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ABSTRACT
Through web service technology, distributed applications
can be built in a �exible manner, bringing tremendous power
to applications on the web. However, this �exibility poses
signi�cant challenges to security. In particular, an end user
(be it human or machine) may access a web service directly,
or through a number of intermediaries, while these interme-
diaries may be formed on the �y for a particular task. Tra-
ditional access control for distributed systems is not �exible
and e�cient enough in such an environment. Indeed, it may
be impossible for a web service to anticipate all possible ac-
cess patterns, hence to de�ne an appropriate access control
list beforehand. Novel solutions are needed.
This paper introduces a trust-but-verify framework for

web services authorization, and provides an implementation
example. In the trust-but-verify framework, each web ser-
vice maintains authorization policies. In addition, there is a
global set of �trust transformation� rules, each of which has
an associated transformation condition. These trust trans-
formation rules convert complicated access patterns into sim-
pler ones, and the transformation is done by a requester (the
original requester or an intermediary) with the assumption
that the requester can be trusted to correctly omit certain
details. To verify authorization, the requester is required
to document evidence that the associated transformation
conditions are satis�ed. Such evidence and support infor-
mation can either be checked before access is granted, or
can be veri�ed after the fact in an o�ine mode, possibly by
an independent third party.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General�
Security and protection

General Terms
Security, Design, Performance
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1. INTRODUCTION
Web services promise a new era of �exibility and power

for web applications. However, this power also promises
security challenges for web service providers, especially re-
garding access control, a.k.a. authorization. In particular,
an end user, either human or machine, may access a web
service through a number of intermediary web services, pos-
sibly formed on the �y for the task, so that access control
is not so simple as validating authorization for the invoker.
Additionally, due to the pluralistic and volatile nature of
the web, most web services cannot expect to anticipate all
access patterns, or have foreknowledge of all possible user
identities, so specifying access control policies via an access
control list in the usual manner is unrealistic.
Furthermore, not only does the complexity of authoriza-

tion in web services pose a basic theoretical problem, but
also a practical one, since robust security solutions can be
too costly for online checks, especially for high-volume web
services that are expected to function much like RPC/RMI
for applications� that is, expeditiously.
Consider a vendor that accepts credit card payments. The

vendor needs to access the card-issuing bank to check the
credit card information and obtain payment con�rmation;
this involves a distributed authorization problem. Strictly
speaking, the bank should allow a vendor to charge a card
holder only when the card holder authorizes the vendor to
do so. Current practice, however, is for the bank to allow
vendors access to its automated services without much proof
that the card holder actually initiated the transaction. The
reason for this is that (1) the actual veri�cation is costly
if done for each transaction, and (2) more importantly, it's
in any reputable vendor's best interest to be a good �citi-
zen�, hence problems occur only rarely. In case of disputes,
the bank can investigate the involved vendors and verify
any questionable charges, possibly revising its assumptions
about who is to be trusted in case a cheat is discovered. The
bank can also request a general audit of vendors. From a
vendor perspective, appropriate records should be kept in
case of a dispute or an audit.
We call this approach a trust-but-verify authorization so-

lution: in the online phase, vendors are trusted to a certain
degree, but o�ine, the option to verify this trust can be
pursued. We propose that a trust-but-verify approach is
appropriate for web services security in general. Further-



A, B, C, . . . ∈ Atom atomic principals
P ::= A | P ∧ P | P ∨ P | P |P principals
p ∈ Prop primitive propositions
s ::= p | ¬s | s ∧ s | P ⇒ P | P says s formulae

Figure 1: ABLP Syntax

more, we argue that the relation between trust and veri�ca-
tion should be meaningful� that is, what is checked o�ine
should provably verify what is implicitly trusted online. To
this end, we specify a formal framework for characterizing
trust-but-verify systems, that requires any implementation
to provide a trust transformation formalizing the relation
between online and o�ine checking. This also allows a pre-
cise characterization of auditing. Returning to the above
example, we can de�ne a trust transformation that converts
the request �card holder H requests charge on his card A�
into �charge card A�; thus, the transformation always takes
for granted that the request originates from the card-holder.
This trust transformation also serves as the starting point
for auditing; veri�cation requires the vendor to deliver proof
that the card holder did in fact make the request.
We establish a formal setting for our web service autho-

