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ABSTRACT
Through web service technology, distributed applications
can be built in an open and �exible manner, bringing tremen-
dous power to applications on the web. However, this �ex-
ibility poses signi�cant challenges to security. Traditional
access control for distributed systems is not �exible and ef-
�cient enough in such an environment; in particular, fully
secure online authorization decisions may be too ine�cient
in practice, requiring simpli�cations which may have only
an informal and unveri�able relation to fully secure autho-
rization decisions.
This paper introduces a trust-but-verify framework for

web services authorization. In this framework, each web ser-
vice maintains the usual access control policies, as well as
a �trust transformation� policy, that formally speci�es how
to simplify full authorization into a more e�cient form for
online checking. This formalization allows certainty that of-
�ine checking veri�es the trust relation between full security
and online checking.

Keywords
Distributed Authorization, Access Control Logic, Web Ser-
vices

1. INTRODUCTION
Web services promise a new era of �exibility and power for

web applications. However, this power also promises secu-
rity challenges for web service providers, especially regarding
access control, aka authorization. In particular, an end user,
either human or machine, may access a web service through
a number of intermediary web services, possibly formed on
the �y for the task, so that access control is not so simple as
validating authorization for the invoker. Additionally, due
to the pluralistic and volatile nature of the web, most web
services cannot expect to anticipate all access patterns, or
have foreknowledge of all possible user identities, so speci-
fying access control policies via an access control list in the
usual manner is unrealistic.
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Furthermore, not only does the complexity of authoriza-
tion in web services pose a basic theoretical problem, but
also a practical one, since robust security solutions can be
too costly for online checks, especially for high-volume web
services that are expected to function much like RPC/RMI
for applications� that is, expeditiously.
Consider a vendor that accepts credit card payments. The

vendor needs to access the card-issuing bank to check the
credit card information and obtain payment con�rmation;
this involves a distributed authorization problem. Strictly
speaking, the bank should allow a vendor to charge a card
holder only when the card holder authorizes the vendor to
do so. Current practice, however, is for the bank to allow
vendors access to its automated services without much proof
that the card holder actually initiated the transaction. The
reason for this is that (1) the actual veri�cation is costly
if done for each transaction, and (2) more importantly, it's
in any reputable vendor's best interest to be a good �citi-
zen�, hence problems occur only rarely. In case of disputes,
the bank can investigate the involved vendors and verify
any questionable charges, possibly revising its assumptions
about who is to be trusted in case a cheat is discovered. The
bank can also request a general audit of vendors. From a
vendor perspective, appropriate records should be kept in
case of a dispute or an audit.
We call this approach a trust-but-verify (TbV) authoriza-

tion solution: in the online phase, vendors are trusted to a
certain degree, but o�ine, the option to verify this trust can
be pursued. We propose that a trust-but-verify approach is
appropriate for web services security in general. Further-
more, we argue that the relation between trust and veri�ca-
tion should be meaningful� that is, what is checked o�ine
should provably verify what is implicitly trusted online. To
this end, we specify a formal framework for characterizing
trust-but-verify systems, that requires any implementation
to provide a trust transformation formalizing the relation
between online and o�ine checking. This also allows a pre-
cise characterization of auditing. Returning to the above
example, we can de�ne a trust transformation that converts
the request �card holder H requests charge on his card A�
into �charge card A�; thus, the transformation always takes
for granted that the request originates from the cardholder.
This trust transformation also serves as the starting point
for auditing; veri�cation requires the vendor to deliver proof
that the card holder did in fact make the request.
We establish a formal setting for our web service autho-

rization framework in the Calculus of Access Control [2],
which we call ABLP logic following previous references in



A, B, C, . . . ∈ Atom atomic principals
P ::= A | P ∧ P | P ∨ P | P |P principals
p ∈ Prop primitive propositions
s ::= p | ¬s | s ∧ s | P ⇒ P | P says s formulae

Figure 1: ABLP Syntax

s1 ∨ s2 , ¬(¬s1 ∧ ¬s2) s1 ⊃ s2 , ¬s1 ∨ (s1 ∧ s2)

A as R , A|R A controls s , (A says S) ⊃ S

Figure 2: ABLP Formulae Abbreviations

the literature. The use of an access control logic for frame-
work speci�cation and system design is fundamental to our
proposal, and we argue that this approach promotes unam-
biguous speci�cation languages, reliability, and veri�ability.
Furthermore, as this presentation intends to describe and
characterize our architecture, ABLP is at an appealing level
of abstraction, allowing understandability and expressive-
ness in the high-level characterization presented here, but
leaving �exibility for low-level implementation details in fu-
ture work.
The contributions of this paper include an overview and

formal characterization of the TbV framework, as well the
de�nition of lower-level implementation details such as an
XML wire format for ABLP assertions. By formally charac-
terizing the system within an authorization logic, we provide
a rigorous logical foundation for authorization in web service
environments.

