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Abstract. In some wireless sensor network applications, multiple sen-
sors can be used to measure the same variable, while differing in their
sampling cost, for example in their power requirements. This raises the
problem of automatically controlling heterogeneous sensor suites in wire-
less sensor network applications, in a manner that balances cost and
accuracy of sensors. We apply genetic programming (GP) to this prob-
lem, considering two basic approaches. First, we construct a hierarchy of
models, where increasing levels in the hierarchy use sensors of increasing
cost. If a model that polls low cost sensors exhibits too much predic-
tion uncertainty, the burden of prediction is automatically transferred
to a higher level model using more expensive sensors. Second, we train
models with cost as an optimization objective, called non-hierarchical
models, that use conditionals to automatically select sensors based on
both cost and accuracy. We compare these approaches in a setting where
the available budget for sampling is considered to remain constant, and
in a setting where the system is sensitive to a fluctuating budget, for
example available battery power. We show that in both settings, for in-
creasingly challenging datasets, hierarchical models makes predictions
with equivalent accuracy yet lower cost than non-hierarchical models.

1 Introduction

Wireless Sensor Networks (WSNs) have revolutionized environmental monitor-
ing by combining low cost with flexibility in sensor capabilities [31]. They have
been used in diverse environmental monitoring applications and continue to be
adapted in new fields. Because WSNs are often, even typically, deployed in re-
mote locations, and thus rely on combinations of battery power and energy
harvesting, a major challenge in WSN design is to minimize system power con-
sumption.

Minimizing power consumption can be accomplished in a variety of ways, in
particular by adapting sensor control strategies that optimize the balance be-
tween measurement accuracy and the cost of powering sensors [30]. In this paper,
we propose new sensor control algorithms for WSNs with heterogeneous sensor
suites that balance cost and accuracy, obtained using genetic programming (GP)
techniques.
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By “heterogeneous sensor suite”, we mean WSNs equipped with multiple
types of sensors for prediction of the same phenomena. Each of these sensors is
characterized by its accuracy in relation to the phenomena, and a cost of use
which is often measured by its power consumption. Such systems support multi-
modal sensor fusion, a well-studied technique where data from multiple sensor
modalities (types) is combined to predict a single variable [30]. The contribution
of our work is a consideration of cost in multi-modal sensor fusion, and the
development and testing of associated control algorithms. These algorithms will
call upon particular sensors only when needed, and otherwise rely on the cheapest
available sensors at any given time. Our problem is distinguished from adaptive
sampling [30] in that the latter is concerned with optimally modulating sampling
frequency of a given sensor, not choosing between a suite of possible sensors.

While various multi-modal sensor fusion applications exist, we are especially
interested in the Snowcloud system which combines snow density telemetry with
snow depth and air temperature sensors to predict areal snow water equivalent
(SWE) [24]. We envision extending Snowcloud to incorporate ground based light
detection and ranging (LIDAR) scanning [5] to be used for SWE estimation as
part of its sensor suite. However, while LIDAR yields more accurate data than
existing Snowcloud telemetry, it does so at significant additional power cost.
Thus, the challenge is to commit these resources only at optimal times. It is
also a refinement of multi-modal sensor fusion, since we are mainly interested in
settings where available data gathering techniques differ in accuracy, with less
accurate sensors being cheaper than more accurate ones.

A fundamental component of our approach is the use of prediction uncer-
tainty to drive sensor usage. We propose a scheme whereby predictions are at-
tempted using lower-cost sensors at first. If uncertainty is below an acceptable
threshold, then the prediction is used. Otherwise we switch to higher-cost sen-
sors, make a new prediction based on those inputs, evaluate uncertainty again,
and continue to move the burden of prediction to more accurate and costly sen-
sors as needed. This scheme is discussed in detail in Section 2.4 and described
graphically in Figure 2. Note that while the Snowcloud system is an intended
application of this scheme, it can be generalized to any WSN application using
heterogeneous sensor suites comprising sensors with varying cost and accuracy.

To quantify uncertainty we are aided by machine learning ensemble methods–
we use entropy in ensemble predictions as a proxy for uncertainty [23]. To obtain
predictive models themselves, in this work we use genetic programming (GP)
[14]. This is largely due to characteristics of our intended application space. Pre-
vious work has demonstrated that the relationships between snow cover and the
topographic and meteorological factors that influence it include non-linearities
[26], while the spatial distribution of SWE is nonlinear because it is influenced
simultaneously by various forcing effects [27]. Nonlinear predictors are therefore
desirable. Furthermore, recent results [7] show that GP has advantages over other
approaches (such as decision trees) due to associated techniques for preventing
overfitting, e.g. treating model size minimization as an objective [12]. Although
C4.5 only supports classification, sufficiently fine classification granularity can
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achieve competitive performance on regression problems, and this approach is
popular in the environmental science community [7]. Finally, GP is appealing
due to its white-box nature: it can potentially provide physical insights into
modeled phenomena.

An alternative approach to our problem is to not rely on external measures
of entropy to switch between sensors, but to treat cost as an additional objective
in a multi-objective optimization problem. We explore this option in our work,
in direct comparison to the hierarchical approach. However, due to the “curse
of dimensionality”, adding another optimization dimension may have deleteri-
ous effects on prediction performance, especially since selection for size to avoid
overfitting already imposes a multi-objective optimization regime [6]. We there-
fore hypothesize that a hierarchical approach will outperform a non-hierarchical
approach in settings with multiple sensors of differing predictive abilities, and
we explore this comparison in our experiments.

In our initial comparison of these two approaches– hierarchical and non-
hierarchical– our regime is not concerned with the available budget. However, in
real deployments, budget levels can have significant impacts on what sensors are
chosen. For example, if battery levels are low, expensive sensors should probably
be avoided regardless of prediction uncertainty, both to reduce system downtime
and sensor noise. Therefore, we also consider a comparison of the hierarchical and
non-hierarchical approaches in a setting where models are sensitive to dynamic
budget fluctuations. As for the basic setting, we hypothesize that the hierarchical
approach will perform better than the non-hierarchical.

1.1 Related Work

Previous work on adaptive sampling [30] has aimed to reduce sampling rates
in Resource Constrained Sensor Systems (RCSS) applications to balance sensor
cost and accuracy. In particular, Alippi et al. [4] have tried to find the optimal
adaptive frequency of sampling for avalanche monitoring. It has further been
claimed that compressed sensing — sending aggregated data instead of raw data
— performs better in conjunction with reducing sampling rates, rather than
just reducing the sampling rate alone [17]. A variety of methods for compressed
sensing [8] have been proposed. Although these methods have achieved cost re-
duction in monitoring, they are not applicable to our problem since we intend not
to change the rate of sampling of one sensor type, but rather to reduce sampling
cost by switching between available sensors of different type and accuracy.

Another line of work focuses on finding the optimal location for sensors in
distributed deployments, in order to maximize accuracy while minimizing de-
ployment densities. Krause et al. [15] have used a probabilistic method to predict
the communication cost for a given deployment topology. Papadimitriou et al.
[19] have employed GP and a Bayesian statistical method to minimize entropy
over a set of sensor locations. In contrast, our work is concerned with reducing
the cost of sampling from an available set of sensors at any given time, not with
reducing the densities of sensor topologies.
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In work on so-called multi-modal sensor fusion, data from multiple sensors
in a potentially heterogeneous suite are aggregated to monitor a specific mea-
surement application [28, 9]. This method has been widely used, for example in
visual monitoring [18, 20] and target tracking [21, 25]. Data fusion focuses on
sensor applications that need to compute the correlation between multiple sen-
sor modules and cannot be measured by a single sensor. However, these works
do not consider the cost of using different sensors, or minimizing cost.

