
Efficient Differentially Private Secure Aggregation for Federated Learning via
Hardness of Learning with Errors

Timothy Stevens
University of Vermont

Christian Skalka
University of Vermont

Christelle Vincent
University of Vermont

John Ring
MassMutual

Samuel Clark
Raytheon

Joseph Near
University of Vermont

Abstract
Federated machine learning leverages edge computing to de-
velop models from network user data, but privacy in federated
learning remains a major challenge. Techniques using differ-
ential privacy have been proposed to address this, but bring
their own challenges- many require a trusted third party or
else add too much noise to produce useful models. Recent
advances in secure aggregation using multiparty computation
eliminate the need for a third party, but are computationally
expensive especially at scale. We present a new federated
learning protocol that leverages a novel differentially private,
malicious secure aggregation protocol based on techniques
from Learning With Errors. Our protocol outperforms current
state-of-the art techniques, and empirical results show that it
scales to a large number of parties, with optimal accuracy for
any differentially private federated learning scheme.

1 Introduction

Mobile phones and embedded devices are ubiquitous and al-
low massive quantities of data to be collected from users. The
recent explosion in data collection for deep learning has led
to significant new capabilities, from image recognition to nat-
ural language processing. But collection of private data from
phones and devices remains a major and growing concern.
Even if user data is not directly disclosed, recent results show
that trained models themselves can leak information about
user training data [37, 41].

Private data for training deep learning models is typically
collected from individual users at a central location, by a party
we call the server. But this approach creates a significant
computational burden on data centers, and requires complete
trust in the server. Many data owners are rightfully skeptical
of this arrangement, and this can impact model accuracy, since
privacy-conscious individuals are likely to withhold some or
even all of their data.

A significant amount of existing research aims to address
these issues. Federated learning [27] is a family of decen-
tralized training algorithms for machine learning that allow

individuals to collaboratively train a model without collecting
the training data in a central location. This addresses computa-
tional burden in data centers by shifting training computation
to the edge. However, federated learning does not necessarily
protect the privacy of clients, since the updates received by
the server may reveal information about the client’s training
data [37, 41].

Combining secure aggregation [8, 11] with differential pri-
vacy [19,26] ensures end-to-end privacy in federated learning
systems. In principle, secure aggregation allows user updates
to be combined without viewing any single update in isolation.
Methods based on differential privacy add noise to updates to
ensure that trained models do not expose information about
training data. However, secure aggregation protocols are ex-
pensive, in terms of both computation and communication.
The state-of-the-art protocol for aggregating large vectors (as
in federated deep learning) is due to Bonawitz et al. [11]. This
protocol has a communications expansion factor of more than
2x when aggregating 500 length-20,000 vectors (i.e. it dou-
bles the communication required for each client), and requires
several minutes of computation time for the server.

In this paper we propose a new protocol, called FLDP, that
supports scalable, efficient, and accurate federated learning
with differential privacy, and that does not require a trusted
server. A main technical contribution of our work is a novel
method for differentially private secure aggregation. This
method significantly reduces computational overhead as com-
pared to state-of-the-art– our protocol reduces communica-
tions expansion factor from 2x to 1.7x for 500 length-20,000
vectors, and reduces computation time for the server to just
a few seconds. The security of this method is is based on
the learning with errors (LWE) problem [32]– intuitively, the
noise added for differential privacy also serves as the noise
term in LWE.

To obtain computational differential privacy [30] FLDP
uses the distributed discrete Gaussian mechanism [26] and
gradient clipping, with secure aggregation accomplished ef-
ficiently via our new method. The accuracy of our approach
is comparable to that achieved by the central model of dif-

ferential privacy, while providing better efficiency and thus
scalability of previous distributed approaches. We implement
our approach and evaluate it empirically on neural network
architectures for MNIST and CIFAR-10, measuring both ac-
curacy and scalability of the training procedure. In terms of
accuracy, our results are comparable with central-model ap-
proaches for differentially private deep learning (on MNIST:
95% accuracy for ε ≤ 2; on CIFAR-10: 70% accuracy for
ε≤ 4).

1.1 Contributions
In summary, our contributions are:

1. A novel malicious-secure aggregation protocol that out-
performs previous approaches to gradient aggregation
with differential privacy.

2. A new end-to-end protocol (FLDP) for privacy-
preserving federated learning setting that uses our se-
cure aggregation protocol to provide differential privacy
even in the presence of malicious clients and a malicious
server.

3. Analytic and empirical results that support our scalabil-
ity claims, and that show our protocol achieves nearly
the same accuracy as central-model approaches for dif-
ferentially private deep learning on practical models for
MNIST and CIFAR-10.

2 Overview

We study the problem of distributed differentially private
deep learning without a trusted data curator. Our setting
includes a set of clients (or data owners), each of whom holds
some sensitive data, and a server that aggregates gradients
generated by clients to obtain a model for the entire federation.
The goal is to obtain a differentially private model, without
revealing any private data to either the server or other clients.

2.1 Background: General Problem Setting

Deep learning. Deep learning [23] attempts to train a neural
network architecture F (θ, ·) by training its parameters (or
weights) θ in order to minimize the value of a loss function
L(θ, ·) on the training data. Advances in deep learning have
lead to significant gains in machine learning capabilities in
recent years. Neural networks are typically trained via gradi-
ent descent: each iteration of training calculates the gradient
of the loss on a subset of the training data called a batch, and
the model parameters are updated based on the negation of
the gradient.

Traditional deep learning techniques assume the training
data is collected centrally; moreover, recent results suggest

that trained models tend to memorize training data, and train-
ing examples can later be extracted from the trained model
via membership inference attacks [14, 25, 37, 41]. When sen-
sitive data is used to train the model, both factors represent
significant privacy risks to data owners.

Federated learning. Federated learning is a family of tech-
niques for training deep neural networks without collecting
the training data centrally. In the simplest form of federated
learning (also called distributed SGD), each client computes
a gradient locally and sends the gradient (instead of the train-
ing data) to the server. The server averages the gradients and
updates the model. More advanced approaches compute gra-
dients in parallel to reduce communication costs; Kairouz et
al. [27] provide a survey.

Differentially private deep learning. Differential pri-
vacy [19] is a rigorous privacy framework that provides a
solution to the problem of privacy attacks on deep learn-
ing models. Achieving differential privacy typically involves
adding noise to results to ensure privacy. Abadi et al. [2]
introduced DP-SGD, an algorithm for training deep neural
networks with differential privacy. DP-SGD adds noise to gra-
dients before each model update. Subsequent work has shown
that this approach provides strong privacy protection, effec-
tively preventing membership inference attacks [14, 25, 41].

DP-SGD works in the central model of differential
privacy—it requires the training data to be collected centrally
(i.e. on a single server). The participant that holds the data and
runs the training algorithm is often called the data curator or
server, and in the central model, the server must be trusted.
Central-model algorithms offer the best accuracy of known
approaches, at the expense of requiring a trusted server.

Federated learning with local differential privacy. The
classical method to eliminate a trusted server is local dif-
ferential privacy [19], in which each client adds noise to their
own data before sending it to the server. Local differential pri-
vacy algorithms for gradient descent have been proposed, but
for deep neural networks, this approach introduces too much
noise to train useful models [10]. The major strength of local
differential privacy is the threat model: privacy is assured
for each client, even if every other client and the server act
maliciously. The local model of differential privacy has also
been relaxed to the shuffle model [15, 20], which lies between
the local and central models but which has seem limited use
in distributed machine learning.

Secure aggregation. The difference in accuracy between the
central and local models raises the question: can cryptog-
raphy help us obtain the benefits of both, simultaneously?
Several secure aggregation protocols have been proposed in
the context of federated learning to answer this question in
the affirmative. These approaches yield the accuracy of the
central model, but without a trusted server.

Secure aggregation protocols allow a group of clients—
some of whom may be controlled by a malicious adversary—

Setting Bonawitz Bell FLDP
Client Communication O(k+m) O(logk+m) O(m+ k+n)

Client Computation O(k2 + km) O(log2 k+m logk) O(mn+ k logk)
Server Communication O(k2 + km) O(k logk+ km) O(mk+n)

Server Computation O(mk2) O(k log2 k+ km logk) O(mk+mn+ k logk)

Table 1: Communication and computation complexities of FLDP compared with the state of the art.

to compute the sum of the clients’ privately-held vectors (e.g.
gradients, in federated learning), without revealing individual
vectors. The state-of-the-art protocol is due to Bonawitz et
al. [11]. For k clients and length-m vectors, this protocol re-
quires O(k2+mk) computation and O(k+m) communication
per client, and O(mk2) computation and O(m2 +mk) commu-
nication for the untrusted server. Bell et al. [8] improve these
to O(log2 k+m logn) computation and O(logk+m) commu-
nication (client) and O(k log2 k+ km logk) computation and
O(k logk+ km) communication (server). These complexity
classifications are summarized in Table 1.