rization framework in the Calculus of Access Control [2],
which we call ABLP logic following previous references in
the literature. The use of an access control logic for frame-
work speci�cation and system design is fundamental to our
proposal, and we argue that this approach promotes unam-
biguous speci�cation languages, reliability, and veri�ability.
Furthermore, as this presentation intends to describe and
characterize our architecture, ABLP is at an appealing level
of abstraction, allowing understandability and expressive-
ness in the high-level characterization presented here, but
leaving �exibility for low-level implementation details in fu-
ture work.
The contribution of this paper is to introduce the trust-

but-verify framework for access control in web service en-
vironments, and formalize the framework conditions within
ABLP logic. By characterizing the system within an autho-
rization logic, we also propose rigorous logical foundation
for authorization in web service environments.

1.1 Overview of the Paper
In Sect. 2, we provide a brief review of ABLP logic. In

Sect. 3, we discuss and formalize the conditions that char-
acterize the trust-but-verify framework in ABLP. In Sect. 4,
we give an example of a particular trust-but-verify system,
illustrating its adherence to framework conditions, and show
how a transaction would be authorized and audited in the
system. We conclude with remarks about related and future
work in Sect. 5.

2. ABLP LOGIC
In this section we give a brief review of ABLP logic, focus-

ing on those elements of the theory that are most relevant
to this paper. For a thorough description and metatheory
of the logic the reader is referred to [2].

2.1 Syntax of Principals and Formulae
The syntax of ABLP principals, constituting identities

s1 ∨ s2 , ¬(¬s1 ∧ ¬s2) s1 ⊃ s2 , ¬s1 ∨ (s1 ∧ s2)

A as R , A|R A controls s , (A says S) ⊃ S

Figure 2: ABLP Formulae Abbreviations

in distributed communications, and formulae, representing
statements and beliefs, is de�ned in Fig. 1. Regarding prin-
ciples, we will mostly be concerned with atomic principles
A and principles P |Q, pronounced �P quoting Q�.
Statements P says s generally represent that an assertion

s has originated with a principal P . The relation P ⇒
Q, pronounced �P speaks for Q�, denotes that statements
uttered by P can also be attributed to Q; this is clari�ed in
Sect. 2.3, which describes the derivation rules for the system.

2.2 Abbreviations and Notational Conventions
We assume that all principals can perform digital signa-

tures. We let K range over public keys as principals, and
always write KA to denote the public keys of A, and K−1

A

the matching private key. The formula K says s represents
the formula s encrypted under K.
A number of useful abbreviations are de�ned in Fig. 2.

Along with macros for standard logical connectives, these
include A as R, denoting the principal obtained when A as-
sumes the role R, and A controls s, denoting that A is di-
rectly authorized for s. See [2] for a complete explanation
of these abbreviations.

2.3 Proof Theory
We write ` s to denote that a formulae s is logically deriv-

able, on the basis of the axioms and inference rules of the
theory. A selection of the ABLP inference rules, connecting
the calculus of principals to the underlying propositional
logic, is given in Fig. 3, speci�cally those which will be rele-
vant to our presentation. We note that the rule names given
are of our own devise, for easy reference in the remaining
presentation. Also for convenience, we write s ` s′ i� s′ is
derivable given assumption s.
Here is an example showing how the logic can be used to

model and reason about statements signed by digital signa-
tures associated with particular principals.

Example 2.1. We trust that private keys remain indeed
private, so that messages signed with KJ carry the authority
of J :

KJ ⇒ J

Thus, if any statement s is ever signed with Js private key:

KJ says s



Taut
s is a tautology of propositional logic

` s

Modus Ponens
` s′ ` s′ ⊃ s

` s

Subtext
` A says (s ⊃ s′) ⊃ (A says s ⊃ A says s′)

Parrot
` s

` A says s

Quote
` (B|A) says s ≡ B says A says s

Speaksfor
` (A ⇒ B) ⊃ ((A says s) ⊃ (B says s))

Figure 3: Selected ABLP Inference Rules

By rule Speaksfor:

(KJ ⇒ J) ⊃ (KJ says s ⊃ J says s)

hence by two applications of Modus Ponens we have:

J says s

That is, any signed message can be taken as a statement of
the owner of the signature key.