Cost sensitive multi-modal sensor fusion methods have been developed to
balance cost against accuracy, with an eye towards providing fault tolerance
[13]. However, we are not concerned with fault tolerance, but strictly between
selecting sensors from heterogeneous suites. Willett et al. [30] use a small number
of sensors to send their readings to a fusion center, and based on the correlation
among the sensed data, the fusion center decides which additional sensors should
be activated. The same concept has also been tried in a distributed fashion [16].
However, sensing costs in these cases are a function of the number of sensors
sampled, not their type.

Perhaps most related to our work is that of Wang et al. [29]. They propose a
method to find the optimal set of sensors to be polled, using a hybrid tree, where
non-leaf nodes act as a decision tree and leaves are standard regression models
using a subset of sensors. However, these trees support decision making based
on external constraints, i.e., which sensors to use depending on an organization’s
goals and resources. In contrast, our models are intended to support automated
sensor control in WSNs during deployments.

Outside of the adaptive sampling and sensor fusion fields, multi-objective
optimization has been used for cost-sensitive modeling. For example Kim [12]
sets error as one objective and tree size as another, as we do here. Zhao [32] sets
the false negative rate and false positive rate as the two objectives. However,
these works do not consider the hierarchical approach that we do.

1.2 Organization of the Chapter

The remaining text is organized as follows. In Section 2 we formalize our basic
problem description, and explain how hierarchical and non-hierarchical models
are constructed. In Section 3 we describe the experiments we perform to com-
pare these two approaches, and the quantitative results from those experiments.
In Section 4 we describe an extension where dynamically changing budget infor-
mation can be taken into account, and reformulate a problem formalization, as
well as a description of methods, experiments, and quantitative results in this
extended setting. In Section 5 we discuss and reflect on our quantitative results
for all experiments. In Section 6 we conclude with remarks on future work.

2 Methods

This section provides a formalization of the problem, how genetic programming
is applied to solve it, and the two variants of genetic programming that we
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compare in this work. All of the material for replicating the work described here
is available online [1].

2.1 Problem Formalization

Let us assume that t values of some environmental phenomenon g (the ground
truth) are known at time steps 1, . . . t. These values are stored in g = g1, . . . gt.
Let us further assume there are k sensors s1, . . . sk available that can be used

to predict g. Let r
(t)
i denote the reading of sensor i taken at time t. Moreover,

let s(t) and r(t) denote a subset of sensors, and readings taken from them, at

time t. We denote the amount of variance of g explained by sensor i as v
(g)
ri .

This value is determined by linearly regressing only ri against g. Finally, let

ei = 100(1− v(g)
ri ) and ci represent the prediction error and cost of using sensor

i respectively. Using this formulation, ei represents the percentage of prediction
error incurred by just using sensor i to predict g.

The cost of a sensor ci is usually inversely proportional to its error ei, so

for the work reported below, we set ci = v
(g)
ri for each sensor. In certain sensor

deployments there may be other factors that affect ci such as power consumption,
market price, effort required to collect a sensor’s reading, proprietary issues, and
so on. In any case it is important to clarify that in this work we only consider
costs of sensor sampling, not operational costs of the platform, e.g. the cost of
post-sampling data processing.

We suppose that an ordering of sensors exists such that s1 is the least ex-
pensive sensor with the highest error and sk is the most expensive sensor with
the lowest error. Formally,

∀i, j . 1 ≤ i < j ≤ k → ei > ej ∧ ci < cj .

Let us denote the prediction of a model using a subset of sensors at time t
by p(t), i.e., p(t) is a function on r(t). Then, the error of each sampling e(t) would
be

e(t) , |p(t) − g(t)|.
The cost of each sampling, c(t) is the cumulated cost of all sensors si ∈ s(t)

that were polled for that sampling:

c(t) ,
∑

j∈{i|si∈s(t)}

cj .

It is desired that each sampling s(t) entails low error and cost. That is, the
following equality is desirable:

argmin
s(t)

e(t) = argmin
s(t)

c(t).

Our goal is to design models which combine and transform sensor readings
to accurately predict the outcome measure, but can also intelligently determine
which sensors to poll when cheap, less accurate sensors exhibit uncertainty about
the current prediction.
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2.2 General Genetic Programming approach

Genetic programming has widely been employed for regression tasks in which
the functional form of the equations relating inputs to outputs is unknown [14].
Here, inputs are sensor values and the output is a prediction for a given outcome
measurement.

Although many recent improvements have been proposed for GP, here we
have kept the genetic programming algorithm simple and instead focused on
comparing GP-generated hierarchical and non-hierarchical models. Thus, GP
is restricted to the four simple algebraic operators, and each evolutionary trial
is initialized with a fixed-sized population of 100 randomly-generated solutions
containing three nodes. Maximum tree depth is not set since the tree size is
considered as an objective in multi-objective optimization. The crossover rate
is set to 0.2 and no fitness stall is considered. If the number of non-dominated
solutions reaches 50% of the population size, the training restarts. At the con-
clusion of each generation, four values are computed for each solution: (1) error
on training data as defined below, (2) the combined cost of the sensors used to
make the prediction, (3) the size of the solution, and (4) the age of the solution.
We now discuss each in turn.

Error: Let n be the population size and j range over {1, · · · , n}. Let tj be
some solution tree. We represent the error of sampling at time t using solution

tj with e
(t)
tj . Moreover, d(train) and d(test) denote the training dataset and testing

dataset, respectively. Then, we define the error on training data using solution

tj by e
(train)
tj and as the average of e

(t)
tj on all samples in d(train), i.e.,

e
(train)
tj ,

∑
g(t)∈d(train)

e
(t)
tj

|d(train)|
. (1)

Each solution tj was allowed to use a subset (possibly empty) of available
sensors. The cost of each solution depends on the sensors that are employed and
the sampling.

Cost: As described in the following sub-sections, current sensor readings may

trigger readings from additional sensors. Thus, different r
(t)
i may cause tj to need

different s(t). The average cost of a tree on training data c
(train)
tj is thus defined

as the cost of all of the sensors that have been used to predict the outcome for
each training instance, averaged over all instances in the training dataset:

c
(train)
tj ,

∑
r(t)∈d(train)

∑
l∈{i|si∈s(t)}

cl
|d(train)|

. (2)

If a solution uses a sensor more than once, no extra cost is incurred: because the
sensor has already been polled, its output is already available and can thus be
re-used as often as required.

Size: To avoid bloat, solution size, defined as the number of nodes in the tree,
was incorporated into the fitness objectives during the optimization process [11].
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Fig. 1. A) Non-hierarchical framework. B) A non-hierarchical sample solution.

Age: We employed the Age-Fitness Pareto Optimization (AFPO) method
[22], which injects a new randomly-generated solution into the population at each
generation and compares the solutions with same age in an effort to guard against
convergence. Each solution’s age is defined as the number of generations since
its oldest ancestor was injected into the population. A new solution produced by
mutating an existing solution inherits the same age as its parent. If two existing
parents are crossed to produce two new offspring, the offspring inherit the age
of the older of the two parents. AFPO is a multiobjective optimization method
as solution age is used as an additional fitness objective during optimization.

Optimization. At the end of each generation, the Pareto front is computed
according to the objectives used, and the dominated solutions are discarded.
Multi-objective optimization with all four objectives described above could easily
lead to population collapse in the sense that all members of the population could
become non-dominated. To guard against this eventuality, one possibility is to
restart the evolutionary run with new solutions if no dominated solutions are
detected in the population at the end of a given generation. Alternatively, a very
large population size can be employed. However, both of these solutions greatly
increase the computational effort required to obtain satisfactory solutions to the
given problem. To avoid this situation, different multi-objective optimization
approaches has been proposed. One of the simplest non-parametric approaches
is to reduce the number of objectives by multiplying objectives together and
using the result in the optimization process [10]. In this experiment, since error
is the most important outcome, error is used for the primary objective and the
second objective is the result of multiplying cost, size and age together.