2.2 Efficient Secure Aggregation in the Differ-
ential Privacy Setting

We present a new protocol for secure aggregation (detailed in
Section 4) specifically for the setting of differentially private
computations. Our protocol reduces client communications
complexity to O(m+k) and server communications complex-
ity to O(mk), where as above we have k parties aggregating
vectors of length m, and demonstrates excellent concrete per-
formance in our empirical evaluation (Section 5). These ana-
lytic results are summarized in Table 1 for easy comparison
with previous work.

Threat model. Like previous work, we target both the semi-
honest setting (in which all clients and the server correctly
execute the protocol) and the malicious setting (in which the
server and some fraction of the clients may act maliciously).
These threat models are standard in the MPC literature [21],
and match the ones targeted by Bonawitz et al. [11] and Bell et
al. [8]. In the semi-honest version, we assume that the server
is honest-but-curious, and that the clients have a corrupted
honest-but-curious subset with an honest majority. In the
malicious version, we assume that the server is malicious,
and that the clients have a corrupted malicious subset with
an honest majority. We present both versions in Section 4
(note that the results in Table 1 are for semi-honest protocol
versions in all cases).

Data poisoning & other threats. As with other secure ag-
gregation protocols, our threat model does not prevent the
adversary from submitting maliciously-crafted data. The abil-
ity to submit malicious data can enable attacks on the resulting
trained machine learning models, such as data poisoning [?],
property inference [?] and model inversion [?]. Like previous

approaches for secure aggregation [8, 11], our protocol does
not prevent these attacks.

2.3 Paper Roadmap
The rest of the paper is organized as follows. In Section 3
we describe the ideal but insecure functionality of our main
protocol that assumes a trusted server, along with our threat
model. The trusted server assumption is removed in Section 4
where we present novel techniques for lightweight malicious-
secure aggregation based on LWE. In that Section we also
describe the threat model and state formal security results
for the protocol, and analyze its algorithmic complexity. In
Section 5 we discuss methods and results for two experiments-
one that further evaluates scalability and other performance
parameters, and another that evaluates the accuracy of the
models using our protocol. We conclude with a summary and
remarks on open related problems in Section 7.

3 Differentially Private Federated Learning

Abadi et al. [2] describe a differentially private algorithm
for stochastic gradient descent in the central model of differ-
ential privacy. The algorithm assumes that the training data
is collected centrally by a trusted curator, and training takes
place on a server controlled by the curator. For details of the
algorithm the reader is referred to [2]

The primary challenge in differentially private deep learn-
ing is in bounding the sensitivity of the gradient computation.
Abadi et al. [2] use the approach of computing per-example
gradients—one for each example in the minibatch—then clip-
ping each gradient to have L2 norm bounded by the clipping
parameter C (line 6). The summation of the clipped gradients
(line 7) has global L2 sensitivity bounded by C.

Our privacy analysis of this algorithm uses Rényi differ-
ential privacy (RDP) [29] (rather than the moments accoun-
tant) for convenience and leverages parallel composition over
the minibatches in each epoch (rather than privacy amplifi-
cation by subsampling). Otherwise, it is similar to that of
Abadi et al. By the definition of the Gaussian mechanism for
Rényi differential privacy [29], the Gaussian noise added in
line 7 is sufficient to satisfy

(
α, C2α

2σ2

)
-RDP. By RDP’s se-

quential composition theorem, training for E epochs satisfies(
α, EC2α

2σ2

)
-RDP. Slightly tighter privacy analyses have been

Protocol 1: FLDP Protocol
Runs on the untrusted server
Input :Set of clients P, noise parameter σ, minibatch

size b, learning rate η, clipping parameter C,
number of epochs E.

Output :Noisy model θ.
Privacy guarantee: satisfies

(
α, EC2α

σ2

)
-RDP for

α≥ 1, assuming honest majority of clients in each
batch

1 θ← random initialization
2 for E epochs do
3 for each batch of clients Pb ∈ P of size b do
4 G← NoisyBatchGradient(Pb,σ,C,θ)

θ := θ− 1
b ηG update model

5 return θ

developed [6, 13, 18] that also apply to our work. We present
the RDP analysis for simplicity, since our focus is not on
improving central-model accuracy.

3.1 FLDP: Distributed DP SGD
We now extend the central-model approach to the dis-
tributed setting. The following describes a macro-level pro-
tocol for realizing differentially private distributed SGD
when a trusted third party is present. Functionality 2
(NoisyBatchGradient) assumes the existence of a trusted
third party to aggregate the noisy gradients associated with a
single batch. Section 4 will describe our MPC protocol that
implements Functionality 2 without a trusted third party.

Together, Protocol 1 and Functionality 2 define a differ-
entially private distributed SGD algorithm suitable for the
trusted server setting.The distributed computation follows the
framework of McMahon et al. [11], in which each client com-
putes a gradient locally (Functionality 2, line 2). To satisfy
differential privacy, our adaptation clips each gradient and
adds noise (lines 3-4).

Under the assumption that a trusted third party is available
to compute Functionality 2, Protocol 1 satisfies differential
privacy. Each execution of Functionality 2 calculates a sum
of noisy gradients, each with Gaussian noise of scale σ

b . The
final sum is:

Ĝ =
b

∑
i=1

ĝi =
b

∑
i=1

(
ḡi +N (0,

σ2

b
I)
)
=
(b

∑
i=1

ḡi

)
+N (0,σ2I),

(1)
which is exactly the same as the central model algorithm [2].
The last step of the derivation follows by the sum of Gaussian
random variables. Note that the noise added by each client is
not sufficient for a meaningful privacy guarantee (it is only
1
b of the noise required). The privacy guarantee relies on
the noise samples being correctly summed along with the
gradients. This is a major difference between Functionality 2

Functionality 2: Distributed NoisyBatchGradient

Runs on a trusted third party
Input :Batch of clients Pb of size b, noise parameter

σ, clipping parameter C, current model θ.
Output :Noisy gradient Ĝ.
Privacy guarantee: satisfies

(
α, C2α

σ2

)
-RDP for

α≥ 1, assuming honest majority of clients

Part 1: each client pi ∈ Pb computes a noisy gradient
and sends it to the functionality F .

1 for each client pi ∈ Pb do
2 gi← ∇L(θ,dataOf(pi)) compute gradient
3 ḡi← gi/max(1, ‖gi‖2

C) clip gradient

4 ĝi← ḡi +N (0, σ2

b I) add noise
5 pi sends ĝi to F
Part 2: F computes the sum of noisy gradients and

releases it to the server.

6 Ĝ← ∑
b
i=1 ĝi sum individual gradients

7 F sends Ĝ to the untrusted server

and approaches based on local differential privacy [10], in
which each client adds sufficient noise for privacy.

The privacy analysis for Functionality 2 and Protocol 1 are
standard, based on the conclusion of Equation (1). The L2

sensitivity of
(

∑
b
i=1 ḡi

)
is C, since at most one element of

the summation may change, and it may change by at most
C. By the definition of the Gaussian mechanism for Rényi
differential privacy, the noisy gradient sum satisfies

(
α, C2α

2σ2

)
-

RDP. The batches are disjoint, so over E epochs of training,
each individual in the dataset incurs a total privacy loss of(

α, EC2α

2σ2

)
-RDP.

3.2 Security & Privacy Risks of FLDP

Protocol 1 satisfies differential privacy when a trusted third
party is available to execute Functionality 2. The server may
be untrusted, since the server only receives differentially pri-
vate gradients.

Malicious clients. Functionality 2 is secure against semi-
honest clients (in part 1), since each client only sees their
own data and the (differentially private) model θ. However,
actively malicious clients may break privacy for other clients.
Each client is required to add noise to their own gradient (line
4); malicious clients may add no noise at all.

If 50% of the clients add no noise, then the variance of
the noise in the aggregated gradient Ĝ (line 6) will be σ2

2

instead of σ2, yielding
(

α, EC2α

σ2

)
-RDP (a weaker guarantee

than given above). As the fraction of malicious clients grows,
the privacy guarantee gets weaker. As discussed earlier, we

assume an honest majority of clients and relax our privacy
guarantee to this weaker form.

No trusted third party. The larger problem is with the re-
quirement for a trusted third party to compute Part 2 of Func-
tionality 2. Even an honest-but-curious server breaks the pri-
vacy guarantee for this part: the server receives each individ-
ual gradient separately, and each one has only a small amount
of noise added. This small amount of noise is insufficient
for a meaningful privacy guarantee. Section 4 describes an
MPC protocol that securely implements Functionality 2 in
the presence of an actively malicious server and an honest
majority of clients.

Privacy analysis. The protocols we describe in Section 4
work for finite field elements, so the floating-point numbers
making up noisy gradients will need to be converted to field
elements. Our privacy analysis of Protocol 1 relies on a prop-
erty of the sum of Gaussian random variables; as Kairouz
et al. [26] describe, this property does not hold for discrete
Gaussians. We amend the privacy analysis to address this
issue in Section 4.8.