2.4 Access Control Lists
Access control lists (ACLs) are fundamental to access con-

trol systems, providing an explicit association of principals
with the privileges for which they're authorized. In the orig-
inal presentation of ABLP [2], ACLs are conjunctions of
statements of the form P controls s, where s is some privi-
lege. We adapt this approach, letting A range over ACLs.
Furthermore, we designate a subset of Prop as the set of
privileges in the system, letting priv range over this set.
Hence, ACLs are conjunctions of statements P controls priv.
Our justi�cation for designating atomic propositions as priv-
ileges, and our use thereof, is discussed in Sect. 3.1 in more
detail.

3. FRAMEWORK DEFINITIONS
Prior to the speci�cs of system design, the trust-but-verify

framework can be precisely characterized as a set of condi-
tions that any implementation must satisfy. In this section,
we motivate and describe these conditions, which are stated
at a su�ciently high level to allow �exibility in lower-level
system design, but are mathematically rigorous.

3.1 Authorization Contexts and Decisions
Web services authorization is based on requests for the

service made by invokers. Here we describe our proposed
structure for these requests, and for the authorization deci-
sion predicated on them.
A request is an ABLP assertion s uttered by the invoker

of a web service, which the invoker intends to be used by the
web service for authorization of its use. In addition to the
request, a web service may possess other facts and beliefs,
e.g. ACLs and role certi�cations, that a�ect the authoriza-
tion judgement; we assume that these facts and beliefs are
expressed as ABLP formulae. The conjunction of these com-
ponents constitutes an authorization context ; authorization
for a web service is granted upon a particular invocation i�
the context of the invocation allows the privilege required
for use of the web service to be derived in the ABLP proof
theory.
As mentioned in Sect. 2, we posit a set of atomic formu-

lae priv, each of which represent the privilege required to
access a particular web service. Authorization for priv in a

context s is e�ected by checking validity of s ` priv. Thus,
our system is inspired by access control mechanisms such as
stack inspection [20], which are specialized for program pro-
cedure calls, rather than challenge/response systems such as
[5], which are adapted to human usage (i.e. web browsing)
patterns. Our justi�cation for this is that web service invo-
cation bears a strong similarity to RPC/RMI, as observed
in [11, 6], with chains of web service invocations resembling
call stacks.
Here is a brief example illustrating the concepts of the

framework described thus far:

Example 3.1. Suppose some web service WS requires the
privilege priv to be used, and the web service ACL A grants
this privilege to a principal D, i.e. A ≡ A′∧D controls priv
for some A′. Suppose also that D invokes WS on its own
behalf, making the request D says priv. Thus, the autho-
rization context is D says priv∧A. Clearly, D says priv∧
A ` priv, since the context implies both ` D says priv and
` D controls priv, which implies ` priv by Modus Po-
nens.

Naturally, it is desirable for authorization judgements to
be decidable. Although ABLP logic is undecidable in gen-
eral, various presentations have described non-trivial, de-
cidable access control mechanisms [19, 5, 2]. Therefore, it
is realistic to make this a formal condition of the trust-but-
verify framework:

Condition 1. Let s be an authorization context; then va-
lidity of s ` priv is decidable.

This condition requires any trust-but-verify implementation
to provide a decision procedure for validity of authoriza-
tion judgements, and also implicitly requires the form of
authorization contexts to be well-de�ned. As with all the
framework conditions, the formal statement of the condi-
tion allows correctness of a decision procedure to be prov-
able, i.e. implementations can (and should) be accompanied
with proofs of their adherence to framework conditions.

3.2 Trust Transformations
The distinguishing characteristic of our proposal is the

separation of online and o�ine checking phases, where in
the online phase certain elements of authorization are taken
for granted, or trusted to hold. This yields a simpler au-
thorization decision, which can be veri�ed more rigorously
during the o�ine phase. However, with security at stake,
vague accounts of the relation between these phases does
not su�ce� rather, we desire a formal relationship, so that
o�ine veri�cation of online authorization is meaningful. We
embody this notion in the trust transformation, which speci-
�es what elements of online authorization are to be taken for



granted, by specifying how to transform untrusted requests
into trusted ones.
A trust transformation is a function from ABLP formulae