Once the dominated solutions are deleted, the empty slots in the population
are then filled by mutating and crossing copies of the non-dominated solutions.
Tournament selection is used to select parents from the front for these operations.
After the last generation, age is discarded when computing members of the
Pareto front, since the goal is to use only small, accurate and cost-effective
solutions for prediction, regardless of their age.
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2.3 Non-hierarchical GP

A naive approach to cost-sensitive modeling using GP would be to evolve indi-
vidual trees that add conditional and comparative operators to the base set of
operators, and allow the tree to poll the values of all sensors if desired, as shown
in Figure 1.A. In this way, different parts of the solution tree will be visited
depending on the current values of the sensors. If less expensive sensors report
a certain combination of values which in the current circumstances is unlikely
to provide a good prediction, successful solutions may evolve that visit nodes
containing references to expensive sensors.

Figure 1.B shows an hypothetical example of a GP solution tj that has
evolved to encode a useful conditional. In this example, an inexpensive sensor s1

is first polled. If its reported value r
(t)
1 is below some threshold, the reading of a

more expensive sensor s2 will be used. It is assumed here that s1 leads to making
poor predictions of the outcome if its reading is below 1.43. If this threshold is

exceeded, r
(t)
1 is then used to predict the outcome.

Conditional operators should, indirectly, encode the differential effects on the
available sensors, and the relative costs of those sensors. Note that this is possible
even if GP does not have direct access to these differential effects and costs, as
they are indirectly reflected in the errors and costs incurred when each solution
is evaluated. This issue is worth mentioning in that these effects are complex,
non-linear and noisy, and even field experts cannot define them precisely.

2.4 Hierarchical GP

An alternative approach to reconciling prediction error and prediction cost is
to build a hierarchy of models: models in the lower layers only have access to
inexpensive sensors, while models in the upper layers have access to a greater
subset of the sensors, including more expensive ones. When deployed, the overall
model returns a prediction from a lower layer if the inexpensive sensors are
confident of their combined prediction. If they are not, predictions are drawn
from a higher layer.

Briefly, constructing such a model proceeds in two phases:

1. Build a set of k layers, one for each sensor modality. For each layer i, run GP
to find a set of accurate and low-cost solutions that use one or more sensors
from the set s1, s2, . . . si.

2. Define conditions which determine which layer should be allowed to provide
the prediction, given the current environmental conditions.

Figure 2 illustrates what such a hierarchical model looks like. At the outset
of attempting to provide a prediction for the current environmental conditions,
the models stored in the lowest layer are evaluated, which only have access to
the least expensive sensor s1. If the certainty of their combined predictions is
acceptable, return the combined prediction of these models. Otherwise, evaluate
the models at the next layer, which have access to s1 and the next least expensive
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Fig. 2. Hierarchical framework (A). Using the difference between training data predic-
tion variance and test data prediction variance as the condition for switching between
model layers (B).

sensor s2. If these models are acceptably confident in the prediction, return their
combined prediction; otherwise, evaluate the solutions at the next layer, and so
on. If the top layer is reached, the combined predictions of the models found
there are returned as the overall prediction, regardless of their level of certainty.
The incremental construction of these models is described next.

Starting with the least expensive sensor s1, GP is used to find the best

models for converting r
(t)
1 to g(t). When GP terminates, the final non-dominated

solutions are then organized as a group named layer L1. The same process is
repeated for s2, except for the fact that since s1 is already polled in L1, it may
be incorporated into models during evolution without incurring an extra cost for
the solution tree that makes use of it. Similarly, for each sensor si, a separate
GP run is performed with sensors s1 to si available as input to construct layer
Li. These layers are then organized in a hierarchical fashion. The order of layers
is based on the cost of the most expensive sensor they are representing, from
L1 to Lk. Suppose each layer Li consists of ni solutions and the jth solution tj

in Li is denoted as ti,j . Let p
(t)
ti,j denote the prediction of g(t) that ti,j provides.
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Then, the final prediction of layer Li for g(t) is

p
(t)
Li

,
ni∑
j=1

p
(t)
ti,j

ni
.

The error that corresponds to p
(t)
Li

is

e
(t)
Li

, |p(t)
Li
− g(t)|.

In the second phase, a conditional must be formulated to determine whether
the current layer should return its prediction, or whether the burden of predic-
tion should be passed up to the next layer. One common method for measuring
how confident an ensemble of models is, is to compute the variance in their
predictions [23]: if variance is low, and those models are sufficiently indepen-
dent of one another, there is a greater likelihood that their combined predictions
can be trusted. If variance is high, this is likely the result of differing assump-
tions encoded in the models, which cannot all be true reflections of the hidden
relationship being modeled. Note the assumption here that the models are rel-
atively independent: a set of identical models will never exhibit a variance in
their predictions, regardless of how accurate the individual models are. We can
be somewhat confident of the independence of our models, as they are produced
by the AFPO algorithm: models with differing ages are likely to arrive on the
final Pareto front used to build each layer, and such differently-aged genomes
are likely to be independent because of their different genetic origins.

Formally: Let p
train(t)
Li

and e
train(t)
Li

denote p
(t)
Li

and e
(t)
Li

using r(t) on dtrain,

respectively. Similarly, p
test(t)
Li

and e
test(t)
Li

respectively denote p
(t)
Li

and e
(t)
Li

using

r(t) on dtest. Moreover, assume v
train(t)
i and v

test(t)
i are the variances of all p

(t)
ti,j s

on dtrain and dtest. Also, vtrain
i denotes v

train(t)
i averaged over all the samplings

in dtrain.

To determine whether the burden of prediction should remain with the cur-
rent layer or passed off to a higher layer, we measure the difference in prediction
variance between the models when presented with the training data (vtrain

i ) or

with the testing data, i.e. the current environmental conditions (v
test(t)
i ). When

v
test(t)
i is almost the same as vtrain

i , there is a high probability that e
test(t)
Li

is an

approximation of e
train(t)
Li

, and we can be relatively confident that these models

will yield a good collective prediction of g(t). When the variance of test data pre-
diction is significantly higher than prediction on the training data, this signals
that the solutions in that layer are exhibiting increased disagreement regarding
the current environmental conditions. This could be due to the fact that a spe-
cific sensor is not physically able to predict under the current conditions, or the
solutions have not been trained for the current situation. In such an eventuality
it would be advantageous to switch to the next layer, in the hope that its models
will exhibit more confidence in their ability to predict the current conditions. In
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Table 1. Available sensors and their features.

Name Equation Template of r
(t)
i Cost

s3 g(t) 0.3

s2 b2,1g
(t) + b2,2 0.2

s1 b1,1(g(t))
2

+ b1,2g
(t) + b1,3 0.1

this paper, the variance is considered as a proxy for entropy, but any other en-
tropy related metric could be used instead. Figure 2 illustrates how this intuition
is encoded into the switching condition in the hierarchy of layers.

By considering the amount of difference between prediction variance on train-
ing and testing data, we can dynamically tune how conservative or liberal the
overall hierarchical model is: if little difference is tolerated, the burden of pre-
diction will often be passed to higher layers, resulting in expensive yet accurate
predictions; if much difference is tolerated, lower levels will tend to predict, re-
sulting in less expensive and less accurate predictions. The advantage of this
approach is that the amount of tolerance could be dynamically tuned based on
the current available budget for sensing.