4 LWE-Based Secure Aggregation

In this Section we address the security problem described in
the last Section, i.e., that state-of-the-art federated learning
with differential privacy requires a trusted third-party server
for aggregating gradients. Instead, we propose to use secure
aggregation between the clients of the protocol, eliminating
the need for a trusted third-party server. This allows us to
keep both client inputs and gradients confidential for the cal-
culation of a differentially private aggregate gradient. Our
solution is an secure aggregation protocol that securely real-
izes Functionality 2 as part of Protocol 1.

Our approach is to build a LWE-based masking protocol
that substantially reduces the communication complexity re-
quired to add large vectors. Rather than applying traditional
secure multiparty computation (MPC) protocols to the en-
tire vector, we generate masks that obscure the secret vectors
based on the learning with errors problem. The masked vec-
tors are safe to publish to the central server for aggregation in
the clear. The sum of all vector masks can be obtained through
MPC among the clients in the federation. Since the individual
vector masks cannot be perfectly reconstructed from the sum
of all of the masks, the security of the learning with errors
problem safeguards the encryption of the masked vectors.

Due to the nature of the learning with errors problem, the
individual vector masks cannot be perfectly reconstructed
with the sum of all the masks. The "errors" remain in the
aggregated vector sum, and are sufficient to satisfy (ε,δ)-
differential privacy.

4.1 Background: Learning with Errors
To reduce the dimension of the vectors that are to be summed
using MPC, we use a technique whose security relies on
the difficulty of the Learning With Errors (LWE) problems
[32]. These computational problems are usually posed in the
following manner: Let Fq be the finite field of prime size q,
which is sometimes denoted GF(q), and fix a secret vector
s ∈ Fn

q. An LWE sample is a pair (a,b), where a ∈ Fn
q is

chosen uniformly at random, and

b = a · s+ e ∈ Fq,

where a · s denotes the usual dot product, and e is a so-called
“error," chosen from a suitable error distribution χ on Fq. Then
the LWE (search) problem consists of retrieving the secret s
given a polynomial number of LWE samples (a,b).

For our purposes we will also need the hardness of the LWE
decision problem, which is the problem of distinguishing a
set of pairs (a,b) with each pair chosen uniformly at random
from Fn

q×Fq from a set of pairs that are LWE samples. In [32],
Regev shows that when q is a prime of size polynomial in n
and for χ any error distribution on Fq, the LWE decision prob-
lem is at least as hard as the LWE search problem. Since the
reduction from the LWE decision to the LWE search problem
is trivial, in those cases the two problems are equivalent.

4.2 Background: Multiparty Computation
Secure Multiparty Computation, abbreviated MPC, refers to
distributed protocols where independent data owners use cryp-
tography to compute a shared function output without reveal-
ing their private inputs to each other or a third party [21]. In
our setting, the ideal functionality computed by these clients is
gradient aggregation, which as discussed in Section 3 is differ-
entially private with regard to user inputs. Thus MPC serves
to replace a trusted third party in secure function evaluation.

Security properties of Secure Aggregation protocols are
categorized based on assumptions about the power of an ad-
versary. Semi-Honest adversaries perform the protocol as
intended, while attempting to gain information about the pri-
vate inputs of the protocol. Malicious adversaries may exhibit
arbitrary behaviors to affect the security, correctness, or fair-
ness of an MPC protocol. Furthermore, MPC protocols must
assume that some proportion of the involved clients are hon-
est. FLDP assumes an honest majority against a malicious
adversary. For a group of size k, we assume that k

2 +1 clients
are honest, and make no assumption about the behavior of the
rest.

FLDP requires the realization of secure vector aggrega-
tion in order to add the secret keys each participant uses to
mask their larger dimension vectors. Several secure vector ag-
gregation protocols already exist, especially for smaller sized
vectors [8,11,36]. For the sake of consistent security and com-
plexity analysis, we implement a secure vector aggregation
protocol using Packed Shamir secret sharing [22]:

A (t,k,n) threshold secret sharing scheme will break k
secret values into n shares, and require at least t + k shares to
recover the secret. Provided that an adversary has access to
fewer than t shares, packed Shamir sharing maintains the same
perfect security as traditional Shamir sharing [?]. To ensure
perfect security, we choose parameter settings that ensure the
adversary will never have access to t or more shares. Our
secure vector aggregation protocol additionally requires that
the scheme have an additive homomorphic property. That
is to say if [a] and [b] are secret shares of values a and
b, and c is a constant. Using [a], [b], and c, a party must
be able to calculate [a + b], [ac], and [a + c] without
communication among the other clients.

4.3 LWE-Based Masking of Input Vectors
We now describe our novel masking protocol, which allows
us to reduce client communication. A high-level summary of
the protocol is the following:

1. Each client generates a one-time-pad that is the same
size as their gradient, masks their gradient, and sends the
encrypted gradient to the server.

2. Clients add their masks together using MPC and send the
aggregate mask to the server.

Through this protocol the server can recover the true sum of
the gradients by adding the masked gradients and subtracting
the aggregate mask. Moreover, the aggregate mask reveals
nothing about any individual gradients or their masks.

We begin by assuming that all clients to the communication
share a public set of m vectors chosen uniformly at random
from Fn

q, and we arrange these vectors as the rows of an
m×n matrix A ∈ Fm×n

q . Then each client generates a secret
vector s ∈ Fn

q, with each entry of the vector drawn from the
distribution χ, and an error vector e ∈ Fm

q , with each entry
of the vector also drawn from the same distribution χ, and
computes the vector

b = As+ e ∈ Fm
q .

We can then think of the pair (A,b) as a set of m LWE
samples, where each row of A constitutes the first entry of a
sample as described in Section 4.1, and each entry of b con-
stitutes the second entry of the sample. The hardness of the
LWE decision problem tells us that the vector b is indistin-
guishable from a vector whose entries are chosen uniformly at
random from Fq, so b can serve as a one-time pad to encrypt
the vector v ∈ Fm

q :
h = v+b,

where here h is used to denote the encrypted v. Note that
according to Regev [32], there is no loss in security in having
all clients share the same matrix A to perform this part of the
protocol.

Now suppose that hi, vi, bi, si, and ei are the h, v, b, s, and e
vectors of client i. Additionally, suppose hsum, vsum, bsum, ssum
and esum are the sum of all bi, si, and ei for clients 0, . . . ,k−1
where k is the number of clients.

By the definition of one-time pads, each client can send hi to
the server without revealing anything about vi. The server can
obtain hsum through simple vector addition. By the definition
of each hi, we further know that:

hsum = vsum +bsum,

and by the definition of each bi and the distributive property,
we obtain:

hsum = vsum +Assum + esum,

where Assum denotes the usual matrix-vector multiplica-
tion. To obtain ssum we assume the federation has access
to a secure aggregation protocol that realizes functionality
Sagg(x0, . . .xk, t). Sagg returns the sum of vectors x0, . . . ,xk,
while not revealing any information about any inputs to any
subset of parties of size smaller than t. Because they utilize
Sagg, this reveals nothing about their individual si values. In
the case of dropouts, Sagg also returns the subset of parties
that participated in the aggregation. Using ssum, the server can
compute the following value:

vsum + esum

Of course, the clients do not share their individual error vector
ei values because this would invalidate the LWE assumption
that ensures bi is a one-time pad. Therefore, we realize the
ideal functionality of calculating vsum by returning a noisy
answer. Fortunately, each entry in esum is the sum of at most k
discretized Gaussians. Therefore we can use the noise added
by esum to satisfy (ε,δ)-DP.

Protocol 3 reduces the client communication complex-
ity from O(log(q)mk) to O(log(q)(m+n+ k)) by requiring
clients to securely aggregate only a small vector of size n.
The addition of n and k can be attributed to the possible use
of packed secret sharing. Each client shares their length-m
vector once with the server, and then uses a packed secret
sharing scheme on their length-n vector. The total number of
shares required in the packed scheme is O(n+ k)

4.4 Vector Aggregation
To add the secret vectors s0 . . .sk−1, we can use any secure
aggregation protocol. In our use cases, each si is typically
of small dimension (m ≤ 800), so we use a packed Shamir
secret sharing protocol outlined in Protocol 4.

Protocol 4 is secure against semi-honest adversaries based
on the security packed secret sharing. A malicious adversary
could broadcast an incorrect sum in Round 2 of the protocol,
and the final result would be calculated incorrectly by the
other clients. Traditionally, the reconstruct function has no
ability to catch this kind of cheating; in many cases all of the

Protocol 3: Masking Aggregation
Input :Set U of k clients, each client i has a vector

vi ∈ Fm
q , the secret length n, an error

distribution χ, and a common matrix
A ∈ Fm×n

q .
Output :The sum of all vectors v0 . . .vk−1, V
Round 1: Each client i:

1. generates a vector si ∈ Fn
q, with each entry drawn at

random from χ, using a secret seed.
2. generates ei ∈ Fm with each entry drawn at random

from χ.
3. bi← Asi + ei
4. hi← vi +bi
5. sends hi to the server.