to ABLP formulae. Any trust transformation's domain is
formulae in extrapolated form, which take into account all
components of access control, down to every detail veri�ed
during o�ine checking. The range of any trust transfor-
mation is formulae in trusted form, which are the �watered
down� formulae that exclude restrictions the system takes
for granted during online checking. The trust transforma-
tion mapping rigorously de�nes the relation between extrap-
olated and trusted forms. Since notions of trust can vary
depending on the system, we specify the type and necessary
preconditions of trust transformations, but the de�nition of
the function itself is left up to a particular system designer.
For any extrapolated formula s, we denote its trust trans-
formation as JsK. Any trust-but-verify implementation must
de�ne extrapolated and trusted authorization forms, and
the trust transformation between them, with the require-
ment that it be a total function on the set of extrapolated
statements. Also, we specify that the authorization contexts
mentioned in Condition 1 are in trusted form.

Example 3.2. Suppose access control for a web service
WS is based on requests made in both signed and unsigned
form, so that all requests are of the form:

B says s ∧KB says s

Suppose further that in the online component, players are
trusted to communicate messages faithfully, and signatures
are not checked. All authorization contexts include an ACL
A, which is left unchanged by the trust transformation. Thus,
for all B and s, the trust transformation is de�ned as:

JB says s ∧KB says s ∧ AK = B says s ∧ A
Note that this transformation is total for the extrapolated
form of requests in this example.

3.3 Auditing
While online checking takes trust into account, the pur-

pose of o�ine checking is to verify that this trust is war-
ranted. As the trust transformation injects trust into au-
thorization, o�ine checking inverts the trust transformation,
to verify online trust in the o�ine phase� that is, given a
trusted request s, o�ine checking searches for an extrapo-
lated request of which s is the trust transform. We call this
process auditing, and require that any trust-but-verify im-
plementation provide a function audit that given any trust-
transformed context s, retrieves its extrapolated form.
The details of auditing constitute a signi�cant engineering

element of any trust-but-verify system. As will be exempli-
�ed in Sect. 4, we expect that certain elements of extrap-
olated statements will be logged for later o�ine retrieval
during auditing, but what elements, and how and where
they are logged and retrieve, is at a much lower level of de-
tail than we're concerned with here. But at the abstract
level we are concerned with, we can characterize the formal
requirements of auditing.
Firstly, as mentioned above, audit returns the extrapo-

lated form of trusted authorization contexts. Since the trust
transformation has been de�ned formally, we can precisely
characterize this condition as follows:

Condition 2. Let s be a trusted context; then if audit(s)
succeeds, audit(s) ` s′ such that Js′K = s.

Note that this condition allows a certain degree of �exibility,
in that audit must return a statement that is at least as
strong as an extrapolated form of the input, not necessarily
an extrapolated form per se.
Furthermore, we say an extrapolated form, since it is pos-

sible that any given trust transformation is many-to-one.
Signi�cantly, it is not even necessary that an extrapolated
form of an authorized statement be authorized. However,
since auditing seeks to verify trust implicit in an online
check, we require that auditing not only return an extrapo-
lated form of input statements, but one that is also autho-
rized for the privilege in question; otherwise, auditing fails.
This motivates the third condition of our framework:

Condition 3. Let s be a trusted context and priv be a
privilege. If s ` priv holds, then so does audit(s) ` priv.

It is important to note that this condition does not neces-
sarily require theorem proving on extrapolated forms, but
rather provability should follow by adherence to this con-
dition generally. This point is revisited in more detail in
Sect. 4.6. Here is an example that illustrates an auditing
technique satisfying the speci�ed conditions:

Example 3.3. Given both the online and o�ine check-
ing scheme, as well as the trust transformation de�ned in
Example 3.2, we de�ne audit as follows. First, we assume
that while trust transformations discard the signed portion
of requests for online checking, the signed portion is actu-
ally saved (logged) as part of the implementation. Auditing
of any request B says priv will then retrieve the signed por-
tion of the original request discarded by the trust transfor-
mation, and verify that it is of the form KB says priv by
decrypting it, yielding the extrapolated context B says priv∧
KB says priv ∧ A as the result of auditing.

Clearly, this example is vague with regard to how signed por-
tions of requests are saved and retrieved. While these details
are naturally addressed in implementations, we revisit this
issue with some general suggestions for implementations in
Sect. 4.