For example, for larger budgets, more cost could be expended in order to ob-
tain more accurate results. In this regard, the tolerance of the difference between
variances could be decreased, transferring the burden of prediction to higher lay-
ers. Similarly for small budgets, the tolerance would be increased. Through this
adjustment, more disagreement would be tolerated and less accurate predictions
would be obtained for lower cost. To implement this dynamic tuning given a
fluctuating budget, a tolerance parameter τ ∈ [0, 1] is defined, reflecting the
tolerance of disagreement between the solutions of a given layer. Equation (3)
demonstrates how this parameter is used to determine which level should be
activated for prediction.

p(t) =

{
p

(t)
Li

if vtrain
i > |1− τ | · vtest(t)

i

p
(t)
Li+1

otherwise
(3)

It should be noted that in the present work, the same value for τ is used at
the interstices between each pair of layers. However, different values for τ could
be employed between different layers to enable the model to respond better to
changes in the overall available budget. The extreme cases occur when τ = 0 or
τ = 1. The former case ensures that the condition in Equation 3 holds when the
prediction variance on the testing data is greater than the prediction variance
on the training data. This occurs with high probability, so setting τ = 0 tends
to extract the predictions from solutions on the uppermost layer. Setting τ = 1
ensures that the first layer always provides the prediction since variance on the
testing data will always be finite. Values greater than τ = 1 are not investigated
in this work, but are possible. Greater τ value increases the probability of the
conditional to be true. τ =∞ causes the conditional to always be true, thus the
method always collects predictions from the last layer.
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Fig. 3. Average error (A) and average cost (B) on the test data for the non-hierarchical
and the hierarchical methods with different tolerance parameters. Statistical signifi-
cance of these results are reported in Table 2.

3 Results

The proposed methods are evaluated over two set of experiments, using a synthe-
sized dataset and ten actual datasets. This section summarizes these datasets,
experimental setups, and quantitative results. These results were also reported
in a preliminary version of the work reported here [33].

3.1 Synthesized Data

In these experiment, the proposed methods have been evaluated on a synthetic
system monitored by three different sensors. Table 1 shows these three sensors,
their readings in relation to g(t), and their cost.

To create the training and testing datasets, at first coefficients in the equa-
tions of the sensor relations, i.e., bi,j , were randomly selected in the range [0, 1].
Then, random numbers were generated for g(t) in the range [0, 3], and used to
calculate the sensor readings based on the given template and selected coeffi-
cients. The training and testing dataset sizes were 150 and 50, respectively, and
each experiment was repeated 40 times.

Table 2. A) P -values considering error of the non-hierarchical and the hierarchical
methods with different tolerance parameters. B) P -values considering cost of the non-
hierarchical and the hierarchical methods with different tolerance parameters.

A P -values B P -values
τ = 0.8 0.013414 τ = 0.8 � 0.001
τ = 0.6 0.046626 τ = 0.6 � 0.001
τ = 0.4 0.635566 τ = 0.4 � 0.001
τ = 0.2 0.001309 τ = 0.2 � 0.001
τ = 0.1 � 0.001 τ = 0.1 � 0.001
τ = 0.0 � 0.001 τ = 0.0 � 0.001

Non-hierarchical setup. The population size is 100 and is trained for 300 gen-
erations. The optimization process during the last generation does not consider
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age as an objective and the Pareto front is selected using error and cost× size as
two separate objectives. After training, the knee of the non-dominated solutions
is selected and tested using the testing dataset. In order to select the knee, the
euclidean distance of each solution on the Pareto front is calculated from the
ideal model. The ideal model is a solution with no error and zero cost. This is
defined as follows:

tknee = argmin
tj∈Pareto front

√
(etj − 0)2 + (ctj − 0)2.

Hierarchical setup. The population size for each layer is 100 and each layer
was trained for 100 generations to equalize the total computational effort ap-
plied in both methods. Similarly to the non-hierarchical setup, during the last
generation, age is not considered in the Pareto optimization process, and non-
dominated solutions are selected based on error and cost× size as two separate
objectives. After training, for each layer Li, the variance of the solutions output
on training data vtrain

i is computed and stored as the threshold of switching to
the next layer Li+1. This variance is not computed for the layer corresponding
to the most expensive sensor, i.e., L3, since there are no more sensors to be
called. The experiment was repeated 40 times for each of the different tolerance
parameters τ = 0.0, 0.1, 0.2, 0.4, 0.6, 0.8.

Results on Synthesized Data We now consider average error and cost of the
different modeling approaches on synthesized data and report P -values for two
tailed t-tests where α = 0.5.

Average error. The average error of the non-hierarchical method is etest
tj ,

where tj is the final selected solution. The average error of the hierarchical
method is the average of etest

Li
, where Li is the last layer reached in the hierar-

chy, during the sampling. As can be seen in Figure 3, the largest difference in
error occurs at maximum tolerance i.e. τ = 0.8 where the error of the hierarchi-
cal method is 1.34% higher than the non-hierarchical method. The hierarchical
method tends to achieve lower average error when the tolerance parameter is
τ < 0.4. P -values obtained for different tolerance parameters are represented in
Table 2.A and show that τ = 0.4 is the boundary where the hierarchical method
begins to outperform the non-hierarchical method.

Average cost. By considering tj as the final selected solution in the non-
hierarchical method, the average cost is ctest

tj . The average cost of the hierarchical

method is the average of
∑i
j=1 c

test
Lj

, where the last layer reached during the
sampling is Li. In order to compare both methods and understand how much of
the potential cost each method uses, the cost of each method is represented as the
percentage of cost of using all available sensors. Figure 3 shows that the average
cost of the hierarchical method is significantly lower than the non-hierarchical
method (at most 54.88% and at least 33.81% lower cost). Table 2.B) summarizes
the p-values to show how significantly the cost of the hierarchical method is lower
than the non-hierarchical method.



14 A Genetic Programming Approach to Cost-Sensitive Control in WSN

Table 3. Used UCI datasets.

DS No. DS Name No. of Instances No. of sensors g(t) Average
DS1 Auto MPG 398 7 23.51457
DS2 Housing 506 13 22.53281
DS3 Forest Fires 517 12 0.031663
DS4 Energy Efficiency 768 8 22.3072
DS5 Concrete Compressive Strength 1030 8 35.81796
DS6 Solar Flare 1389 9 0.300188
DS7 Airfoil Self-Noise 1503 5 124.8359
DS8 SkilCraft1 Master Table Dataset 3395 19 4.184094
DS9 Wine Quality 4898 11 5.877909
DS10 Parkinson’s Telemonitoring 5875 17 29.01894

Table 4. Value of v
(g)
ri for all of the sensors of Auto MPG dataset.

DS No. s1 s2 s3 s4 s5 s6 s7
Auto MPG 0.1766 0.3175 0.3356 0.5951 0.6012 0.6467 0.6918

Table 5. Minimum and maximum amount of variance a sensor accounts for and the

order of their difference
max v

(g)
ri

min v
(g)
ri

, in each dataset.

DS No. min v(g)
ri

max v(g)
ri

Difference ratio

DS1 0.1766 0.6918 3.92
DS2 0.0307 0.5441 17.72
DS3 0.0002 0.2578 1289
DS4 0.0076 0.7911 104.10
DS5 0.0112 0.2478 22.13
DS6 0.000 0.096 96
DS7 0.0157 0.1527 9.73
DS8 0.0005 0.4542 908.40
DS9 0.0001 0.1897 1897
DS10 0.0037 0.0263 7.11

3.2 Actual Data

In this experiment, ten datasets are selected from the UCI database repository
[2] based on the number of instances and features from the regression section.
Table 3 summarizes these datasets and their features. For these datasets, we
partition each into two halves for training and testing, and treat the individual
features as individual sensors. Each experiment in this section was repeated 30
times.

In order to determine the accuracy of each sensor si in predicting g(t), the

value of v
(g)
ri is calculated for each available sensor of each dataset, using linear

regression. The greater v
(g)
ri is, the better that sensor can predict g(t).Table 4

summarizes the values of v
(g)
ri for all of the sensors of the Auto MPG dataset, as

an example. We define the cost of each sensor in these datasets as v
(g)
ri .

Non-hierarchical setup. The population size is 200 and for each dataset with
k features, it is trained for 200× k generations.

Hierarchical setup. The population size for each layer is 200. Similar to syn-
thesized data experiments, in order to equalize search effort in both methods,
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Table 6. Average error (L) and cost (R) percentages and the corresponding p-values
for the hierarchical and the non-hierarchical methods.