Round 2: The server:

1. receives hi from each non-dropped out client
2. the server sends each party the set of clients who sent an

h. Call this set U1.

Round 3: Each client i:

1. Obtains s← ∑i∈U1 si. Using Sagg({si|i ∈U1}, t) and
U2, the set of clients that participated in Sagg.

2. sends s, U2 to server.

Round 4: The server:

1. H← ∑i∈U2 hi
2. V ← H−As

Protocol 4: Secure Vector Addition
Input :k vectors vi ∈ Fn

q, one from each client Pi, a
secret sharing threshold t, a packing
threshold p < k− t−1.

Output :vector sum V ∈ Fn
q

Round 1: Each client j:
1. partitions v j into a set of length-p vectors R j

2. Generates a set of (t− p+1, t +1, p,k)-packed secret
sharing called S j with one sharing for each vector in R j.

3. Distributes the shares of each sharing in S j to clients
P0 . . .Pk−1. For a given sharing s in S j, Pi receives si j.

Round 2: Each client j:

1. Receives shares s j0, . . .s jk−1 from P0, . . .Pk−1 for all
sharings in S.

2. sum j← ∑s j0, . . . ,s jk−1 for each sharing in S.
3. Broadcasts each sum j to every client.

Round 3: Each client j:

1. Receives sum0 . . . sumk−1 for each sharing in S.
2. Runs reconstruct on each element sum0 . . . sumk−1

to obtain a set of length-p vectors Rsum.
3. if (2) fails, broadcast ABORT.
4. concatenate the vectors in Rsum to obtain V .

shares are needed to reach the threshold during reconstruction,
so corruption of a single one will change the result.

4.5 Malicious-Secure Vector Aggregation

We now extend Protocol 4 to be secure against malicious
clients by applying a variation of Benaloh’s verifiable secret
scheme [9]. The key insight behind this modification comes
from the observation that in our protocol each client receives k
shares from the other clients in Round 3, but only t shares are
actually required for reconstruction. Our modified reconstruc-
tion procedure uses the remaining shares to catch cheating
clients.

Algorithm 5: Shamir Reconstruction with Verifica-
tion

Input :Let [a] be a (t,k)-Shamir sharing of secret a.
Assume one client has access to at least t +1
shares of [a].

Output :a or ABORT
1 A⊂ B⊆ [a] where |A|= t and |B|= t +1.
2 a′→ reconstruct(A)
3 b→ reconstruct(B)
4 if a′ = b then
5 return a’
6 else
7 return ABORT

We propose the following reconstruction method for veri-
fying that clients have behaved honestly. Requiring that each
client has at least t+1 shares, we have each honest client take
two subsets of the shares, one of size t and one of size t +1.
The clients perform the traditional reconstruction technique
on both subsets. If the values returned by both reconstructions
are equivalent, they accept the result as correct. Otherwise,
they abort. The modified reconstruction procedure appears
in Algorithm 5. Replacing the call to reconstruct in Pro-
tocol 4 with a call to this modified reconstruction procedure
yields a malicious-secure protocol.

Note that Algorithm 5 does not require communication
with other clients. General-purpose malicious-secure proto-
cols based on the same principle require interaction between
the clients to check for cheating (e.g., the protocol of Chida
et al. [16]) because they use the “extra” shares to perform
multiplication. Since our application does not require multi-
plication, we can use these shares to catch cheating instead.

Algorithm 5 can be extended to the packed Shamir variant
by requiring that each client has access to t + k+ 1 shares.
The number of shares to which access is required must be
increased because the reconstruction threshold is increased
in the packed variant. Protocol 4 and Algorithm 5 realize
the ideal functionality Sagg in the malicious adversary threat
model.

4.6 Security Analysis

Here we analyze the security of Protocol 3, which we will
denote as π.

Suppose the ideal functionality of noisy vector addition as
F , an adversary A. Let vi and xi be input and view of client
i respectively. Let xs be the view of the server. n is the LWE
security parameter. Suppose a maliciously secure aggregation
protocol Sagg(X , t). Let V be the output of π.

Let U be the set of clients, and C ⊂U ∪{S} be the set of
corrupt parties.

In the malicious model, we consider dropping out an ad-
versarial behavior without loss of generality.

Suppose the simulator has access to an oracle
IDEAL(t,vu)u∈U\C where:

IDEAL(t,vu)u∈U\C =

{
Σu∈U\Cvu |U \C|> t
⊥ otherwise

Let REALU
π,C = {xi|i ∈C},V .

Theorem 1 There exists a PPT simulator SIM such that for
all t, U, C

REALU
π,C(n, t;vU\C)≡ SIM

U,IDEAL(t,vu)
C (n, t;xC)

The proof full proof of this theorem can be found in Ap-
pendix A.

4.6.1 LWE parameters

The security of an LWE instance is parameterized by the tuple
(n,q,β) where n is the width of the matrix A (or equivalently
the dimension of the secret s), q is the field size, and β is such
that βq is the width of the error distribution χ (so that the
standard deviation is σ = βq√

2π
; this quantity is denoted α in

the LWE literature, but we choose β here so as to not conflict
with the notation for Rényi divergence). We used the LWE
estimator [4] to calculate the security of each parameter tuple.
Table 2 displays a series of LWE parameters for different
potential aggregation scenarios, each with at least 128 bits of
security.

The different parameter settings are driven by different
sizes of q, which would enable more precision in the aggre-
gate values. A larger field size also allows more clients to be
involved in the aggregation. Field sizes picked here may also
utilize fast Fourier transform secret sharing. For this reason
we consider q fixed by the application of the protocol. Since
we also use a fixed valued of β = 3.2

q , the security offered by
the LWE problem depends on the variable n (the length of the
secret s), which we call the security parameter.

Protocol 6: Malicious-Secure NoisyBatchGradient
Input :Batch of clients Pk of size k, noise parameter

σ, clipping parameter C, current model θ.
Output :Noisy gradient Ĝ.
Privacy guarantee: satisfies

(
α, C2α

σ2

)
-RDP for

α≥ 1, assuming honest majority of clients

1 for each client pi ∈ Pk do
2 gi← ∇L(θ,dataOf(pi)) compute gradient
3 ḡi← gi/max(1, ‖gi‖2

C) clip gradient

4 ĝi← ḡi +N (0, σ2

k I) add noise
5 vi← EncodeGradient(ĝi) encode gradient

Client pi ∈ Pk provides vi as input to Secure Vector
Addition (Protocol 4). Together, the clients compute
Ĝ = ∑

k
i=1 ĝi. Ĝ is released to the untrusted server.

4.7 Encoding and Decoding Gradients

In order to manipulate gradients with MPC, we require that
they can be encoded as a vector of finite field elements. First
we flatten the tensors that compose each gradient into a vector
of floating point numbers. The aggregation operation of gra-
dients is element wise. Therefore, we simplify the encoding
problem to encoding a floating point number as a finite field
element. Gradient elements are clipped, and encoded as fixed
point numbers. We chose 16 bit numbers with 4 digits of
precision after the decimal. This precision was sufficient for
model conversion on the MNIST and CFAR-10 problems.

The integers are converted to unsigned integers using an
offset, and the unsigned integer result can be encoded into
any field larger than 216. The fields used in our experiment
are outlined in Table 2.

4.8 Malicious Secure FLDP

We now have all the MPC operations necessary to implement
our ideal functionality from Protocol 1 as a secure multiparty
computation. Protocol 6 securely implements Functionality 2,
and can replace it directly to implement FLDP. This version
of NoisyBatchGradient computes the gradient and adds
noise to it in the same way as the ideal functionality, but
invokes Protocol 4 to sum the vectors. This requires encoding
each noisy gradient as a vector of field elements, as described
in the last section.

Privacy analysis. The privacy analysis of Protocol 1 relies
on the fact that the sum of Gaussian random variables is itself
a Gaussian random variable. However, as Kairouz et al. [26]
point out, this property does not hold for discrete Gaussians—
and since EncodeGradient uses a fixed-point representation
for noisy gradients, we cannot rely on the summation property.
Instead, our privacy analysis proceeds based on Proposition
14 of Kairouz et al. [26]:

Proposition 1 (from Kairouz et al. [26]) Let σ ≥ 1
2 . Let

Xi, j ← NZ(0,σ2) independently for each i and j. Let Xi =
(Xi,1, . . . ,Xi,d) ∈ Zd . Let Zn = ∑

n
i=1 Xi ∈ Zd . Then, for all

∆ ∈ Zd and all α ∈ [1,∞),

Dα(Zn||Zn +∆)≤ α‖∆‖2
2

2nσ2 + τd

where τ := 10 ·∑n−1
k=1 e−2π2σ2 k

k+1 .