1.1 Overview of the Paper
In Sect. 2, we provide a brief review of ABLP logic. In

Sect. 3, we discuss and formalize the conditions that charac-
terize the TbV framework in ABLP. In Sect. 4, we provide
TbV implementation details, by proposing an XML wire for-
mat for ABLP assertions, and by sketching an example TbV
system. This example adheres to framework conditions, and
shows how transactions could be authorized and audited in
the system. We conclude with remarks about related and
future work in Sect. 5.

2. ABLP LOGIC
In this section we give a brief review of ABLP logic, focus-

ing on those elements of the theory that are most relevant
to this paper. For a thorough description and metatheory
of the logic the reader is referred to [2].

2.1 Syntax of Principals and Formulae
The syntax of ABLP principals, constituting identities

in distributed communications, and formulae, representing
statements and beliefs, is de�ned in Fig. 1. Regarding prin-
ciples, we will mostly be concerned with atomic principles
A and principles P |Q, pronounced �P quoting Q�.
Statements P says s generally represent that an assertion

s has originated with a principal P . The relation P ⇒
Q, pronounced �P speaks for Q�, denotes that statements
uttered by P can also be attributed to Q; this is clari�ed in

Sect. 2.3, which describes the derivation rules for the system.

2.2 Abbreviations and Conventions
We assume that all principals can perform digital signa-

tures. We let K range over public keys as ABLP principals,
and write KA to denote the public keys of A, and K−1

A the
matching private key. The formula K says s represents the
formula s encrypted under K.
A number of useful abbreviations are de�ned in Fig. 2.

Along with macros for standard logical connectives, these
include A as R, denoting the principal obtained when A as-
sumes the role R, and A controls s, denoting that A is di-
rectly authorized for s. See [2] for a complete explanation
of these abbreviations.

2.3 Proof Theory
We write ` s to denote that a formulae s is logically deriv-

able, on the basis of the axioms and inference rules of the
theory. A selection of the ABLP inference rules, connecting
the calculus of principals to the underlying propositional
logic, is given in Fig. 3, speci�cally those which will be rele-
vant to our presentation. We note that the rule names given
are of our own devise, for easy reference in the remaining
presentation. Also for convenience, we write s ` s′ i� s′ is
derivable given assumption s.
Here is an example showing how the logic can be used to

model and reason about statements signed by digital signa-
tures associated with particular principals.

Example 2.1. We trust that private keys remain indeed
private, so that messages signed with KJ carry the authority
of J :

KJ ⇒ J

Thus, if any statement s is ever signed with Js private key:

KJ says s

By rule Speaksfor:

(KJ ⇒ J) ⊃ (KJ says s ⊃ J says s)

hence by two applications of Modus Ponens we have:

J says s

That is, any signed message can be taken as a statement of
the owner of the signature key.

2.4 Access Control Lists
Access control lists (ACLs) are fundamental to access con-

trol systems, providing an explicit association of principals
with the privileges for which they're authorized. In the orig-
inal presentation of ABLP [2], ACLs are conjunctions of
statements of the form P controls s, where s is some privi-
lege. We adapt this approach, letting A range over ACLs.
Furthermore, we designate a subset of Prop as the set of



Taut
s is a tautology of propositional logic

` s

Modus Ponens
` s′ ` s′ ⊃ s

` s

Subtext
` A says (s ⊃ s′) ⊃ (A says s ⊃ A says s′)

Parrot
` s

` A says s

Quote

` (B|A) says s ≡ B says A says s
Speaksfor
` (A ⇒ B) ⊃ ((A says s) ⊃ (B says s))

Figure 3: Selected ABLP Inference Rules

privileges in the system, letting priv range over this set.
Hence, ACLs are conjunctions of statements P controls priv.
Our justi�cation for designating atomic propositions as priv-
ileges, and our use thereof, is discussed in Sect. 3.1 in more
detail.

3. FRAMEWORK DEFINITIONS
Prior to the speci�cs of system design, the trust-but-verify

framework can be precisely characterized as a set of condi-
tions that any implementation must satisfy. In this section,
we motivate and describe these conditions, which are stated
at a su�ciently high level to allow �exibility in lower-level
system design, but are mathematically rigorous.