DS No. NH: error % H: error % P -value
DS1 20.85 25.81 � 0.001
DS2 25.90 28.93 � 0.001
DS3 126.49 202.12 0.565
DS4 29.19 36.70 � 0.001
DS5 35.29 39.68 0.393
DS6 110.63 111.08 0.223
DS7 0.00 0.00 0.082
DS8 37.59 28.65 0.194
DS9 10.79 10.67 0.197
DS10 32.11 29.88 0.423

NH: cost % H: cost % P -value
38.89 12.33 0.022
23.18 1.26 � 0.001
6.83 15.81 � 0.001
32.90 4.18 � 0.001
53.63 28.63 0.004
0.00 0.98 0.040
11.58 7.35 0.005
2.55 0.00 � 0.001
0.02 0.00 � 0.001
20.62 3.88 0.009

each layer was trained for 200 generations. After training, a subset of the non-
dominated solutions with least error are selected and organized in the corre-
sponding layer. The cardinality of this subset is 2% of the population size. This
experiment was conducted for tolerance parameter τ = 0.1. This value is selected
based on the results in 3.1 and will be discussed in more detail in Section 5.1.

Results on Actual Data We now consider average error and cost of the
different modeling approaches on actual data obtained from UCI data repository.

Average error. The average error for the non-hierarchical and the hierarchical
methods are etest

tj and etest
Li

respectively, where tj is the final selected solution
in the non-hierarchical method and Li is the last layer reached during the sam-
pling in the hierarchical method. Table 6 summarizes the average error of both
methods on all of the datasets as a percentage of error. It can be seen that for 6
datasets, the average error of the hierarchical method is higher than the average
error of the non-hierarchical method. However, the p-value for the two-tailed
t-test shows that for 3 datasets, this difference is not significant. There are three
cases where the difference is significant i.e., DS1, DS2 and DS4.

Average cost. Similar to Section 3.1, the average cost is represented as the
percentage of the maximum possible cost. Table 6 summarizes the percentage
of the average cost each method uses for prediction. The cost of the hierarchical
method is significantly lower in all cases except for DS3 and DS6.

4 Adapting to Dynamic Budgets

In remote sensor deployments, the cost associated with sensor sampling may
have an effect on the budget available. Budget fluctuations can be due to various
reasons, depending on the network and the particular definition of the budget.
For example, if the budget is defined to be the capacity of a solar rechargeable
battery powering the sensor system, the budget may increase on a sunny day,
regardless of sampling frequencies, and may decrease on a cloudy day or at
night due to sensor usage and battery draw-down. In fact, battery power levels
in systems with solar recharging often exhibit a consistently diurnal pattern.
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Since it is possible for budgets to fluctuate, a cost-sensitive approach to
sensor sampling will ideally adapt to changing budget levels, in order to extend
deployment lifetimes. In particular, as budgets decrease, models should be biased
more towards use of less-costly sensors, to preserve the existing budget and
prevent using the entire budget. In the case where the budget is taken to be
the battery power level, complete use of the budget corresponds to complete
battery drawdown– a potentially catastrophic situation that generally should be
avoided.

In this section we reconsider the hierarchical and non-hierarchical methods
described previously, with modifications to adapt to fluctuating budgets. In the
case of the hierarchical method, we adapt models by allowing the threshold τ to
be dynamically tuned in proportion to the remaining budget. In the case of the
non-hierarchical method, we add the remaining budget as an input parameter
to training and testing. Our main goal is to explore the relative performance of
models generated by these respective methods. All of the material for replicating
the work described here is also available online [1].

A crucial element of this investigation is the concept of noise. Active sensors
typically have thresholds for reliable use, and as power levels drop near and
then below these levels, sensor noise increases. We observe that this phenomena
actually benefits adaptation to budget levels in model training, since increased
noise increases error and hence discourages sampling. We consider in particular
the scenario where more expensive sensors experience more noise as sensor levels
drop– this scenario has an empirical basis in the experience of the authors [3],
and has the added benefit (as we will show) of greater bias towards less expensive
sensors as budget levels decrease.

Summary of Training and Testing Regimes. To encourage adaptation to
fluctuating budgets, during training each model is exposed to two different envi-
ronments: one with a “high” budget and the other with a “low” budget, relative
to a posited lower threshold for sensor inputs. Note that only the non-hierarchical
models will use the budget level as an input parameter, but predictions of mod-
els generated by both methods experience noise proportional to the budget level
and the cost of sensors used in the prediction. The optimization objectives for
both the hierarchical and non-hierarchical regimes remain the same as in the
preceding experiments.

After training, the resultant models are tested on four conditions: each con-
dition takes one of two different initial budgets—high and low—and one of two
different budget behaviors: one that stays constant until drawn down by sensor
use, and another that has an underlying sinusoidal pattern that simulates diur-
nal replenishing from solar recharging. Models that exhibit low error and cost in
all four situations are considered most desirable.

4.1 Problem Formalization

Let B(t) be a real number defining the amount of the available budget at time t
if none of the sensors is polled from the first sampling S(1) to the last sampling
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before now S(t−1). Then, B is the vector of the available budget for all of the
sampling times without any sensor being polled.

Let BH and BL be the vectors reporting the currently available budget if
none of the sensors are polled, where the budget was initially ‘high’ or ‘low’. We

denote individual budget values in these vectors as B
(t)
H or B

(t)
L , respectively.

The initial budget is considered to be high if the model has enough of a budget
to poll two thirds of the available sensors for each sampling,

B
(1)
H > |dtrain|(2

3

|S|∑
i=1

ci)

The average cost of the hierarchical and the non-hierarchical models reported
in Section 3 are all less than BH . That is the reason we believe this is a good
threshold for the high budget level. If the budget is not enough to poll at least
one third of the available sensors for each sampling, then it is considered to be
low:

B
(1)
L 6 |dtrain|(1

3

|S|∑
i=1

ci)

Let c
(t)
tj ,B

denote the cost of evaluating solution tree tj at time t, considering
the available budget B, which could in turn be drawn from BL or BH . Note

that c
(t)
tj ,B

depends on the particular solution tree tj and the sensors used by
that model, as explained in Section 4. This cost should be deducted from the
currently available budget.

Let R
(t)
tj ,B

then denote the amount of remaining budget at time t, considering

budget B for each solution tree tj . Then, R
(t)
tj ,B

can be defined as

R
(t)
tj ,Bb

= B(t) −
t−1∑
l=1

c
(l)
tj ,Bb

, b ∈ {H,L, ε}

We define R
(t)
tj ,BH

and R
(t)
tj ,BL

as the remaining budgets when the budget B
being used is either the high budget BH or the low budget BL.

It is notable that, as explained in Section 4, the accuracy of sensors is affected
by the level of the remaining budget. By decreasing the amount of the available
budget, the error of a sensor Si and the amount of noise in its reading ri will
increase. Moreover, we consider a noise model in which different sensors may be
affected by a reading differently: we assume that less expensive sensors become
less noisy as the level of the remaining budget drops, since they are less costly and
thus reduce the budget less than expensive sensors. This behaviour is modelled
as follows, where U(min(ri),max(ri)) is a uniform random number from the ri
domain:

r
′(t)
i (tj ,B) = (

R
(t)
tj ,B

B(t)
)cir

(t)
i + (1− (

R
(t)
tj ,B

B(t)
)ci)U(min(ri),max(ri))
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Fig. 4. The noise rate for different sensors with different cost from synthesized dataset.

In this manner, by decreasing the available budget, the accuracy of the sensor
readings will decrease and the noise in the sensor readings will increase. This
effect is proportionate to the cost. Figure 4 shows the rate of noise as the available
budget level drops for three sensors in the synthesized dataset introduced in
Section 3.1. As shown there, the cheapest sensor S1 becomes less noisy with
decreasing budget, whereas the most expensive sensor S3 suffers a greater noise
increase as the budget decreases.