Proposition 1 provides a bound on Rényi divergence, Dα,
for noise generated as the sum of discrete Gaussians, which di-
rectly implies Rényi differential privacy. In our setting, Propo-
sition 1 yields almost identical results to the privacy analysis
of Protocol 1 (which assumes continuous Gaussians). Note
that the first term of the bound from Proposition 1 is identical
to the bound given in our earlier privacy analysis, when n is
equal to the batch size b and ‖∆‖2

2 is equal to C2 (where C is
the L2 clipping parameter).

As the fixed-point representation of noisy gradients be-
comes more precise, the second term of the bound (τd) be-
comes extremely small. The EncodeGradient function uses
4 places of precision past the decimal point, meaning that the
effective values of σ2 and ‖∆‖2

2 are 10,000 times their “origi-
nal” values. Each additional place of precision adds another
factor of 10 to both values. This has the effect of reducing the
value of τ to extremely close to zero.

We have implemented both the original analysis (which
incorrectly assumes continuous Gaussians) and Proposition 1.
The results reported in Section 5 use Proposition 1, but the two
methods yield values of ε so close together that the resulting
graphs are indistinguishable.

4.9 Algorithmic Complexity

Client computation is comprised of three tasks. Generating
a random vector s of length n, generating a random vector e
of length m, multiplying s by m×n matrix A, and generating
secret shares for s. Random vector generation is an O(m+n)
operation where n is length of secret vector s and m is the
length of e. This can be reduced to O(m) because m will
be larger than n in any practical use of FLDP. Matrix multi-
plication by a vector is an O(mn) operation where m is the
vector size; each matrix element is considered exactly once.
Finally, secret share generation is done using the packed FFT
method [17], and therefore has a complexity of O(k log(k))
where k is the number of clients. In sum, this gives us a run-
time of O(mn+ k log(k)) for client computation with respect
to our vector size m and s length n.

In order to assume the difficulty of the LWE decision prob-
lem, we require that q be polynomial in n. Though the field
size does affect the precision of the values to be aggregated
and the possible number of parties to the aggregation scheme,
it is customary to think of q as a constant, and therefore n

is constant here too in our complexity analysis. However, in
practice it is possible to choose n quite small relative to q.

Server complexity consists of adding k masked vectors,
reconstructing the packed secret sharing, and multiplying an
m×n matrix by a length n vector. The vector addition and ma-
trix multiplication have complexity O(mk+m log(k)). Recon-
structing the packed secret shares takes time O(k log(k)) in
the semi-honest case with no dropouts using the Fast Fourier
Transform method. In the case of malicious security and
dropouts, we use Lagrange interpolation to obtain a runtime
of O(k2). The number of dropouts does not affect runtime
complexity as long as there are more than 0 dropouts. In total,
the server runtime complexity is O(mk+mn+k log(k)) in the
no dropout scenario, and O(mk+mn+k2) in case of dropouts
or malicious adversaries.

5 Evaluation

Our empirical evaluation aims to answer two research ques-
tions:

• RQ1: How does the concrete performance of FLDP com-
pare to state-of-the-art secure aggregation?

• RQ2: Is FLDP capable of training accurate models?

We conduct two experiments to answer both questions in the
affirmative. We first describe our experiment setup and the
datasets used in our evaluation. Section 5.1 describes our
scalability experiment; the results show that FLDP scales to
realistic batch sizes, and that model updates take only sec-
onds. Section 5.2 describes our accuracy experiment; the
results demonstrate that FLDP trains models with compara-
ble accuracy to central-model differentially private training
algorithms.
Experiment setup. Our experiments take place in two phases.
First, the model is trained in a single process with privacy
preserving noise added to each gradient. As model training oc-
curs, gradients for each training sample are written to file. The
second phase involves the MPC simulation. Clients read their
noisy gradients from file, and aggregate them using FLDP.

This experimental setup is necessary for the implementa-
tion of local experiments with batch sizes of 128. Reading
each gradient from file sidesteps the need for each client to
have their own TensorFlow instance, substantially reducing
our memory consumption footprint.

Running these two separate experiments ensures that the
MPC results reflect the performance of FLDP without consid-
ering the overhead of training 128 separate neural networks
in parallel.

The memory consumption issue described here is created
by simulating many clients on the same machine. In a true
federated learning instance, each client would have their own
independent resources, and therefore would not run into this
same issue.

Figure 1: The left figure displays the expansion factor for using our protocol with various vector sizes and numbers of clients,
comparing our approach (solid lines) against the secure aggregation protocol of Bonawitz et al. [11] (dashed lines). The right
figure includes cost of a single client’s computation. The client timing results are identical regardless of the dropout so only the
dropout situation is plotted.

5.1 Experiment 1: Masking Scalability

This section strives to answer RQ1. We implemented the
masking protocol in single threaded python and evaluated
various federation configurations. Experiments were run on an
AWS z1d2xlarge instance with a 4.0Ghz Intel Xeon processor
and 64 Gb of RAM [1]. Concrete timing and expansion results
for protocol computation are included in Figures 1, 2, and
Table 2. We assume semi-honest behavior from the adversary
and consider the scenario with no dropouts as well as a 25%
dropout rate. In all experiments, β is assumed to be 3.2/q.
We assume a single aggregation server, and we assume that
clients broadcast the sum of shares to the server rather than
performing Shamir reconstruction themselves.

5.1.1 Experimental Performance

Figures 1 and 2 presents our concrete performance results.
We see a significant improvement in client and server compu-
tation time over the concrete performance results of Bonawitz
et al. [11]. Client computation takes less than half a second
for all configurations tested, and is dictated by a linear rela-
tionship with the vector size.

Server computation time has a linear relationship with vec-
tor size and a quadratic relationship with the number of clients.
In the case with no dropouts, server computation is quick, tak-
ing less than 5 seconds for all configurations tested. In the
dropout scenario, server computation is significantly slower,
but still much faster than the state of the art [11].

Server time is dominated by the Lagrange interpolation
process used for reconstruction. The no dropout case has no
lagrange interpolation, the dropout model uses lagrange in-
terpolation once, and the malicious protocol performs two
rounds of lagrange interpolation. Figure 2 shows that the ma-
licious protocol requires about twice as much time as the

dropout friendly protocol. This is because of lagrange interpo-
lation. Performance can be improved with faster interpolation
algorithms [42].

Recall the quantity β from Section 4.6.1, which given q the
size of the field gives us the standard deviation of the noise.
We observe that changing β has no effect on the runtime.
We note that changing β can require different values for n
and q to guarantee a certain amount of security, but this is
only necessary if β is decreased. For our timing experiments
we chose β = 3.2/q to accommodate a wide variety of pri-
vacy budgets for relatively small fixed precision. Because our
values are fixed precision with 4 decimal places, the chosen
value of β adds noise with standard deviation .0409 to our
aggregated vectors assuming 128 clients. This is far less than
the minimum amount of DP-noise we added in our accuracy
experiments, which had a standard deviation of 1.

5.2 Experiment 2: Model Accuracy
This section strives to answer RQ2. We implement our mod-
els in TensorFlow. To preserve privacy, we add noise scaled
to a constant σ to each example’s gradient, which results in
the batch gradient described by Equation 1. Each gradient is
clipped, by a constant C = 5 such that batch gradient sensi-
tivity is bounded by C/batch_size. These two modifications
to a traditional neural network training loop ensure that our
models satisfy differential privacy. Adding noise in this way
also accurately reflects the process that would be used by a
federation member using FLDP. Gradient updates for individ-
ual samples are saved during training for use during the MPC
experiments.

We evaluate the accuracy and scalability of FLDP with the
standard MNIST and CIFAR-10 datasets. Both datasets, and
the models we train with them are listed in Table 3.

For both the MNIST and CIFAR-10 models, we utilize cate-

Figure 2: The effects of different federation size and different vector size on server computation time malicious, semi-honest, and
dropout tolerant threat models. The malicious threat model tolerates dropouts.

Clients q n % Dropout Server Client Bonawitz Server Bonawitz Client

478 31352833 710 0 310 ms 80 ms 2018 ms 849 ms
625 41057281 730 0 447 ms 84 ms 2018 ms 849 ms

1000 71663617 750 0 668 ms 88 ms 4887 ms 1699 ms

478 31352833 710 29 496 ms 91 ms 143389 ms 849 ms
625 41057281 730 29 375 ms 93 ms 143389 ms 849 ms

1000 71663617 750 29 21931 ms 99 ms 413767 ms 1699 ms

Table 2: Client and server times for various LWE configurations. Vector size is fixed at 100,000 and βq = 3.2. Times are in
milliseconds. Results from Bonawitz et al. [11] for 500 and 1000 parties with 0 and 30% dropout are included for comparison.

