that the latter approach better supports
dynamic adaptation to changes in available energy, through modu-
lation of tolerance. The non-hierarchical approach cannot adapt to
such changes without retraining from scratch, or aggressive online
learning. As mentioned in Section 3.2, in these experiments a basic
genetic programming approach was deployed. We anticipate that if
we were to use a more powerful underlying GP approach, the error
of both hierarchical and non-hierarchical models would be reduced.

In the remainder of this Section we discuss results as they pertain
specifically to experiments with synthesized and actual data.

5.1 Synthesized Data
Average error. As can be seen in Figure 4, the hierarchical

method achieved significantly better accuracy than the non-hierarchical
method for τ < 0.4. In general, results show that higher tolerance
allows the algorithm to accept more uncertainty in the prediction
and rely on less expensive sensors which are less accurate. This
avoids the use of more expensive sensors, but causes average error
to rise. A tolerance of τ < 0.4 is apparently the threshold where
average error in the hierarchical method exceeds that of the non-
hierarchical method.

Average cost. Results reported in Figure 5 show that the hi-
erarchical method significantly outperforms the non-hierarchical
method with regard to cost on this dataset, even when tolerance is
low. This suggests that the use of variance in ensemble predictions
to serve as a proxy for prediction uncertainty is not easy to learn,
and serves as a good mechanism for control. Results in Figures 4
and 5 suggest that τ = 0.1 is a “sweet spot” for balancing cost
and accuracy, though the value could be increased or decreased if
greater frugality or accuracy were needed, respectively.

5.2 Actual Data
For testing on actual data, we fixed τ = 0.1 due to results on

synthetic data demonstrating a nice balance between cost and ac-
curacy with this tolerance level.

Average error. Table 6 shows that the average error of the hi-
erarchical and the non-hierarchical methods were not significantly
different, except for datasets DS1, DS2 and DS4 where the latter
method achieves better prediction accuracy. This is probably due to
the characteristics of these datasets, where the difference between
the least prediction variances v(g)ri s and the greatest ones is large.
The majority of sensors in these datasets are not informative but
have low costs and the remaining sensors are informative enough
but come with very higher costs. Thus, lower levels of the hierarchy
“struggle” compared to upper ones in terms of accuracy. Neverthe-
less, accuracy rate with the hierarchical method is still competitive
even in these cases, and cost reduction is significant. Also, it can be
seen that as the size of the datasets grows, the difference between
the error rate of the non-hierarchical and the hierarchical methods
decreases, and in the three largest datasets the hierarchical method
also achieves lower error rates.

Average cost. The hierarchical method achieved significantly
lower cost than the non-hierarchical method on all the real world
datasets, as shown in Table 7, except for DS3 and DS6. As rep-
resented in Table 5, in these two datasets, just a small subset of
sensors are relatively informative. Since the tolerance parameter
for the hierarchical method is low, the hierarchical method employs
more informative sensors. Taken together, results shown in Tables

6 and 7 clearly indicate an advantage of the hierarchical method for
balancing cost and accuracy.

6. CONCLUSION AND FUTURE WORK
All resource constrained sensor systems have to face a trade-off

between measurement accuracy and the cost of sensor sampling. In
networks supporting multiple sensor types, it is therefore desirable
to develop cost-sensitive control algorithms that sample more ex-
pensive sensors only when necessary. In this paper, a hierarchical
method is proposed where GP solutions are sorted in a hierarchy of
layers based on the cost of the sensors they use. Switching to the
next more expensive layer takes place only if the prediction vari-
ance indicates uncertainty at lower layers. We compare this method
to a non-hierarchical GP method where cost is treated as an addi-
tional optimization objective in fitness selection. In experiments
using a synthesized dataset and ten real datasets, the hierarchical
method is shown to have significantly lower prediction costs than
the non-hierarchical method. As the datasets grow bigger and more
complex, competitive and sometimes lower error rates are achieved
by the hierarchical method. Future work includes consideration of
how to dynamically tune the balance of cost and accuracy based on
available energy and budget. Other directions for future work in-
clude methods for online learning to support adaptation of control
algorithms to particular deployments, and application of hierarchi-
cal control algorithms in real resource constrained sensor system
deployments.

Acknowledgements
This work was supported in part by the NSF award PECASE-0953837
and DARPA award MSEE-W911NF-11-1-0076.

7. REFERENCES
[1] github code public repository. http://git.io/vfmGB. Accessed:

2015-04-18.
[2] UCI machine learning repository.

http://archive.ics.uci.edu/ml/datasets.html. Accessed: 2015-02-03.
[3] C. Alippi, G. Anastasi, C. Galperti, F. Mancini, and M. Roveri.

Adaptive sampling for energy conservation in wireless sensor
networks for snow monitoring applications. In IEEE 4th
International Conference on Mobile Adhoc and Sensor Systems,
MASS 2007, 8-11 October 2007, Pisa, Italy, pages 1–6, 2007.

[4] E. H. Bair, R. E. Davis, D. C. Finnegan, A. L. LeWinter,
E. Guttmann, and J. Dozier. Can we estimate precipitation rate
during snowfall using a scanning terrestrial lidar? In International
Snow Science Workshop, pages 923–929, Anchorage, AK, 2012.

[5] Brockhoff, Dimo, Zitzler, and Eckart. Are all objectives necessary?
On dimensionality reduction in evolutionary multiobjective
optimization. In Parallel Problem Solving from Nature-PPSN IX,
pages 533–542. Springer, 2006.