This noise model should encourage the selection of models that make use
of less expensive sensors for predictions for two reasons. First, less expensive
sensors become less noisy when the available budget level drops, compared to
more expensive sensors. Second, using less expensive sensors keeps the cost of
each prediction low. Since the prediction cost has to be paid for from the available
budget, low cost models cause a slower decrease in the budget and thus retain
more accurate sensor readings.

When the accuracy of a sensor si is affected by the available budget, then

the accuracy of the solution tree tj that makes use of si also suffers. Let e
(t)
tj ,B

denote the error of solution tree tj at time t, and where the available budget is
B.

4.2 Methods

In order for the models to adapt to a changing budget, both the hierarchical and
non-hierarchical methods described in Section 2 should be able to alter their
prediction strategies, given the current budget.
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Non-Hierarchical GP In order to enable the non-hierarchical models to mod-
ify their prediction strategy given the current budget, we include the currently

remaining budget R
(t)
tj ,B

as an additional ‘sensor’ that can be incorporated into
solution trees during model training. This is realistic since budget information
such as power level data is frequently accessible in WSN systems. If this sensor
is incorporated into a model, it can read the level of the remaining budget at no
cost, when it is needed.

The solution trees are trained in the same way described in Section 2.3,
except for how the trees are evaluated. Each solution tree tj is evaluated twice,
once using BH and once using BL, to encourage model robustness. These two
budget distributions are considered to be flat, without any budget harvesting:
that is, the overall budget does not increase or decrease over time if no sensors
are polled.

Let e
(t)
tj ,BH

and e
(t)
tj ,BL

denote the error of a solution tree tj at time t when
the budget level was either high or low. The error of a solution tree tj at time t,

denoted as e
(t)
tj , can then be computed as

e
(t)
tj =

e
(t)
tj ,BH

+ e
(t)
tj ,BL

2
(4)

Similarly, the cost of a solution tree at time t, c
(t)
tj , is computed as

c
(t)
tj =

c
(t)
tj ,BH

+ c
(t)
tj ,BL

2
(5)

With this formulation, the average error of a solution tree etrain
tj , and the

overall cost of a tree etrain
tj , can be calculated based on Equations 1 and 2 given

in Section 2.2.

Hierarchical GP The hierarchical method is trained the same as described in
Section 2.4 except that, like the non-hierarchical method, models in the hierar-
chical method are trained on both BH and BL, and their respective costs and
errors are computed as the average cost and error incurred in these two budget
regimes (Equations. 4 and 5). In this manner, each layer Li consists of models
with high robustness over different budget distributions.

In Section 2.4 the tolerance parameter τ is statically defined and does not
change during model execution. Here however, as the budget is dynamic, the
tolerance parameter should change accordingly. Therefore, τ is defined as

τ ′ = 1−
R

(t)
tj ,B

B(t)

This balances which layer of the model hierarchy provides predictions, given
the currently remaining budget. When the remaining budget is high, the thresh-
old for disagreement between models of a given layer is low, so predictions tend
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to be drawn from higher layers which have high accuracy. A low remaining bud-
get means that the threshold for disagreement between models of a given layer
is high, thus relegating predictions to lower levels of the model hierarchy. This
has the effect of causing the overall hierarchical model to become increasingly
conservative in its use of sensors as the budget decreases.

Substituting the tolerance parameter τ with this new τ ′ in Equation 3 given
in Section 2.4 thus results in a new condition for switching between layers:

p(t) =

p
(t)
Li

if vtrain
i >

R
(t)
tj ,B

B(t)
· vtest(t)
i

p
(t)
Li+1

otherwise

4.3 Results

These altered methods for training models were evaluated against two sets of
data: a synthesized dataset and ten actual datasets, as described in Section 3.
This section summarizes the results from training with these datasets.

Each model is trained with given fixed budgets BH and BL. These budget
distributions are defined such that for all times t we have:

B
(t)
b = |dtrain|(α

|S|∑
i=1

ci) where

{
α = 1/3 if b = L

α = 2/3 if b = H.

After training models for each dataset, they are tested on four budget distri-
butions BH , BL, BH,sin and BL,sin. Budget distributions BH and BL are flat
and the same as training datasets. Budget distributions BH,sin and BL,sin were
constructed to simulate diurnal replenishing of solar powered sensors. This was
accomplished by adding a sinusoidal pattern to BH and BL. The amplitude of

the sine wave is set to 2% of the high budget level. We let B
(t)
b,sin for b ∈ {H,L}

denote the budget value at time t in a given sinusoidal distribution BH,sin and
BL,sin. We define the latter such that for any time t we have:

B
(t)
b,sin = B

(t)
b + sin(

t

dB(t)
H ∗ 0.02e

) b ∈ {ε,H, L}

Synthesized Data In these experiments, the synthesized data described in
Section 3.1 is used to evaluate the proposed methods. The training and testing
datasets are the same, except that budget is also included as an extra sensor. The
training and testing datasets both contain 150 samples, and each experiment is
repeated 30 times for each budget distribution.

Non-hierarchical model training. The population size is set to 100, and models
are trained for 600 generations, or more precisely 200 generations multiplied by
the number of available sensors, 3 in this case. The budget sensor is available to
the non-hierarchical model. The rest of the settings are the same as described
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Table 7. (A) p-values considering error of the non-hierarchical and the hierarchical
methods with different budget distribution. (B) p-values considering cost of the non-
hierarchical and the hierarchical methods with different budget distribution.

(a) p-values (b) p-values
BH � 0.001 BH � 0.001

BH,sin � 0.001 BH,sin � 0.001
BL 0.612857 BL � 0.001

BL,sin 0.590440 BL,sin � 0.001

in Section 3.1. After training, the selected model is tested on all four different
budget distributions.

Hierarchical model training. The population size for each layer is set to 100,
and each of the three layers are trained for 200 generations. For training each
layer Li, the corresponding sensor Si and the less expensive ones {Sj |j < i} are
provided as input. Models do not have access to the remaining budget level as
an extra feature in training. The rest of model training is as described in Section
3.1. During testing, the dynamic tolerance parameter τ ′ is used.

Results on Synthesized Data If the non-hierarchical model selected for test-

ing is tj , the average cost of the non-hierarchical model is equal to c
(t)
tj ,B

averaged

over the testing dataset dtest. The average error of the non-hierarchical model is

also equal to the error of each sampling e
(t)
tj ,B

averaged over the testing dataset

dtest. The budget distribution B could be one of the four given distributions.
The sensor readings are denoted as r′i, which reflect the noise considering the
remaining budget level as described in Section 4.1.

Let L(t) denote the layer in the hierarchical method that the prediction is
drawn from at time t. Then, the average cost of the hierarchical model at time

t is equal to c
(t)

L(t),B
, averaged over the testing dataset dtest. The average error

of the hierarchical method is equal to the error of layer L(t) averaged over the
testing dataset. The error of a layer Li is equal to

e
(t)
ti,j ,B

=
1

|Li|

|Li|∑
j=1

e
(t)
i,j

where |Li| defines the number of solution trees in layer Li and e
(t)
i,j is the error

of the jth solution in layer Li when sensor readings are r′i.

As can be seen in Figure 5, the error rates between both methods over all
four budget distributions are not significantly different (at most 0.32%). Table
7.A makes clear that there are no statistically significant differences in errors
across methods when the initial budget is low. Figure 5 also shows that the
average cost of hierarchical models is significantly lower than non-hierarchical
models (at most 7.3%). Table 7.B summarizes the statistical significance of these
differences.
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Fig. 5. Average error (A) and cost (B) on the test data for the non-hierarchical and
the hierarchical models with different budget distributions. Statistical significance of
these results are reported in Table 7.

Actual Data In these experiments, datasets from the UCI repository, as de-
scribed in Section 3.2, are used to evaluate the two new proposed methods.
As in Section 3.2, each dataset is divided into two equal training and testing
portions. The budget feature is also included in the datasets when training the
non-hierarchical models. Each experiment is repeated 30 times. For each itera-
tion, a model is selected and tested on the test data four times, each time with
a different budget distribution.