Property MNIST CIFAR-10

Train Set Size 60,000 50,000
Test Set Size 10,000 10,000
Conv layers 2 6
Parameters 26,000 550,000
Batch Sizes 16, 32, 64, 128 16, 32, 64, 128

σ 0, 1, 2, 4, 8 0, 1, 2, 4, 8, 16

Table 3: Datasets and model configurations used in our exper-
iments

gorical cross entropy for our loss function, stochastic gradient
descent with a learning rate of 0.01 and momentum of 0.9 for
our optimizer and a clipping parameter C = 5 for all trials.

We run a series of trials for each dataset with each pair
of batch size and σ listed in Table 3. All accuracy results
are the per epoch average of 4 trials with the given model
configuration. ε is calculated post hoc as a function of
σ,C,batch_size,epochs. All ε values are calculated from the
corresponding Rényi differential privacy guarantee by pick-
ing α to minimize the RDP ε parameter, then converting this
guarantee into (ε,δ)-differential privacy with δ = 10−5. We
see selected accuracy results reported for differing values of
ε in Figure 3.

5.2.1 MNIST

The Modified National Institute of Standards and Technology
database is an often used image recognition benchmark con-
sisting of 60,000 training samples and 10,000 testing samples;
each sample is a 28×28 gray scale image of a handwritten
digit. We train a classifier containing 2 ReLU-activated con-
volution layers, max pooling following each of them, and a
ReLU activated dense layer with 32 nodes. Finally, classifi-

cations are done with a softmax layer. This model has about
26,000 trainable parameters in total.

After training for 275 epochs, our private MNIST models
are able to attain a maximum 98.7% mean validation accu-
racy over 4 trials. This is a slight decrease in accuracy from
the no noise baseline accuracy of 99.2%, however the private
model still generalizes very well. Figure 4 shows how differ-
ent privacy budgets affect accuracy for our sample batch sizes.
Models trained with all batch sizes see improved accuracy as
ε increases, however larger batch sizes tend to produce more
accurate models, especially for small values of ε. Improved
accuracy for larger batch sizes can be seen as an effect of the
private average, where the sensitivity of the gradient average
is inversely proportional to the batch size. Therefore, larger
batches require less noise added for a given privacy budget,
resulting in a more accurate model.

5.2.2 CIFAR-10

The Canadian Institute for Advanced Research 10 dataset
consists of 60,000 colored images equally partitioned into 10
classes. Each image is 32×32 with 3 channel RGB colored
pixels. We separated the dataset into 50,000 training examples
and 10,000 test samples for our experiment. Our trained model
contains three pairs of ReLU-activated convolution layers
with batch normalization after each layer, and max pooling
after each pair. We also include one ReLU activated dense
layer with 128 nodes, and a softmax activated output layer.
This model contains 550,000 parameters.

With a batch size of 64, we achieve a maximum accuracy of
70.0% mean validation accuracy over 4 trials on CIFAR-10.
This is a sizeable drop in accuracy compared to the 77.4%
mean accuracy of our architecture trained without differential
privacy, however it is in line with differentially private model
performance in the central model [2].

Figure 4 demonstrates the correlation between larger batch
size and greater accuracy when controlling for a specific pri-
vacy budget. As with MNIST, the greater accuracy with larger
batch sizes likely stems from gradient sensitivity being depen-
dent on the batch size itself. That said, for ε < 10, we achieve
our most accurate model with a batch size of 64 (ε = 3.67),
which is well within the scalable limits of FLDP as defined
in Section 5.1.

5.2.3 Comparison With Centralized Differential Pri-
vacy

Our approach produces models with accuracy highly compa-
rable to those achieved by Abadi et. al. [2]. Table 4 shows that
for a given privacy budget, our approach is able to produce an
output within 3% of the equivalent central-model accuracy. It
is worth noting that we report the average of 4 trials in this
table, and that we observe the same, or better, decrease in
accuracy with respect to the no-noise baseline for each model.

Method Abadi et. al. [2] FLDP

MNIST (ε≤ 2) 95% 95%
MNIST (ε≤ 8) 97% 99%

CIFAR-10 (ε≤ 4) 70% 70%
CIFAR-10 (ε≤ 8) 73% 70%

Table 4: A comparison of our private model accuracy with a
central-model differentially private training algorithm. For all
models, δ = 10−5. For all of our models, batch size is 64.

These comparable accuracy results demonstrate the usability
of FLDP for privacy preserving federated learning.

6 Related Work

Secure multiparty computation. Secure multiparty compu-
tation (MPC) [21] is a family of techniques that enable mutu-
ally distrustful parties to collaboratively compute a function
of their distributed inputs without revealing those inputs. MPC
techniques include garbled circuits [40] (which is most easily
applied in the two-party case) and approaches based on se-
cret sharing [36] (which naturally apply in the n-party case).
MPC approaches have seen rapid improvement over the past
20 years, but scalability remains a challenge for practical de-
ployments. In particular, most MPC protocols work best when
the number of parties is small (e.g., 2 or 3), and costs grow at
least quadratically with the number of parties. State-of-the-art
protocols support significantly more parties: Wang et al. [39]
reach 128 parties using a garbled circuits approach, and Chida
et al. [16] reach 110 parties using a secret sharing approach.
MPC for differentially private deep learning. MPC tech-
niques have been previously applied to the problem of differ-
entially private deep learning, but these approaches require ei-
ther a semi-honest data curator [38] or two non-colluding data
curators [24]. Secure aggregation protocols [8, 11] (detailed
in Section 2) are themselves MPC protocols, specifically de-
signed for the many-client setting. Kairouz et al. [26] present a
general framework for differentially private federated learning
that leverages existing secure aggregation protocols.
Security for distributed differential privacy. Outside of
deep learning, several systems have been proposed for com-
puting differentially private results from distributed data. Hon-
eycrisp [33] and Orchard [34] are most related to our work,
and use a distributed protocol similar to secure aggregation to
compute the results of database-style queries. ShrinkWrap [7]
and CRYPTε [35] leverage existing MPC frameworks to im-
plement differentially private database queries.
Secure and Private Federated Learning. MPC and Differ-
ential privacy may also be applied to the problem of Feder-
ated Learning separately. Several local differential privacy
approaches have been proposed [?, ?]. These approaches add

Figure 3: Validation accuracy progression over training runs on MNIST and CIFAR for various values of ε (δ = 10−5). All
accuracy values are the average of 4 trials. Batch size is restricted to 64.

Figure 4: The effects of privacy budget and batch size on validation accuracy (δ = 10−5). Each solid line is a moving average
of Accuracy as epsilon increases for a given batch size. The dotted line is the maximum accuracy achieved by our model with
no noise added during training. Private federated learning is able to approach non-private accuracy for several batch sizes on
MNIST. On CIFAR-10 e see that private models tend to be more accurate with larger batch sizes, while the opposite is true for
non-private models.

sufficient noise to a client’s gradient before performing ag-
gregation in the clear, thus circumventing the need for MPC.
In this way LDP-based approaches scale to large federations
quite well, but typically require very large privacy budgets for
model convergence.

MPC techniques can be applied to federated learning to
satisfy a variety of properties. POSEIDON [?] and So et.
al [?] use MPC for substantially more robust threat models,
N−1 adversaries and Byzantine resistance respectively, but
do not utilize differential privacy, and focus on smaller fed-
erations (< 50 parties) than FLDP. EIFFeL [?] on the other
hand, employs non-interactive zero-knowledge proofs to en-
sure the integrity of masked inputs. These approaches can
prevent some additional attacks we do not consider (e.g. data

poisoning), but are designed for smaller federations.

Learning with Errors. As noted in Sections 4.6.1 and 5.1.1,
in this work we fix βq = 3.2. We note that the security re-
ductions that ensure that the LWE search problem is difficult
do not apply in this case: In [32], Regev shows that if q is
chosen to be polynomial in n, and χ is a certain discretiza-
tion of a Gaussian distribution on Fq with standard deviation

βq√
2π

for 0 < β < 1 and βq > 2
√

n, then solving the LWE
search problem can be quantumly reduced to an algorithm
that approximately solves the Shortest Vector Problem and
the Shortest Independent Vectors problem. In [31], Peikert
shows a classical reduction to the (slightly easier) GapSVP
problem.

While as far as we know there are no security reductions
for small fixed βq, at the same time we do not currently know
of an attack that takes advantage of a small constant standard
deviation. Accordingly, our choice is similar to the choice
made in the current FrodoKEM algorithm specifications (sub-
mission to Round 3 of the NIST PQC challenge) [5, 12] and
consistent with the recommendation of [3].