3.1 Authorization Contexts and Decisions
Web services authorization is based on requests for the

service made by invokers. Here we describe our proposed
structure for these requests, and for the authorization deci-
sion predicated on them.
A request is an ABLP assertion s uttered by the invoker

of a web service, which the invoker intends to be used by the
web service for authorization of its use. In addition to the
request, a web service may possess other facts and beliefs,
e.g. ACLs and role certi�cations, that a�ect the authoriza-
tion judgement; we assume that these facts and beliefs are
expressed as ABLP formulae. The conjunction of these com-
ponents constitutes an authorization context ; authorization
for a web service is granted upon a particular invocation i�
the context of the invocation allows the privilege required
for use of the web service to be derived in the ABLP proof
theory.
As mentioned in Sect. 2, we posit a set of atomic formu-

lae priv, each of which represent the privilege required to
access a particular web service. Authorization for priv in a
context s is e�ected by checking validity of s ` priv. Thus,
our system is inspired by access control mechanisms such as
stack inspection [20], which are specialized for program pro-
cedure calls, rather than challenge/response systems such as
[6], which are adapted to human usage (i.e. web browsing)
patterns. Our justi�cation for this is that web service invo-
cation bears a strong similarity to RPC/RMI, as observed
in [14, 7], with chains of web service invocations resembling
call stacks.
Here is a brief example illustrating the concepts of the

framework described thus far:

Example 3.1. Suppose some web service WS requires
the privilege priv to be used, and the web service ACL
A grants this privilege to a principal D, i.e. A ≡ A′ ∧
D controls priv for some A′. Suppose also that D invokes
WS on its own behalf, making the request D says priv.
Thus, the authorization context is D says priv∧A. Clearly,

D says priv ∧ A ` priv, since the context implies both
` D says priv and ` D controls priv, which implies ` priv
by Modus Ponens.

Naturally, it is desirable for authorization judgements to
be decidable. Although ABLP logic is undecidable in gen-
eral, various presentations have described non-trivial, de-
cidable access control mechanisms [19, 6, 2]. Therefore, it
is realistic to make this a formal condition of the trust-but-
verify framework:

Condition 1. Let s be an authorization context; then va-
lidity of s ` priv is decidable.

This condition requires any trust-but-verify implementation
to provide a decision procedure for validity of authoriza-
tion judgements, and also implicitly requires the form of
authorization contexts to be well-de�ned. As with all the
framework conditions, the formal statement of the condi-
tion allows correctness of a decision procedure to be prov-
able, i.e. implementations can (and should) be accompanied
with proofs of their adherence to framework conditions.

3.2 Trust Transformations
The distinguishing characteristic of our proposal is the

separation of online and o�ine checking phases, where in
the online phase certain elements of authorization are taken
for granted, or trusted to hold. This yields a simpler au-
thorization decision, which can be veri�ed more rigorously
during the o�ine phase. However, with security at stake,
vague accounts of the relation between these phases does
not su�ce� rather, we desire a formal relationship, so that
o�ine veri�cation of online authorization is meaningful. We
embody this notion in the trust transformation, which speci-
�es what elements of online authorization are to be taken for
granted, by specifying how to transform untrusted requests
into trusted ones.
A trust transformation is a function from ABLP formulae

to ABLP formulae. Any trust transformation's domain is
formulae in extrapolated form, which take into account all
components of access control, down to every detail veri�ed
during o�ine checking. The range of any trust transfor-
mation is formulae in trusted form, which are the �watered
down� formulae that exclude restrictions the system takes
for granted during online checking. The trust transforma-
tion mapping rigorously de�nes the relation between extrap-
olated and trusted forms. Since notions of trust can vary
depending on the system, we specify the type and necessary
preconditions of trust transformations, but the de�nition of
the function itself is left up to a particular system designer.
For any extrapolated formula s, we denote its trust trans-
formation as JsK. Any trust-but-verify implementation must
de�ne extrapolated and trusted authorization forms, and



the trust transformation between them, with the require-
ment that it be a total function on the set of extrapolated
statements. Also, we specify that the authorization contexts
mentioned in Condition 1 are in trusted form.

Example 3.2. Suppose access control for a web service
WS is based on requests made in both signed and unsigned
form, so that all requests are of the form:

B says s ∧KB says s

Suppose further that in the online component, players are
trusted to communicate messages faithfully, and signatures
are not checked. All authorization contexts include an ACL
A, which is left unchanged by the trust transformation.
Thus, for all B and s, the trust transformation is de�ned
as:

JB says s ∧KB says s ∧ AK = B says s ∧ A

Note that this transformation is total for the extrapolated
form of requests in this example.