Non-hierarchical model training. The population size is set to 100, and for
each datasets with k available sensors, models are trained for 200×k generations.
The non-hierarchical models have access to the B feature during training. The
rest of the settings are the same as they are reported in Section 3.2. After
training, the selected model is tested on all four different budget distributions.

Hierarchical model training. The population size for each layer is set to 100,
and for each dataset, each of the layers are trained for 200 generations. Models
do not have access to the remaining budget level as an extra feature in training.
The rest of model training is as described in Section 3.2. During testing, the
dynamic tolerance parameter τ ′ is used.
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Table 8. Error percentages of the methods on actual data considering different budget
distributions.

BH BH,sin BL BL,sin

datasets non-H H non-H H non-H H non-H H
DS1 22.03 27.95 21.97 27.94 23.29 29.17 23.30 29.41
DS2 32.14 31.13 32.19 31.08 32.51 31.21 32.54 31.16
DS3 99.61 99.67 99.61 99.68 99.61 99.66 99.61 99.67
DS4 39.63 43.18 39.71 43.19 43.79 43.03 43.72 43.01
DS5 40.59 49.50 40.64 49.48 42.26 49.51 42.32 49.49
DS6 99.81 101.2 99.91 101.2 99.94 101.2 99.91 101.2
DS7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DS8 36.55 42.50 36.55 42.45 36.89 42.49 36.93 42.50
DS9 11.60 11.57 11.60 11.57 11.60 11.57 11.60 11.57
DS10 37.83 37.78 37.82 37.77 37.83 37.91 37.83 37.84

Table 9. p-values for actual data comparing the error of the hierarchical and non-
hierarchical method considering different budget distributions.

datasets BH BH,sin BL BL,sin

DS1 � 0.001 � 0.001 � 0.001 � 0.001
DS2 0.005 0.003 0.012 0.008
DS3 0.310 0.314 0.312 0.313
DS4 0.002 0.002 0.486 0.511
DS5 � 0.001 � 0.001 � 0.001 � 0.001
DS6 0.003 0.003 0.004 0.007
DS7 1.00 1.00 1.00 1.00
DS8 � 0.001 � 0.001 � 0.001 � 0.001
DS9 0.680 0.689 0.709 0.695
DS10 0.950 0.937 0.899 0.990

Table 10. Cost percentages of the methods on actual data considering different budget
distributions.

BH BH,sin BL BL,sin

datasets non-H H non-H H non-H H non-H H
DS1 15.23 8.84 15.23 8.80 15.23 8.30 15.23 8.27
DS2 9.08 1.84 9.09 1.85 9.08 1.74 9.09 1.76
DS3 0.031 0.018 0.030 0.017 0.031 0.017 0.031 0.017
DS4 30.21 0.631 30.23 0.631 30.06 0.587 30.04 0.597
DS5 46.93 3.17 46.93 3.18 46.93 3.06 46.93 3.04
DS6 0.412 0.001 0.412 0.001 0.412 0.001 0.412 0.001
DS7 1.02 2.73 1.02 2.73 1.02 2.65 1.02 2.67
DS8 0.176 0.00 0.176 0.00 0.176 0.00 0.176 0.00
DS9 0.076 0.00 0.076 0.00 0.076 0.00 0.076 0.00
DS10 8.00 1.39 8.00 2.21 8.00 2.06 7.99 2.06

Results on Actual Data Table 8 reports the average prediction errors for all
of the actual datasets, for both the hierarchical and non-hierarchical methods.
The statistical significance of the difference in errors between these two methods
is reported in Table 9. The average cost of models trained on the actual datasets
for the hierarchical and non-hierarchical methods can be seen in Table 10. Table
11 reports the statistical signficance of the cost differences between the two
methods.
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Table 11. P -values for actual data comparing the cost of the hierarchical and non-
hierarchical method considering different budget distributions

datasets BH BH,sin BL BL,sin

DS1 � 0.001 � 0.001 � 0.001 � 0.001
DS2 � 0.001 � 0.001 � 0.001 0.00086
DS3 � 0.001 � 0.001 � 0.001 � 0.001
DS4 � 0.001 � 0.001 � 0.001 � 0.001
DS5 � 0.001 � 0.001 � 0.001 � 0.001
DS6 0.024 0.024 0.025 0.024
DS7 0.513 0.515 0.618 0.585
DS8 � 0.001 � 0.001 � 0.001 � 0.001
DS9 0.164 0.164 0.164 0.164
DS10 0.019 0.019 0.016 0.016

5 Discussion

In this Section we reflect on the reason for and meaning of our quantitative
results described in Sections 3 (basic results) and 4.3 (results with a dynamic
budget). Overall, our experimental results show that in any case, sampling costs
of models generated by the hierarchical method are significantly lower than mod-
els generated by the non-hierarchical method. Non-hierarchical modes use more
expensive sensors with higher frequency. Results also show that hierarchical mod-
els achieve similar error rates as those incurred by non-hierarchical models as
datasets grow larger, though non-hierarchical models do achieve lower error for
small datasets especially when a dynamic budget is considered. Also notable is
that results in Section 4.3 suggest that the hierarchical method obtains mod-
els that are more effectively sensitive to noise than models generated by the
non-hierarchical method, when the budget level shrinks from high to low.

5.1 Basic Results with a Static Budget

The results presented in Section 3 suggest that the hierarchical method is bet-
ter at balancing cost and accuracy than the non-hierarchical approach. We be-
lieve this is because meaningful sensor control conditions for managing cost are
complex and require considerable computational effort to be discovered. Using
hand-tuned prediction uncertainty to drive sensor control is more effective. As
mentioned in Section 2.2, in these experiments a basic genetic programming
approach was deployed. We anticipate that if we were to use a more power-
ful underlying GP approach, the error of both hierarchical and non-hierarchical
models would be reduced.

Synthesized Data The hierarchical method achieved significantly better ac-
curacy and significantly lower cost than the non-hierarchical using synthesized
data.

Average error. As can be seen in Figure 3, the hierarchical method achieved
significantly better accuracy than the non-hierarchical method for τ < 0.4. In
general, results show that higher tolerance allows the algorithm to accept more
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uncertainty in the prediction and rely on less expensive sensors which are less
accurate. This avoids the use of more expensive sensors, but causes average error
to rise. A tolerance of τ < 0.4 is apparently the threshold where average error
in the hierarchical method exceeds that of the non-hierarchical method, when
analysing results for different values of tolerance included in this study.

Average cost. Results reported in Figure 3 show that the hierarchical method
significantly outperforms the non-hierarchical method with regard to cost on this
dataset, even when tolerance is low. This suggests that the use of variance in
ensemble predictions to serve as a proxy for prediction uncertainty is not easy to
learn, and serves as a good mechanism for control. Results suggest that τ = 0.1
is a “sweet spot” for balancing cost and accuracy, though the value could be
increased or decreased if greater frugality or accuracy were needed, respectively.

Actual Data For testing on actual data, we fixed τ = 0.1 due to results on
synthetic data demonstrating a good balance between cost and accuracy with
this tolerance level.

Average error. Table 6 shows that the average error of the hierarchical and
the non-hierarchical methods were not significantly different, except for datasets
DS1, DS2 and DS4 where the latter method achieves better prediction accuracy.
This is probably due to the characteristics of these datasets, where the difference

between the least prediction variances v
(g)
ri s and the greatest ones is large. The

majority of sensors in these datasets are not informative but have low costs
and the remaining sensors are more informative but come with higher costs.
Thus, lower levels of the hierarchy “struggle” compared to upper ones in terms
of accuracy. Nevertheless, accuracy rate with the hierarchical method is still
competitive even in these cases, and cost reduction is significant. Also, it can be
seen that as the size of the datasets grows, the difference between the error rate
of the non-hierarchical and the hierarchical methods decreases, and in the three
largest datasets the hierarchical method also achieves lower error rates.