7 Conclusion

In the past decade, an explosion in data collection has led
to huge strides forward in machine learning, but the use of
sensitive personal data in machine learning also represents a
serious privacy concern. We present an approach based on a
new protocol called FLDP that ensures differential privacy for
the trained model, without the need for a trusted data aggrega-
tor. Using FLDP allows a highly accurate model to be trained
in a federated (distributed) manner while guaranteeing the
privacy of data owners, even against powerful and colluding
adversaries. Our empirical results show that these accurate
models are trainable within a feasible time frame for practical
applications, especially when accuracy and low trust burdens
are critical.

The promising results presented in our evaluation also
suggest directions for future research. For example, gra-
dient compression techniques can substantially reduce in-
communication overhead for distributed training [28]. Paired
with FLDP, these techniques could further reduce the time
per batch for larger models, and potentially improve our scal-
ability with respect to model complexity. Moreover, we apply
FLDP to the very specific case of privacy preserving feder-
ated learning, but additional research could consider how these
techniques scale with simpler, yet important, data problems.
For example, the core noise addition and secure aggregation
methods described in this paper could be adapted to privacy-
preserving database queries, while eliminating the need for a
central database.

Acknowledgments

The authors would like to thank Connor Wagaman, Ammie
Wang, Aleksei Bingham, Christopher Murphy, and Minseok
Kwon for their contributions in the preliminary stages of
this work. Approved for Public Release. Distribution is Un-
limited. This material is based upon work supported by the
Broad Agency Announcement Program and the Cold Regions
Research and Engineering Laboratory (ERDC-CRREL) un-
der Contract No. W913E521C0003, and by the Defense Ad-
vanced Research Projects Agency (DARPA) under Agreement
No. HR00112090106. Any opinions, findings and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
United States Government or DARPA.

References

[1] Amazon EC2 z1d instances, 2021.

[2] Martín Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan
McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
Deep learning with differential privacy. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, An-
drew C. Myers, and Shai Halevi, editors, Proceedings
of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, October
24-28, 2016, pages 308–318. ACM, 2016.

[3] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding,
Shafi Goldwasser, Sergey Gorbunov, Shai Halevi, Jef-
frey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam,
Daniele Micciancio, Dustin Moody, Travis Morrison,
Amit Sahai, and Vinod Vaikuntanathan. Homomor-
phic encryption security standard. Technical report, Ho-
momorphicEncryption.org, Toronto, Canada, November
2018.

[4] Martin R. Albrecht, Rachel Player, and Sam Scott. On
the concrete hardness of learning with errors. J. Math.
Cryptol., 9(3):169–203, 2015.

[5] Erdem Alkim, Joppe W. Bos, Léo Ducas, Patrick Longa,
Ilya Mironov, Michael Naehrig, Valeria Nikolaenko,
Chris Peikert, Ananth Raghunathan, and Douglas Ste-
bila. FrodoKEM: Learning With Errors Key Encapsu-
lation. Technical report, NIST PQC challenge, third
round, June 2021. https://frodokem.org/files/
FrodoKEM-specification-20210604.pdf.

[6] Shahab Asoodeh, Jiachun Liao, Flavio P Calmon, Oliver
Kosut, and Lalitha Sankar. A better bound gives a
hundred rounds: Enhanced privacy guarantees via f-
divergences. In 2020 IEEE International Symposium on
Information Theory (ISIT), pages 920–925. IEEE, 2020.

[7] Johes Bater, Xi He, William Ehrich, Ashwin Machanava-
jjhala, and Jennie Rogers. Shrinkwrap: efficient sql
query processing in differentially private data federa-
tions. Proceedings of the VLDB Endowment, 12(3),
2018.

[8] James Henry Bell, Kallista A Bonawitz, Adrià Gascón,
Tancrède Lepoint, and Mariana Raykova. Secure single-
server aggregation with (poly) logarithmic overhead. In
Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, pages 1253–
1269, 2020.

[9] Josh Cohen Benaloh. Secret sharing homomorphisms:
Keeping shares of a secret secret (extended abstract). In
Andrew M. Odlyzko, editor, Advances in Cryptology —
CRYPTO’ 86, pages 251–260, Berlin, Heidelberg, 1987.
Springer Berlin Heidelberg.

https://frodokem.org/files/FrodoKEM-specification-20210604.pdf
https://frodokem.org/files/FrodoKEM-specification-20210604.pdf

[10] Abhishek Bhowmick, John Duchi, Julien Freudiger,
Gaurav Kapoor, and Ryan Rogers. Protection against
reconstruction and its applications in private federated
learning. arXiv preprint arXiv:1812.00984, 2018.

[11] G R Blakley and Catherine Meadows. Security of ramp
schemes. In Proceedings of CRYPTO 84 on Advances
in Cryptology, page 242–268, Berlin, Heidelberg, 1985.
Springer-Verlag.

[12] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio
Marcedone, H. Brendan McMahan, Sarvar Patel, Daniel
Ramage, Aaron Segal, and Karn Seth. Practical secure
aggregation for privacy-preserving machine learning. In
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’17, page
1175–1191, New York, NY, USA, 2017. Association for
Computing Machinery.

[13] Joppe Bos, Craig Costello, Léo Ducas, Ilya Mironov,
Michael Naehrig, Valeria Nikolaenko, Ananth Raghu-
nathan, and Douglas Stebila. Frodo: Take off the ring!
practical, quantum-secure key exchange from LWE. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 1006–
1018, 2016.

[14] Zhiqi Bu, Jinshuo Dong, Qi Long, and Weijie J Su. Deep
learning with gaussian differential privacy. Harvard
data science review, 2020(23), 2020.

[15] Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej
Kos, and Dawn Song. The secret sharer: Evaluating and
testing unintended memorization in neural networks. In
28th USENIX Security Symposium (USENIX Security
19), pages 267–284, 2019.

[16] Albert Cheu, Adam Smith, Jonathan Ullman, David Ze-
ber, and Maxim Zhilyaev. Distributed differential pri-
vacy via shuffling. In Annual International Conference
on the Theory and Applications of Cryptographic Tech-
niques, pages 375–403. Springer, 2019.

[17] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi,
Ryo Kikuchi, Yehuda Lindell, and Ariel Nof. Fast large-
scale honest-majority mpc for malicious adversaries. In
Annual International Cryptology Conference, pages 34–
64. Springer, 2018.

[18] Amrita Roy Chowdhury, Chuan Guo, Somesh Jha, and
Laurens van der Maaten. Eiffel: Ensuring integrity for
federated learning. CoRR, abs/2112.12727, 2021.

[19] Morten Dahl. Secret sharing, part 2 efficient sharing
with the fast fourier transform, Jun 2017.

[20] Jinshuo Dong, Aaron Roth, and Weijie J Su. Gaussian
differential privacy. arXiv preprint arXiv:1905.02383,
2019.

[21] Cynthia Dwork, Aaron Roth, et al. The algorithmic
foundations of differential privacy. Foundations and
Trends in Theoretical Computer Science, 9(3-4):211–
407, 2014.

[22] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth
Raghunathan, Kunal Talwar, and Abhradeep Thakurta.
Amplification by shuffling: From local to central dif-
ferential privacy via anonymity. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2468–2479. SIAM, 2019.

[23] David Evans, Vladimir Kolesnikov, and Mike Rosulek.
A pragmatic introduction to secure multi-party computa-
tion. Foundations and Trends® in Privacy and Security,
2(2-3), 2017.

[24] Matthew Franklin and Moti Yung. Communication com-
plexity of secure computation (extended abstract). In
Proceedings of the Twenty-Fourth Annual ACM Sympo-
sium on Theory of Computing, STOC ’92, page 699–710,
New York, NY, USA, 1992. Association for Computing
Machinery.

[25] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and
Yoshua Bengio. Deep learning, volume 1. MIT press
Cambridge, 2016.

[26] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-
Cruz. Deep models under the gan: Information leakage
from collaborative deep learning. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’17, page 603–618, New
York, NY, USA, 2017. Association for Computing Ma-
chinery.

[27] Bargav Jayaraman, Lingxiao Wang, David Evans, and
Quanquan Gu. Distributed learning without distress:
Privacy-preserving empirical risk minimization. In
Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Gar-
nett, editors, Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8,
2018, Montréal, Canada, pages 6346–6357, 2018.

[28] Bargav Jayaraman, Lingxiao Wang, Katherine Knip-
meyer, Quanquan Gu, and David Evans. Revisit-
ing membership inference under realistic assumptions,
2020.

[29] Peter Kairouz, Ziyu Liu, and Thomas Steinke. The
distributed discrete gaussian mechanism for federated
learning with secure aggregation. arXiv preprint
arXiv:2102.06387, 2021.

[30] Peter Kairouz, H Brendan McMahan, Brendan Avent,
Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Keith Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, et al. Advances and open problems
in federated learning. arXiv preprint arXiv:1912.04977,
2019.

[31] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and
William J. Dally. Deep gradient compression: Reducing
the communication bandwidth for distributed training.
CoRR, abs/1712.01887, 2017.