4. AN IMPLEMENTATION EXAMPLE
To illustrate our ideas, we now describe an example sce-

nario with some implementation details. The example con-
sists of a transaction involving a user, a target web service,
and an intermediary web service. While this example is
mainly intended to clarify the proposals of the previous sec-
tion, we also make some substantive suggestions for trust-
but-verify implementations in general, particularly advocacy
of role keys, carrier authority, and logging.

4.1 Individuals
Many concrete entities take part in web service transac-

tions; machines, users, applications, web services, domains,
etc. A complete treatment would consider all possible play-
ers, since for example the same application run by the same
user on two di�erent machines might inspire di�erent levels
of trust, depending on the status of the machines. However,
for the purposes of simplicity in this presentation, we will
assume the existence of only two sorts of concrete entities



in web service transactions, users and web services, termed
individuals taken together.
We also assume given �nite, disjoint set of available prin-

cipal identi�ers for user and web services, respectively, and
let J range over the former, and WS the latter. Further-
more, we will assume that these names have some known
and decidable format, allowing automatic determination of
whether a given individual is a user or a web service.

Example 4.1. We posit the following individuals: Joe is
a user, and WSM is an intermediary web service providing
service to users, part of a system that includes access to
a centralized medical database web service WSMDB (to be
continued...)

4.2 Roles
As in many other systems, roles are an important com-

ponent of our authorization scheme. In particular, due to
the inherently volatile and popular nature of the web, web
services cannot in general be expected to know the names of
every possible invoker a priori ; thus, authorization for priv-
ileges will be granted to known roles, and individuals must
prove that they may assume claimed roles.
Furthermore, the same characteristics that inspire the use

of roles for authorization, imply that role membership should
not be established via explicit role membership lists. Rather,
we posit that every known role R is associated with a key
KR, and the ability to sign messages with KR (that is, proof
of possession of the associated private key) is su�cient to es-
tablish role membership. Thus, we introduce the axiom:

RoleKey
` KR controls (P ⇒ R)

So for example, if an individual A wishes to legitimately
assume a role R, it could make the statement KR says (A ⇒
R); this and the assumed authority of role keys imply A ⇒
R.
Membership in roles is established by role certi�cates, the

grammar for which is given in Fig. 4. They are conjunctions
of role certi�cations, with true the empty certi�cate.

Example 4.1. (Continued) In our transaction example,
we assume that Joe can take on the role of a doctor (denoted
D). This means that Joe is capable of signing his requests
using KD. We assume a �trusted medical web services� role,
denoted M , and that WSM can take on role M . We also
assume that the web service WSMDB will authorize doctors
to use WSMDB. Hence, we have:

D controls privMDB

is in AMDB. Note that we do not assume role M has access
to WSMDB. Role M will be used to �carry� doctor's requests,
as de�ned below.

4.3 Carrier Authority
In any access control statement P controls priv, it is not

necessary for P to be atomic, allowing a �ne-grained ap-
proach to access control. For example, if it is not desirable
to grant a role R direct access to priv, but only on behalf
of a principal D, the ACL can specify R|D controls priv,
disallowing R direct access to priv.
However, we're concerned with access control decisions

in the presence of multiple intermediaries� that is, several
intervening nodes may transport an authorization request

from source to target. The above scheme would require sep-
arate entries for every possible chain of intermediaries; for
example, given statements:

R1 says R2 says D says priv

R2 says R1 says D says priv

authorization for both would require both of the following
statements to be present in the relevant ACL:

R1|R2|D controls priv

R2|R1|D controls priv

Either that, or it would require access statements:
R1|D controls priv

R2|D controls priv

to be present, along with known relations R1 ⇒ R2 and
R2 ⇒ R1. The former solution is clearly cumbersome, un-
realistically so given the number of possible intermediaries
on the web. The latter is better, but is restrictive, requir-
ing every intermediary to adopt the same role as, or a more
powerful role than, its predecessor (although this problem
could be alleviated by adapting the �speaks for regarding�
relation proposed in [8] as an extension to ABLP). Since
the only privilege at issue is priv, it is intuitively su�cient
for each intermediary to have some sort of authorization for
priv, as in e.g. stack inspection [20].
However, unlike stack inspection, web service intermedi-

aries should often not be granted direct access to privileges�
for example, a web service should not be granted direct ac-
cess to withdraw cash from an individual's bank account,
but only on behalf of that individual. To maintain this prop-
erty, and to overcome the drawbacks of the approaches de-
scribed in the previous paragraph, we introduce the notion
of a carrier authority. Intuitively, a carrier authority is the
authority to carry an authorization request for a particular
principal, but not the authority to make the request itself.
Formally:
R carries priv for D , (R|D says priv) ⊃ (D says priv)