3.3 Auditing
While online checking takes trust into account, the pur-

pose of o�ine checking is to verify that this trust is war-
ranted. As the trust transformation injects trust into au-
thorization, o�ine checking inverts the trust transformation,
to verify online trust in the o�ine phase� that is, given a
trusted request s, o�ine checking searches for an extrapo-
lated request of which s is the trust transform. We call this
process auditing, and require that any trust-but-verify im-
plementation provide a function audit that given any trust-
transformed context s, retrieves its extrapolated form.
The details of auditing constitute a signi�cant engineering

element of any trust-but-verify system. As will be exempli-
�ed in Sect. 4, we expect that certain elements of extrap-
olated statements will be logged for later o�ine retrieval
during auditing, but what elements, and how and where
they are logged and retrieve, is at a much lower level of de-
tail than we're concerned with here. But at the abstract
level we are concerned with, we can characterize the formal
requirements of auditing.
Firstly, as mentioned above, audit returns the extrapo-

lated form of trusted authorization contexts. Since the trust
transformation has been de�ned formally, we can precisely
characterize this condition as follows:

Condition 2. Let s be a trusted context; then if audit(s)
succeeds, audit(s) ` s′ such that Js′K = s.

Note that this condition allows a certain degree of �exibility,
in that audit must return a statement that is at least as
strong as an extrapolated form of the input, not necessarily
an extrapolated form per se.
Furthermore, we say an extrapolated form, since it is pos-

sible that any given trust transformation is many-to-one.
Signi�cantly, it is not even necessary that an extrapolated
form of an authorized statement be authorized. However,
since auditing seeks to verify trust implicit in an online
check, we require that auditing not only return an extrapo-
lated form of input statements, but one that is also autho-
rized for the privilege in question; otherwise, auditing fails.
This motivates the third condition of our framework:

Condition 3. Let s be a trusted context and priv be a
privilege. If s ` priv holds, then so does audit(s) ` priv.

It is important to note that this condition does not neces-
sarily require theorem proving on extrapolated forms, but
rather provability should follow by adherence to this con-
dition generally. This point is revisited in more detail in
Sect. 4.2.6. Here is an example that illustrates an auditing
technique satisfying the speci�ed conditions:

Example 3.3. Given both the online and o�ine check-
ing scheme, as well as the trust transformation de�ned in
Example 3.2, we de�ne audit as follows. First, we assume
that while trust transformations discard the signed portion
of requests for online checking, the signed portion is actually
saved (logged) as part of the implementation. Auditing of
any request B says priv will then retrieve the signed por-
tion of the original request discarded by the trust transfor-
mation, and verify that it is of the form KB says priv by de-
crypting it, yielding the extrapolated context B says priv∧
KB says priv ∧ A as the result of auditing.

Clearly, this example is vague with regard to how signed por-
tions of requests are saved and retrieved. While these details
are naturally addressed in implementations, we revisit this
issue with some general suggestions for implementations in
Sect. 4.

4. IMPLEMENTATION
In this section we explore implementation details of a par-

ticular instance of the TbV framework, based on ABLP. We
�rst de�ne an XML wire format for ABLP assertions, that
can be integrated into SOAP messages [8] for standardized
Web Service communication. After that, we investigate an
example TbV architecture and policy setting.

4.1 XML Wire Format
Web service communication is based on SOAP messages

[8], which are XML documents containing a Body element
and possibly a Header element. The Body contains request
information� i.e. the name of the service being invoked, and
values provided as parameters� or response information�
i.e. the result of successful service invocation, or failure in-
formation. The Header contains security and routing in-
formation. To communicate authorization assertions be-
tween intermediaries, an AuthInfo element can be added
as a Security item, so Headers have the form:

<Header>
<Security>

<AuthInfo> . . . </AuthInfo>,
. . .

</Security>
. . .