Average cost. The hierarchical method achieved significantly lower cost than
the non-hierarchical method on all of the real world datasets, as shown in Table
6, except for DS3 and DS6. As represented in Table 5, in these two datasets, just
a small subset of sensors are relatively informative. Since the tolerance param-
eter for the hierarchical method is low, the hierarchical method employs more
informative sensors. Taken together, results shown in Table 6 clearly indicates
an advantage of the hierarchical method for balancing cost and accuracy.

5.2 Results with a Dynamic Budget

Now we consider the results provided in Section 4.3 on synthesized data and
ten actual datasets when a possibly dynamic budget is taken in to account. The
results obtained from the experiments in Section 4.3 suggest that the hierarchical
method is more successful in balancing cost and prediction accuracy compared
to the non-hierarchical method as the number of observations in the dataset
grows. The hierarchical method produces much less costly models, which results
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in less noise accumulating on the sensors. This conservation can be crucial to
reduce system down time if longer time periods are required to replenish the
budget.

It also can be seen in Table 10 that the hierarchical method produces models
that adapt their sensor sampling strategy based on the current budget, since
they reduce their costs when the budget level goes from high to low. In contrast,
models produced by the non-hierarchical method do not change their cost when
the models are presented with the low budget level. The reason why the non-
hierarchical method does not make use of the remaining budget to change its
behaviour is at the moment unclear. Models produced by the hierarchical method
incur lower cost when the budget level is low than when the budget level is
high. The dynamic tolerance parameter employed in the hierarchical method
successfully balances the cost of the hierarchical method to the remaining budget
considering the results reported in Figure 5 and Table 10.

Synthesized Data The results using synthesized data (Figure 5) demonstrate
that the hierarchical method adapts to the changing budget better than the non-
hierarchical method. The hierarchical models obtain about the same prediction
accuracy as the non-hierarchical models, but with significantly lower cost.

Average error. As can be seen in Figure 5, the difference between the error
rate of the hierarchical and non-hierarchical methods is low. The p-values re-
ported in Table 7a suggest that this difference is insignificant when the budget
level is low. When the hierarchical method must work within the confines of
a low budget, it produces models that only infrequently poll high-cost sensors.
In this manner, the hierarchical models keep the overall cost of prediction low,
which results in a higher remaining budget for the remainder of the period dur-
ing which predictions are requested. Keeping the budget high in turn results in
sensor readings with higher accuracy.

The non-hierarchical models however maintain high accuracy by polling the
more accurate sensors more frequently, which incurs a higher cost. This approach
eventually causes prediction accuracy to suffer, since it increases the noise in
sensor readings as the budget decreases. As can be seen in Table 7a, when the
budget is low, the non-hierarchical models are not able to maintain their superior
accuracy rates.

Average cost. Figure 5 shows that the hierarchical method generates signif-
icantly lower cost models compared to the non-hierarchical method, for all of
the budget distributions considered. The hierarchical method keeps cost low in
two ways. First, the model hierarchy is constrained by design in the sensors it
samples, depending on the hierarchy level. Second, the certainty threshold can
be tuned to become more restrictive as the budget drops.

If the budget is low, then the dynamic tolerance parameter forces the hier-
archical model to tolerate more uncertainty in its predictions. In contrast, the
non-hierarchical method generates models that tend to use more expensive sen-
sors more frequently. The results shown in Table 7b support this claim. As in
the basic setting with a static budget, the non-hierarchical method has difficul-
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ties discovering the proper conditions for sampling various sensors, that can be
manually tuned into the threshold parameter for the hierarchical method.

Actual Data With actual data, the hierarchical models are able to adapt
to budget fluctuations better than the non-hierarchical models, but the non-
hierarchical models achieve higher accuracy on smaller datasets.

Average error. Table 8 shows that the non-hierarchical method achieves bet-
ter error rates compared to the hierarchical method on datasets for which most of
the sensors are non informative, but a few are with very high cost. For example,
as shown in Table 5, in dataset DS8 with 19 sensors, the difference in accuracy
and cost between the most informative and the least informative sensors is on
the order of 103. The most informative sensor is able to explain 45.42% of the
output variance while the least informative sensor explains just 0.05% of the out-
put variance. The difference in accuracy and cost between the other sensors and
the most informative sensor are almost the same, except for the four most infor-
mative sensors. In this case, the non-hierarchical method uses the informative
sensors in order to achieve high accuracy, whereas the hierarchical method tries
to find a model with less cost. The order of difference for the most informative
and the least informative sensors in DS3 and DS9 is high, but this difference
order reduces for the other sensors in those datasets and also the most infor-
mative sensor in these datasets are not that informative (25.89% and 18.97%
respectively). For the rest of the datasets, the order of difference is not that high
compared to DS8.

Also, in the non-hierarchical method, a model and its descendants could
have been refined through the entire training period, whereas in the hierarchical
method the training effort is distributed among the hieararchy layers. This means
that individual model lineages have much less time to be improved, compared to
non-hierarchical model lineages. Even so, Tables 8 and 10 show that when the
budget level drops from high to low, the cost of the hierarchical models drops
further than the drop observed in the non-hierarchical models. In this way the
budget is better conserved during deployment and sensor noise is ameliorated.

As can be seen in Table 8, the error rates of the non-hierarchical models
grow more than the error rates of the hierarchical models when the budget level
decreases. Moreover, as the sizes of the datasets grow (from DS1 to DS10),
the differences between the error rates of the hierarchical and non-hierarchical
models decrease. For the two largest data sets (DS9 and DS10), the average
error rate of the hierarchical and the non-hierarchical models are not statistically
significantly different.

Average cost. As can be seen in Table 10, the hierarchical models always
achieve lower cost compared to the non-hierarchical models, except for DS7.
Data set DS7 has five sensors which all explain a small amount of the outcome
variance. Hierarchical models attempt to predict the outcome using these sensor
readings, but the non-hierarchical models rarely employ any of those sensors
since they have so little predictive value. Instead the hierarchical models use the
training effort to find a constant that predicts the outcome, at no cost.
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Otherwise, as seen in Table 10, hierarchical models generally reduce cost
more than non-hierarchical models when initial costs go from high to low, as is
the case for synthesized data and for the same reasons (or so we hypothesize).

6 Conclusion and future work

Wireless sensor networks often face a trade-off between measurement accuracy
and the cost of sensor sampling. In networks supporting multiple sensor types,
it is therefore desirable to develop cost-sensitive control algorithms that sample
more expensive sensors only when necessary. In this Chapter, a hierarchical
method is proposed where GP solutions are sorted in a hierarchy of layers based
on the cost of the sensors they use. Switching to the next more expensive layer
takes place only if the prediction variance indicates uncertainty at lower layers.
We compare this method to a non-hierarchical GP method where cost is treated
as an additional optimization objective in fitness selection. In experiments using
a synthesized dataset and ten real datasets, the hierarchical method is shown to
have significantly lower prediction costs than the non-hierarchical method. As the
datasets grow larger and more complex, competitive and sometimes lower error
rates are achieved by the hierarchical method. In a second set of experiments, we
consider a more sophisticated setting where the current budget level (e.g. power
levels) is available as a sensor reading, and lower budgets have a direct impact
on sensor accuracy. The non-hierarchical method in this case uses the remaining
budget level in order to induce a model that adapts to the budget and sensor
noise. In the hierarchical method the remaining budget is used in the decision
to switch between layers. The results from experiments show that when the
methods are altered to dynamically tune the balance of cost and accuracy based
on available energy and budget in the presence of noise, the hierarchical method
achieves significantly lower cost. As datasets grow larger, the hierarchical method
achieves a competitive error rate as compared to the non-hierarchical method.
Future work includes a consideration of methods for online learning to support
adaptation of control algorithms to particular deployments, and the application
of hierarchical control algorithms in real wireless sensor network deployments.
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