[6] D. Buckingham, C. Skalka, and J. Bongard. Inductive learning of
snowpack distribution models for improved estimation of areal snow
water equivalent. Journal of Hydrology, 2015. Accepted for
Publication.

[7] E. D. de Jong and J. B. Pollack. Multi-objective methods for tree size
control. Genetic Programming and Evolvable Machines,
4(3):211–233, 2003.

[8] D. L. Donoho. Compressed sensing. IEEE Transactions on
Information Theory, 52(4):1289–1306, 2006.

[9] D. Hall and J. Llinas. Multisensor data fusion. CRC press, 2001.
[10] G. Hornby. ALPS: the age-layered population structure for reducing

the problem of premature convergence. In Genetic and Evolutionary
Computation Conference, GECCO 2006, Proceedings, Seattle,
Washington, USA, July 8-12, 2006, pages 815–822, 2006.

[11] D. Kim. Structural risk minimization on decision trees using an
evolutionary multiobjective optimization. In Genetic Programming,
pages 338–348. Springer, 2004.

[12] F. Koushanfar, S. Slijepcevic, M. Potkonjak, and
A. Sangiovanni-Vincentelli. Error-tolerant multimodal sensor fusion.
In IEEE CAS Workshop on Wireless Communication and
Networking, pages 5–6, 2002.

[13] A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg. Near-optimal
sensor placements: Maximizing information while minimizing
communication cost. In Proceedings of the 5th international
conference on Information processing in sensor networks, pages
2–10. ACM, 2006.

[14] S. Maleki, A. Pandharipande, and G. Leus. Two-stage spectrum
sensing for cognitive radios. In Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal
Processing, ICASSP 2010, 14-19 March 2010, Sheraton Dallas
Hotel, Dallas, Texas, USA, pages 2946–2949, 2010.

[15] M. L. Malloy and R. D. Nowak. Near-optimal adaptive compressed
sensing. IEEE Transactions on Information Theory,
60(7):4001–4012, 2014.

[16] A. Martinelli. Vision and IMU data fusion: Closed-form solutions for
attitude, speed, absolute scale, and bias determination. IEEE
Transactions on Robotics, 28(1):44–60, 2012.

[17] C. Papadimitriou, J. L. Beck, and S.-K. Au. Entropy-based optimal
sensor location for structural model updating. Journal of Vibration
and Control, 6(5):781–800, 2000.

[18] C. Pohl and J. V. Genderen. Review article multisensor image fusion
in remote sensing: concepts, methods and applications. International
Journal of Remote Sensing, 19(5):823–854, 1998.

[19] H. Ren, D. Rank, M. Merdes, J. Stallkamp, and P. Kazanzides.
Multisensor data fusion in an integrated tracking system for
endoscopic surgery. IEEE Transactions on Information Technology in
Biomedicine, 16(1):106–111, 2012.

[20] M. Schmidt and H. Lipson. Age-fitness pareto optimization. In
R. Riolo, T. McConaghy, and E. Vladislavleva, editors, Genetic
Programming Theory and Practice VIII, volume 8 of Genetic and
Evolutionary Computation, pages 129–146. Springer New York,
2011.

[21] H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In
Proceedings of the Fifth Annual Workshop on Computational
Learning Theory, COLT ’92, pages 287–294, New York, NY, USA,
1992. ACM.

[22] C. Skalka and J. Frolik. Snowcloud: A complete data gathering
system for snow hydrology research. In Real-World Wireless Sensor
Networks, pages 3–14. Springer, 2014.

[23] D. Smith and S. Singh. Approaches to multisensor data fusion in
target tracking: A survey. IEEE Trans. Knowl. Data Eng.,
18(12):1696–1710, 2006.

[24] H. Tabari, S. Marofi, H. Z. Abyaneh, and M. R. Sharifi. Comparison
of artificial neural network and combined models in estimating
spatial distribution of snow depth and snow water equivalent in
Samsami basin of Iran. Neural Comput. Appl., 19(4):625–635, 2010.

[25] U. Tappeiner, G. Tappeiner, J. Aschenwald, E. Tasser, and
B. Ostendorf. GIS-based modelling of spatial pattern of snow cover
duration in an alpine area. Ecol. Model., 138:265–275, 2001.

[26] E. L. Waltz and D. M. Buede. Data fusion and decision support for
command and control. IEEE Transactions on Systems, Man, and
Cybernetics, 16(6):865–879, 1986.

[27] D. Wang, H. Ahmadi, T. F. Abdelzaher, H. Chenji, R. Stoleru, and
C. C. Aggarwal. Optimizing quality-of-information in cost-sensitive
sensor data fusion. In Distributed Computing in Sensor Systems, 7th
IEEE International Conference and Workshops, DCOSS 2011,
Barcelona, Spain, 27-29 June, 2011, Proceedings, pages 1–8, 2011.

[28] R. Willett, A. Martin, and R. Nowak. Backcasting: adaptive sampling
for sensor networks. In Proceedings of the Third International
Symposium on Information Processing in Sensor Networks, IPSN
2004, Berkeley, California, USA, April 26-27, 2004, pages 124–133,
2004.

[29] J. Yick, B. Mukherjee, and D. Ghosal. Wireless sensor network
survey. Comput. Netw., 52(12):2292–2330, 2008.

[30] H. Zhao. A multi-objective genetic programming approach to
developing pareto optimal decision trees. Decision Support Systems,
43(3):809–826, 2007.