</Header>

The encoding of ABLP terms in XML for implementation
is complicated by the representation of signed expressions,
i.e. expressions of the form K says s; in the implementation,
these should actually be signed. Therefore, it is necessary
to integrate some cryptographic technique into the represen-
tation. Furthermore, since we assume a Web Service envi-
ronment where interacting parties are possibly unknown to
each other, it is unrealistic to rely on techniques that require
shared secrets. Therefore, we propose to use a public-key
signing technique based on x509 certi�cates.
In more detail, we use a subset of the syntax developed by

Bhargavan et al. [7], speci�ed in Fig. 6. This syntax extends



Tag ::= any legal XML name XML name
a : att ::= Tag=”str” attribute

as : atts ::= a as | ε attribute sequence
i : item ::= Elem | str item

is : items ::= i is | ε item sequence
Elem ::= <Tag as>is< /Tag> element

str : string ::= any legal XML string XML string
base64(x : bytes) Base64-encoding of byte array

x : bytes ::= c14n(i : item) canonical bytes of an item
rsa.sha1(x , k : bytes) public key signature
x509(k : bytes, u : string, a : string, k : bytes) X.509 certi�cate

Figure 4: XML Data Model, with Byte Arrays and Symbolic Cryptography

x1 . . . xn , x1, (. . . (xnε)) for n > 0, x ∈ atts, items

<Tag as >is</> , <Tag as >is</Tag >

<Tag >
i1
...
in

 , <Tag as >i1 . . . in</>

Figure 5: XML Abbreviations

α ::= <Prin>str</> atomic principals

κ ::= <Key>str</> keys-as-principals

ρ ::= α | κ principals

ϕ ::= <Conj>ϕ1 . . . ϕn</>
<Prop>str</>
<Says>α, ϕ</>
<Says>ς, ϕ</>
<Speaksfor>ρ, ρ</>

formulae

ς ::= <CertSig>str , str</> signed formulae

Figure 6: ABLP Wire Format Syntax

a basic XML format with byte arrays. Strings may be of the
format base64(x), which is the base64 encoding of byte ar-
ray x. Byte arrays may either be of the form c14n(i), which
is a standard canonicalization of item i [9], or they may be
of the form rsa.sha1(x, k) which is the public-key encoding
of x under key k, or they may be an x509 certi�cate. The
latter are of the form x509(k1, u, a, k2), where k1 is the sign-
ing key of a certi�cation authority, and u,a, and k2 are the
signed user name, signing algorithm, and user's public key.
We assume the existence of an agreed upon certi�cation au-
thority CA, who issues only one public/private key pair per
user. For any given u, we denote their public key pku, and
their private key sku.
To symbolize decidable deconstruction of x509 certi�cates

and public-key decryption, we posit several functions. The
function:

check.rsa.sha1(x1 , x2 ,pku : bytes)

checks that x1 is the signature of x2 under sku. The func-
tion:

check.x509(cert , pkr : bytes)

checks that cert is an x509 certi�cate signed by the private
key of a certi�cation authority r. The functions:

x509.alg(cert : bytes)
x509.key(cert : bytes)
x509.user(cert : bytes)

return the signing algorithm, public key, and user in the cer-
ti�cate cert . Formally, these functions satisfy the following
equations:

x509.alg(x509(k1, u, a, k2)) = a

x509.key(x509(k1, u, a, k2)) = k2

x509.user(x509(k1, u, a, k2)) = u

check.x509(x509(skr, u, a, k2), pkr) = pkr

check.rsa.sha1(x, rsa.sha1(x, sku), pku) = pku

The XML representation of ABLP terms we give here will
not be complete, but rather based on the terms of inter-
est in our proposed implementation. In particular, we will
only be concerned with atomic principles A and keys-as-
principles K, and formulae will not involve negation. The
XML grammar for encoding ABLP terms of interest is given
in Fig. 6; for brevity in this �gure and elsewhere, abbrevi-
ations are de�ned in Fig. 5, where closing delimiters can
either be shortened to omit the matching opening delimiter
name, or omitted entirely in case delimitation is denoted by
indentation.
The most interesting components of our wire format rep-

resentation of ABLP terms is the representation of keys-
as-principles, which are denoted by x509 certi�cates, and
signed assertions K says s. The latter are represented using
not only an x509 certi�ed public key, but also a signature of
the relevant assertion under the corresponding private key.
Thus, keys literally sign statements ascribed to them. The
encoding is fully formalized by a mapping from XML items
i to ABLP principals and formulae, written L i M and de�ned
in Fig. 7. This de�nition assumes that any given principal
A and primitive proposition p have canonical string repre-
sentations, denoted Â and p̂ respectively.