In the above example, access requires the carrier author-
ities R1 carries priv for D and R2 carries priv for D, as
well as the direct authority D controls priv. In general,
carrier authority allows a �ne-grained and �exible approach
to authorization in the context of web services. We call con-
junction of carrier authority statements carrier control lists
(CCLs), which we denote C.
Example 4.1. (Continued) In our transaction example,

M is not directly authorized for privMDB, but it should be
possible for trusted medical web services to carry this privi-
lege for doctors, hence WSMDB de�nes a carrier control list
CMDB that includes:

M carries privMDB for D

4.4 Extrapolated Statements
At a high level, we assume that extrapolated contexts

possess the following characteristics:
1. All requests are made by individuals in a particular

role.

2. All requests are signed by the requesting individual, to
establish its authenticity (both on and o�ine).



R ::= KR says (A ⇒ R) ∧R | true role certi�cates
req ::= KWS says R says req | KJ says R says priv extrapolated requests

ŝ ::= KWS says R says ι | KJ as R says priv | ŝ ∧R indexed statements

Figure 4: Components of Authorization Requests

Jreq ∧R ∧ C ∧ AK = JreqK ∧ C ∧ A

JKJ says R says privK = R says priv

JKWS says R says reqK = R says JreqK

Figure 5: A Trust Transformation

3. All requests are accompanied by role certi�cates, to
establish the relevant individual's role membership.

Characteristics (1) and (2) together determine the form of
extrapolated statements speci�ed in Fig. 4. Characteristic
(3) implies that extrapolated authorization contexts will in-
clude role certi�cates, along with requests, ACLs, and CCLs.
Hence, extrapolated authorization contexts are statements
of the form:

req ∧R ∧ C ∧ A

Example 4.1. (Continued) Joe, a doctor, wishes to use
a medical web service WSM to diagnose a patient, which in
turn invokes WSMDB for the patient's medical history. To
initialize the appropriate role memberships and authoriza-
tions, Joe's request, in extrapolated form, is:

KJ says D says privMDB ∧KD says J ⇒ D

This means that Joe (J), speaking as a doctor, wants to
access privMDB, and Joe (J) establishes that he can take
the role of doctor (D).

4.5 Trust Transformation
The extrapolated context described above uses encryption

to determine authenticity of statements, but at signi�cant
cost. Messaging can become quite complex, even in our sim-
pli�ed model, motivating a more e�cient online checking
technique, wherein many elements of extrapolated checking
are �trusted away�. Thus, we make the following the follow-
ing simpli�cations for more e�cient online checking:

1. Individuals are trusted to make valid claims about role
membership.

2. Authenticity of requests is assumed for any interme-
diary; for example, if the request R1 says R2 says s is
received, then we trust that R1 truly said �R2 says s�
and R2 truly said �s�.

In practice, these assumptions are clearly too simplistic, in
that they allow any web service invoker to assume any role
membership. Some justi�cation for that claim should be
provided, e.g. a role key signature on the �top-level� of the
request, so that instead of R1 says R2 says s, the signed

request KR1 says R2 says s would be communicated. How-
ever, for the purposes of this example we will set this issue
aside.
We formalize these trust assumptions via the trust trans-

formation de�ned in Fig. 5. Note that the transformation
eliminates role certi�cations and private key signatures for
individuals, leaving just trusted role statements. We assert
that authorization for trusted contexts is decidable (and ef-
�cient), satisfying Condition 1:

Lemma 1. Let s be an extrapolated context; then for all
priv, validity of JsK ` priv is decidable.

The result follows thanks to the similarity of the current
authorization scheme with stack inspection; a decision pro-
cedure is easily de�ned as a modi�cation of that given in
[18].