[32] Ilya Mironov. Rényi differential privacy. In 2017 IEEE
30th Computer Security Foundations Symposium (CSF),
pages 263–275. IEEE, 2017.

[33] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil
Vadhan. Computational differential privacy. In Shai
Halevi, editor, Advances in Cryptology - CRYPTO 2009,
pages 126–142, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

[34] Mohammad Naseri, Jamie Hayes, and Emiliano De
Cristofaro. Toward robustness and privacy in federated
learning: Experimenting with local and central differen-
tial privacy. ArXiv, abs/2009.03561, 2020.

[35] Chris Peikert. Public-key cryptosystems from the worst-
case shortest vector problem: extended abstract. In
STOC’09—Proceedings of the 2009 ACM International
Symposium on Theory of Computing, pages 333–342.
ACM, New York, 2009.

[36] Oded Regev. On lattices, learning with errors, random
linear codes, and cryptography. In STOC’05: Proceed-
ings of the 37th Annual ACM Symposium on Theory of
Computing, pages 84–93. ACM, New York, 2005.

[37] Edo Roth, Daniel Noble, Brett Hemenway Falk, and An-
dreas Haeberlen. Honeycrisp: large-scale differentially
private aggregation without a trusted core. In Proceed-
ings of the 27th ACM Symposium on Operating Systems
Principles, pages 196–210, 2019.

[38] Edo Roth, Hengchu Zhang, Andreas Haeberlen, and
Benjamin C Pierce. Orchard: Differentially private ana-
lytics at scale. In 14th USENIX Symposium on Operat-
ing Systems Design and Implementation ({OSDI} 20),
pages 1065–1081, 2020.

[39] Amrita Roy Chowdhury, Chenghong Wang, Xi He, Ash-
win Machanavajjhala, and Somesh Jha. Cryptε: Crypto-
assisted differential privacy on untrusted servers. In
Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, pages 603–619,
2020.

[40] Sinem Sav, Apostolos Pyrgelis, Juan Ramón Troncoso-
Pastoriza, David Froelicher, Jean-Philippe Bossuat,
Joao Sa Sousa, and Jean-Pierre Hubaux. Poseidon:
Privacy-preserving federated neural network learning.
In 28th Annual Network and Distributed System Secu-
rity Symposium, NDSS 2021, virtually, February 21-25,
2021. The Internet Society, 2021.

[41] Adi Shamir. How to share a secret. Communications of
the ACM, 22(11):612–613, 1979.

[42] Reza Shokri, Marco Stronati, Congzheng Song, and Vi-
taly Shmatikov. Membership inference attacks against
machine learning models. In 2017 IEEE Symposium on
Security and Privacy (SP), pages 3–18. IEEE, 2017.

[43] Jinhyun So, Başak Güler, and A. Salman Aves-
timehr. Byzantine-resilient secure federated learning.
IEEE Journal on Selected Areas in Communications,
39(7):2168–2181, 2021.

[44] Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and
Ling Liu. Data poisoning attacks against federated learn-
ing systems. CoRR, abs/2007.08432, 2020.

[45] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas
Steinke, Heiko Ludwig, Rui Zhang, and Yi Zhou. A hy-
brid approach to privacy-preserving federated learning.
In Proceedings of the 12th ACM Workshop on Artificial
Intelligence and Security, pages 1–11, 2019.

[46] Stacey Truex, Ling Liu, Ka Ho Chow, Mehmet Emre
Gursoy, and Wenqi Wei. Ldp-fed: Federated learning
with local differential privacy. CoRR, abs/2006.03637,
2020.

[47] Xiao Wang, Samuel Ranellucci, and Jonathan Katz.
Global-scale secure multiparty computation. In Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 39–56, 2017.

[48] Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H.
Yang, Farhad Farokhi, Shi Jin, Tony Q. S. Quek, and
H. Vincent Poor. Federated learning with differential
privacy: Algorithms and performance analysis. IEEE
Transactions on Information Forensics and Security,
15:3454–3469, 2020.

[49] Andrew Chi-Chih Yao. How to generate and exchange
secrets. In 27th Annual Symposium on Foundations of
Computer Science (sfcs 1986), pages 162–167. IEEE,
1986.

[50] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and
Somesh Jha. Privacy risk in machine learning: An-
alyzing the connection to overfitting. In 2018 IEEE
31st Computer Security Foundations Symposium (CSF),
pages 268–282. IEEE, 2018.

[51] Gathen Joachim von zur and Gerhard Jürgen. Modern
Computer algebra. Cambridge University Press, 2013.

A Proof of security

Suppose the ideal functionality of noisy vector addition as
F , an adversary A. Let vi and xi be input and view of client
i respectively. Let xs be the view of the server. n is the LWE
security parameter. Suppose a maliciously secure aggregation
protocol Sagg(X , t). Let V be the output of π.

Let U be the set of clients, and C ⊂U ∪{S} be the set of
corrupt parties.

In the malicious model, we consider dropping out an ad-
versarial behavior without loss of generality.

Suppose the simulator has access to an oracle
IDEAL(t,vu)u∈U\C where:

IDEAL(t,vu)u∈U\C =

{
Σu∈U\Cvu |U \C|> t
⊥ otherwise

Let REALU
π,C = {xi|i ∈C},V .

Theorem 2 There exists a PPT simulator SIM such that for
all t, U, C

REALU
π,C(n, t;vU\C)≡ SIM

U,IDEAL(t,vu)
C (n, t;xC)

Proven through the hybrid argument.

1. This hybrid is a random variable distributed exactly like
REALU

FLDP,C(n, t;vU\C)

2. In this hybrid SIM has access to {xi|i ∈U}. SIM runs the
full protocol and outputs a view of the adversary from
the previous hybrid.

3. In this hybrid, SIM has corrupt parties receive an ABORT
if the server sends a U1 such that t > |U1|.

4. In this hybrid, SIM replaces V with the output of F from
any xC.

5. In this hybrid, SIM generates the ideal inputs of the
corrupt parties using the IDEAL oracle, SIM generates
a set of random inputs VC such that Σi∈Cvi = F(vU)−
IDEAL(t,vu)u∈U\C. The output domain of FLDP is any
vector V ∈ Fm

q and ABORT . SIM can replicate any vec-
tor output using this process. Therefore, this hybrid is
indistinguishable from the previous hybrid.

6. In this hybrid, SIM replaces s, the sum of secret vectors
with a vector of random field elements distributed by χ∗
k. Because s is not used to reconstruct G, and is normally
distributed by χ∗ k, this hybrid is indistinguishable from
the previous hybrid.

7. In this hybrid, SIM replaces H with V +As.

8. In this hybrid, SIM replaces the run of protocol Sagg
with the ideal simulation of Sagg. If Sagg returns ABORT,
SIM returns ABORT. Because Sagg is secure, this hybrid
is indistinguishable from the previous hybrid using each
parties si as input.

9. In this hybrid, SIM replaces the si of each client with a
vector of elements distributed by χ. Because si is typi-
cally distributed by χ and each si is not used to compute
s anymore, this hybrid is indistinguishable from the pre-
vious hybrid.

10. In this hybrid, SIM replaces the bi of each client with
a vector of uniformly distributed field elements in Fm

q .
Given the LWE assumption, bi should be indistinguish-
able from random field elements, so this hybrid is indis-
tinguishable from the previous hybrid from the perspec-
tive of the adversary.

11. In this hybrid, SIM replaces hi of each client with a vec-
tor of uniformly distributed field elements in Fq. By the
definition of one time pad, this hybrid should be indis-
tinguishable from the previous hybrid. Additionally this
hybrid does not use any input from the honest parties
and thus concludes the proof.

After these steps, the simulator no longer needs any input
from the honest clients to simulate Protocol 3, implying that
it is secure in the malicious threat model.

Notably, our malicious threat model subsumes the semi-
honest threat model. Therefore this proof proves security in
that threat model as well. In the case of a semi-honest threat
model, the security of Sagg can also eased to semi-honest.

	Introduction
	Contributions

	Overview
	Background: General Problem Setting
	Efficient Secure Aggregation in the Differential Privacy Setting
	Paper Roadmap

	Differentially Private Federated Learning
	FLDP: Distributed DP SGD
	Security & Privacy Risks of FLDP

	LWE-Based Secure Aggregation
	Background: Learning with Errors
	Background: Multiparty Computation
	LWE-Based Masking of Input Vectors
	Vector Aggregation
	Malicious-Secure Vector Aggregation
	Security Analysis
	LWE parameters

	Encoding and Decoding Gradients
	Malicious Secure FLDP
	Algorithmic Complexity

	Evaluation
	Experiment 1: Masking Scalability
	Experimental Performance

	Experiment 2: Model Accuracy
	MNIST
	CIFAR-10
	Comparison With Centralized Differential Privacy

	Related Work
	Conclusion
	Proof of security