L <Prin>Â</> M = A

L <Key>str</> M = KA if certname(str) = Â

L <Prop>p̂</> M = p
L <Conj>ϕ1 . . . ϕn</> M = L ϕ1 M ∧ · · · ∧ L ϕn M

L <SpeaksFor>ρ1, ρ2</> M = L ρ1 M ⇒ L ρ2 M
L <Says>α, ϕ</> M = L α M says L ϕ M
L <Says>ς, ϕ</> M = KA says L ϕ M if signedby(ς, ϕ) = Â

certname(str) = if str = base64(cert)
where check.x509(cert , pkCA) = pkCA

then return x509.user(cert)
else fail

signedby(ς, ϕ) = if ς = <CertSig>base64(cert),base64(sig)</>
where check.x509(cert , pkCA) = pkCA

and x509.alg(cert) = rsh-sha1
and x509.key(cert) = k
and check.rsa.sha1(c14n(ϕ), sig , k) = k

then return x509.user(cert)
else fail

Figure 7: XML to ABLP Transformation

A number of example assertions in this wire format are
presented and discussed in the next section.

4.2 Policies and Architecture
We now describe a sample TbV authorization architec-

ture, including (some) implementation details and general
authorization policies. While this is mainly intended to clar-
ify the proposals of the previous sections, we make some sub-
stantive suggestions and observations for TbV implementa-
tions in general. We also discuss a running example transac-
tion within this architecture. While most of the discussion
is based in concrete ABLP syntax for brevity and clarity in
speci�cation, we also provide XML wire formats of ABLP
assertions in the example transaction.

4.2.1 Individuals
Many concrete entities take part in web service transac-

tions; machines, users, applications, web services, domains,
etc. A complete treatment would consider all possible play-
ers, since for example the same application run by the same
user on two di�erent machines might inspire di�erent levels
of trust, depending on the status of the machines. However,
for the purposes of simplicity in this presentation, we will
assume the existence of only two sorts of concrete entities
in web service transactions, users and web services, termed
individuals taken together.
We also assume given �nite, disjoint set of available prin-

cipal identi�ers for user and web services, respectively, and
let J range over the former, and WS the latter. Further-
more, we will assume that these names have some known
and decidable format, allowing automatic determination of
whether a given individual is a user or a web service.

Example 4.1. We posit the following individuals: Joe is
a user, and WSM is an intermediary web service providing
service to users, part of a system that includes access to

a centralized medical database web service WSMDB (to be
continued...)

4.2.2 Roles
As in many other systems, roles are an important com-

ponent of our authorization scheme. In particular, due to
the inherently volatile and popular nature of the web, web
services cannot in general be expected to know the names of
every possible invoker a priori ; thus, authorization for priv-
ileges will be granted to known roles, and individuals must
prove that they may assume claimed roles.
Furthermore, the same characteristics that inspire the use

of roles for authorization, imply that role membership should
not be established via explicit role membership lists. Rather,
we posit that every known role R is associated with a key
KR, and the ability to sign messages with KR (that is, proof
of possession of the associated private key) is su�cient to es-
tablish role membership. Thus, we introduce the axiom:

RoleKey
` KR controls (P ⇒ R)

So for example, if an individual A wishes to legitimately
assume a role R, it could make the statement KR says (A ⇒
R); this and the assumed authority of role keys imply A ⇒
R.
Membership in roles is established by role certi�cates, the

grammar for which is given in Fig. 8. They are conjunctions
of role certi�cations, with true the empty certi�cate.

Example 4.1. (Continued) In our transaction example,
we assume that Joe can take on the role of a doctor (denoted
D). This means that Joe is capable of signing his requests
using KD. We assume a �trusted medical web services� role,
denoted M , and that WSM can take on role M . We also
assume that the web service WSMDB will authorize doctors



R ::= KR says (A ⇒ R) | R ∧ R role certi�cates

req ::= KWS says R says req | KJ says R says priv extrapolated requests

ŝ ::= KWS says R says ι | KJ says R says priv | ŝ ∧R indexed statements

Figure 8: Components of Authorization Requests

to use WSMDB . Hence, we have:

D controls privMDB

is in AMDB . Note that we do not assume role M has ac-
cess to WSMDB . Role M will be used to �carry� doctor's
requests, as de�ned below.

4.2.3 Carrier Authority
In any access control statement P controls priv, it is not

necessary for P to be atomic, allowing a �ne-grained ap-
proach to access control. For example, if it is not desirable
to grant a role R direct access to priv, but only on behalf
of a principal D, the ACL can specify R|D controls priv,
disallowing R direct access to priv.
However, we're concerned with access control decisions

in the presence of multiple intermediaries� that is, several
intervening nodes may transport an authorization request
from source to target. The above scheme would require sep-
arate entries for every possible chain of intermediaries; for
example, given statements:

R1 says R2 says D says priv

R2 says R1 says D says priv

authorization for both would require both of the following
statements to be present in the relevant ACL:

R1|R2|D controls priv

R2|R1|D controls priv

Either that, or it would require access statements:

R1|D controls priv

R2|D controls priv

to be present, along with known relations R1 ⇒ R2 and
R2 ⇒ R1. The former solution is clearly cumbersome, un-
realistically so given the number of possible intermediaries
on the web. The latter is better, but is restrictive, requir-
ing every intermediary to adopt the same role as, or a more
powerful role than, its predecessor (although this problem
could be alleviated by adapting the �speaks for regarding�
relation proposed in [10] as an extension to ABLP). Since
the only privilege at issue is priv, it is intuitively su�cient
for each intermediary to have some sort of authorization for
priv, as in e.g. stack inspection [20].
However, unlike stack inspection, web service intermedi-

aries should often not be granted direct access to privileges�
for example, a web service should not be granted direct ac-
cess to withdraw cash from an individual's bank account,
but only on behalf of that individual. To maintain this prop-
erty, and to overcome the drawbacks of the approaches de-
scribed in the previous paragraph, we introduce the notion
of a carrier authority. Intuitively, a carrier authority is the
authority to carry an authorization request for a particular

principal, but not the authority to make the request itself.
Formally:

R carries priv for D , (R|D says priv) ⊃ (D says priv)

In the above example, access requires the carrier author-
ities R1 carries priv for D and R2 carries priv for D, as
well as the direct authority D controls priv. In general,
carrier authority allows a �ne-grained and �exible approach
to authorization in the context of web services. We call con-
junction of carrier authority statements carrier control lists
(CCLs), which we denote C.

Example 4.1. (Continued) In our transaction example,
M is not directly authorized for privMDB , but it should
be possible for trusted medical web services to carry this
privilege for doctors, hence WSMDB de�nes a carrier control
list CMDB that includes:

M carries privMDB for D

4.2.4 Extrapolated Statements
At a high level, we assume that extrapolated contexts

possess the following characteristics:

1. All requests are made by individuals in a particular
role.

2. All requests are signed by the requesting individual, to
establish its authenticity (both on and o�ine).

3. All requests are accompanied by role certi�cates, to
establish the relevant individual's role membership.

Characteristics (1) and (2) together determine the form of
extrapolated statements speci�ed in Fig. 8. Characteristic
(3) implies that extrapolated authorization contexts will in-
clude role certi�cates, along with requests, ACLs, and CCLs.
Hence, extrapolated authorization contexts are statements
of the form:

req ∧R ∧ C ∧ A

Example 4.1. (Continued) Joe, a doctor, wishes to use
a medical web service WSM to diagnose a patient, which in
turn invokes WSMDB for the patient's medical history. To
initialize the appropriate role memberships and authoriza-
tions, Joe's request, in extrapolated form, is:

KJ says D says privMDB ∧KD says J ⇒ D

This means that Joe (J), speaking as a doctor, wants to
access privMDB , and Joe (J) establishes that he can take
the role of doctor (D).
This request can be represented in XML wire format as

follows. Assuming that Joe, Doctor, and priv(MDB) are Ĵ ,



Jreq ∧R ∧ C ∧ AK = JreqK ∧ C ∧ A

JKJ says R says privK = R says priv

JKWS says R says reqK = R says JreqK

Figure 9: A Trust Transformation

D̂, and ˆprivMDB respectively, let:

ϕ1 , <Says>
<Prin>Doctor</>
<Prop>priv(MDB)</>

ϕ2 , <Speaksfor>
<Prin>Joe</>
<Prin>Doctor</>

and observe L ϕ1 M = D says privMDB and L ϕ2 M = J ⇒ D.
Let:

cert1 , x509(skCA, Joe, rsa-sha1, pkJoe)

cert2 , x509(skCA, Doctor, rsa-sha1, pkDoctor)

which are the x509-certi�ed public keys of Joe and Doctor,
and let:

sig1 , rsa.sha1(c14n(ϕ1), skJoe)

sig2 , rsa.sha1(c14n(ϕ2), skDoctor)

Then, the following item can be included as the AuthInfo

in the Header of Joe's SOAP request message to WSM ; the
request component Request is explicitly separated from the
role certi�cations component RoleCerts of the assertion, for
ease of processing:

<Request>
<Says>

<CertSig>base64(cert1 ),base64(sig1 )</>
ϕ1

<RoleCerts>
<Says>

<CertSig>base64(cert2 ),base64(sig2 )</>
ϕ2

4.2.5 Trust Transformation
The extrapolated context described above uses encryption

to determine authenticity of statements, but at signi�cant
cost. Messaging can become quite complex, even in our sim-
pli�ed model, motivating a more e�cient online checking
technique, wherein many elements of extrapolated checking
are �trusted away�. Thus, we make the following the follow-
ing simpli�cations for more e�cient online checking:

1. Individuals are trusted to make valid claims about role
membership.

2. Authenticity of requests is assumed for any interme-
diary; for example, if the request R1 says R2 says s is
received, then we trust that R1 truly said �R2 says s�
and R2 truly said �s�.