Example 4.1. (Continued) By the trust transformation
rules in Fig. 5, we have:

JKJ says D says privMDB ∧KD says J ⇒ DK
=

JKJ says D says privMDBK
=

D says privMDB

That is, Joe will simply send D says privMDB to WSMDB.
Upon receiving Joe's request, WSM composes the extrapo-
lated statement s1 ∧ s2, where:

s1 , KWSM says M says D says privMDB

s2 , KM says WSM ⇒ M

Using the same trust transformation, we have:
JsK = Js1K = M says D says privMDB

Hence, WSM will simply send:
M says D says privMDB

to WSMDB.

4.6 Logging and Auditing
For auditing, it is necessary to reconstruct the signed

statements and role certi�cates of extrapolated forms. In
general, we imagine that auditing will be driven by the log-
ging of signed statements and certi�cates in the online stage;
although they're not used in online checking, they're saved
and retrieved for o�ine veri�cation. The details constitute
a signi�cant engineering problem and are beyond the scope
of this paper.
Firstly, assuming that signed statements and signatures

are logged, who exactly does the logging is another ques-
tion. For example, everyone could be required to log their
own statements, or the request statements they receive, or
the source or target machine could be required to log all rel-
evant statements, or perhaps a distinguished machine could



aud(R says priv, ι) = let ŝ ∧R = lookup(ι) in
assert(R = KR says J ⇒ R) for
assert(ŝ = KJ says R says priv) for
ŝ ∧R

aud(R says s, ι) = let ŝ ∧R = lookup(ι) in
assert(R = KR says J ⇒ R) for
assert(ŝ = KJ says R says ι′) for
let s′ ∧R′ = aud(s, ι′) in
(KJ says R says s′) ∧ (R∧R′)

Figure 6: An Auditing Technique

be established as a log server, etc. We propose a model
wherein these details are abstract; we posit log locations ι,
and a lookup function that, given a location ι, returns the
statements and certi�cates at that location. The concrete
form and de�nition of locations ι and lookup, as well as
logging conventions, determine the particulars for a given
implementation.
Furthermore, noting that requests are single statements

involving possibly multiple intermediaries, to obtain maxi-
mal �exibility in logging we would like the ability to �break
up� statements into those parts made by each intermedi-
ary, in case each is independently responsible for logging.
Thus, rather than statements such as KWS says R says s,
we introduce indexed statements as de�ned in Fig. 4, allow-
ing auditing to �follow the trail� to reconstruct extrapolated
statements from multiple log locations.
Thus, given these de�nitions, we impose the following dis-

cipline:
1. If a user J wishes to make a request for a privilege priv

in role R when invoking web service WS, the statement
R says priv will be sent to WS, and the statement:

(KJ says R says priv) ∧ (KR says J ⇒ R)

will be logged at a fresh location ι; this location will
be determined by or communicated to WS.

2. If a web service WS wishes to propagate a request s
to a web service WS′ in role R, and the log location
associated with s is ι, then WS sends the statement
R says s to WS′, and the indexed statement:

(KWS says R says ι) ∧ (KR says WS⇒ R)

will be logged at a fresh location ι′; this location will
be determined by or communicated to WS′.

If a web service WS receives a request s, with associated
log location ι, online checking will be done with respect s,
which is in trusted form. Auditing will use s together with
location ι to reconstruct the extrapolated form of s; in par-
ticular, given such s and ι, in a security context containing
ACL A and CCL C, we de�ne:

audit(s ∧ C ∧ A) = aud(s, ι) ∧ C ∧ A
where aud is de�ned as in Fig. 6. In the de�nition of aud,
the function assert(P ) blocks execution i� the predicate P
is not valid. Therefore, aud reconstructs an authorized ex-
trapolated statement from an authorized trusted contexts,
and logged indexed statements, satisfying Condition 2; the
result follows by induction on the trusted request:

Lemma 2. Suppose s is a trusted context, and audit(s)
returns s′; then Js′K = s.

Furthermore, aud fails if it cannot reconstruct an extrapo-
lated statement that is not authorized for the relevant priv-
ilege. Note that this property is implicit in the de�nition
of aud; it is not necessary to actually perform automated
ABLP theorem proving on the extrapolated statement:

Lemma 3. Suppose s is a trusted context, s ` priv is
valid, and audit(s) returns s′; then s′ ` priv is valid.

The key to this result is to note that audit(s) ` s, since aud
only reconstructs valid role certi�cations and signed state-
ments, via the assertions embedded in its de�nition.

Example 4.1. (continued) We assume that the transac-
tion involving Joe, WSM and WSMDB adhere to the trust
transformation and logging discipline described above. Let
s = M says D says privMDB. Now, it is clearly the case
that:

s ∧ CMDB ∧ AMDB ` priv

so online checking succeeds. Furthermore, if WSMDB audits
this statement, it will obtain:

audit(s ∧ CMDB ∧ AMDB)

=

(KWSM says M says KJ says D says privMDB)
∧ (KD says J ⇒ D) ∧ (KM says WSM ⇒ M)
∧ CMDB ∧ AMDB

and we note that Jaudit(s)K = s ∧ CMDB ∧ AMDB, and
audit(s) ` priv, as indicated by Lemma 2 and Lemma 3.

5. DISCUSSION
In this section we conclude with observations about re-

lated work, remarks on directions for future work, and a
brief summary of the main points of the paper.

5.1 Related Work
Our system is a novel web services application of an idea

that has been explored in other settings, namely previous au-
thorization frameworks based on ABLP logic. Most closely
related in this regard is proof carrying carrying authoriza-
tion (PCA) [4, 3], a framework for specifying and enforcing
webpage access policies (though the logic used there is not
ABLP, but an application speci�c variant). However, that
system comprises a general framework for webpage access



control, so expressible policies are potentially more compli-
cated than those we propose for web services. Furthermore,
there is no distinction between online and o�ine checking
in that framework as currently conceived, though our trust-
but-verify approach could be adapted to it.
Other authorization systems founded in ABLP logic in-

clude that used in the Taos operating system [21], essentially
a direct implementation of a subset of ABLP logic. Also,
Wallach et al. have formalized the �security-passing style�
of the Java stack inspection mechanism in a subset of ABLP
[18, 20], which has served as a foundation for the SAFKASI
programming language-based security architecture [19].
The SDSI/SPKI architecture [8, 16] is another authoriza-

tion system for distributed communication. Their security
model is similar to ABLP, but is based on a system of lo-
cal names and emphasizes delegation. The semantics of
SPKI/SDSI has been shown to be embeddable within ABLP
plus an additional �speaks for regarding� primitive [12, 1], so
the applicability of trust-but-verify to a SDSI/SPKI setting
is suggested by our formulation. Delegation logic [14] and
RT [15] are more recently proposed, logically well-founded
authorization frameworks, based on datalog. No formula-
tions of either SDSI/SPKI, delegation logic, or RT currently
comprise trust-but-verify mechanisms.
In [17], a web services authorization system is de�ned,

allowing speci�cation of security policies in temporal logic,
which are translated into reference monitors embedded in
applications software. However, their approach is focused
on complex policies for usage patterns similar to [3], and
they make no online/o�ine checking phase distinction.
Related work on web services authentication includes an

XML-based logic for web services authentication [6, 10], that
is embedded within the applied Pi-calculus [9], allowing veri-
�cation of web service security protocols via both human and
machine proof techniques. It is likely that their approach
will be relevant to future considerations of web services re-
quest authentication for our model.

5.2 Future Work
We envision a number of possibilities for future work. The

most obvious direction is the development of trust-but-verify
systems at a lower level, including an extension of SOAP
messaging syntax to comprise ABLP formulae, and the de-
tailed formulation of a system architecture for implementa-
tions. On the theoretical front, we also plan to embed our
authorization framework within a richer formalism, such as
that proposed in [10], allowing the semantics of authoriza-
tion to be expressed and veri�ed in a realistic threat model.
In addition to stand alone web services, authorization for

composite web services [7, 13] also promises to be an inter-
esting topic for future work; access control in that setting
presents a number of unique issues for investigation.

5.3 Conclusion
In this paper, we have introduced a trust-but-verify frame-

work for web services. We have used ABLP logic to establish
a formal setting for framework design, and speci�ed the con-
ditions that any trust-but-verify implementation must sat-
isfy. The central ideas we have presented are the separation
of online and o�ine authorization phases, the notion of a
trust transformation that establishes a meaningful relation
between these phases, and a characterization of auditing for
o�ine veri�cation of online checking. We have presented

broad strokes of an example system, and in so doing have
made some suggestions for implementations in general, in-
cluding the use of role key certi�cations and carrier authority
for �exible authorization schemes in an open web environ-
ment.
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