In practice, these assumptions are clearly too simplistic, in
that they allow any web service invoker to assume any role

membership. Some justi�cation for that claim should be
provided, e.g. a role key signature on the �top-level� of the
request, so that instead of R1 says R2 says s, the signed
request KR1 says R2 says s would be communicated. How-
ever, for the purposes of this example we will set this issue
aside.
We formalize these trust assumptions via the trust trans-

formation de�ned in Fig. 9. Note that the transformation
eliminates role certi�cations and private key signatures for
individuals, leaving just trusted role statements. We assert
that authorization for trusted contexts is decidable (and ef-
�cient), satisfying Condition 1:

Lemma 1. Let s be an extrapolated context; then for all
priv, validity of JsK ` priv is decidable.

The result follows thanks to the similarity of the current
authorization scheme with stack inspection; a decision pro-
cedure is easily de�ned as a modi�cation of that given in
[18].

Example 4.1. (Continued) Let:

s1 , KJ says D says privMDB

rc1 , KD says J ⇒ D

WhenWS invokes the service WSMDB on Joe's behalf, WS's
extrapolated authorization assertion will state that WS in-
vokes WSMDB in the role M , and will include all relevant
role certi�cations, i.e. it will be of the form s2 ∧ rc1 ∧ rc2,
where:

s2 , KWSM says M says s1

rc2 , KM says WSM ⇒ M

By the trust transformation rules in Fig. 9, we have:

Js2 ∧ rc1 ∧ rc2K = M says D says privMDB

and WSMDB will base its (successful) online authorization
decision upon this assertion.
The assertion Js2∧rc1∧rc2K can be obtained by WSMDB

in a variety of ways. For example, all certi�cates and ex-
trapolated assertions can be propagated from Joe to WSM

to WSMDB , and WSMDB itself can perform the trust trans-
formation. The implementation of this trust transformation
on wire format assertions is de�ned in Fig. 10; note in partic-
ular that the function does not perform any cryptographic
procedures in the transformation. We may formally assert
correctness of this implementation of the trust transforma-
tion speci�ed in Fig. 9 as follows:

Lemma 2. For any ϕ1 and ϕ2, we have JL ϕ1 M∧ L ϕ2 MK =
L J<Request>ϕ1</><RoleCerts>ϕ2</>K M.

The pre-transformation assertion communicated from WSM

to WSMDB can then be de�ned as follows. Assuming M̂ =



J<Request>ϕ</><RoleCerts>ϕ′</>K = JϕK

J<Prin> ˆpriv</>K = <Prin> ˆpriv</>
J<Says>ς, ϕ</>K = JϕK
J<Says>α, ϕ</>K = <Says>α, JϕK</>

Figure 10: Wire Format Trust Transformation

MedServ and ˆWSM = WS(M), let:

ϕ3 , <Says>
<Prin>MedServ</>
<Says>

<CertSig>
base64(cert1 )
base64(sig1 )

ϕ1

ϕ2 , <Speaksfor>
<Prin>WS(M)</>
<Prin>MedServ</>

and observe L ϕ3 M = M says KJ says D says privMDB and
L ϕ4 M = WSM ⇒ M . Let:

cert3 , x509(skCA, WS(M), rsa-sha1, pkWS(M))

cert4 , x509(skCA, MedServ, rsa-sha1, pkMedServ)

which are the x509-certi�ed public keys of WS(M) and MerServ,
and let:

sig3 , rsa.sha1(c14n(ϕ3), skWS(M))

sig4 , rsa.sha1(c14n(ϕ4), skMedServ)

Then the item iauth, de�ned as follows, can be included as
the AuthInfo in the Header of WSM s SOAP message request
to WSMDB , when the former invokes the latter on behalf of
Joe:

<Request>
<Says>

<CertSig>base64(cert3 ),base64(sig3 )</>
ϕ3

<RoleCerts>
<Conj>

<Says>
<CertSig>base64(cert2 ),base64(sig2 )</>
ϕ2

<Says>
<CertSig>base64(cert4 ),base64(sig4 )</>
ϕ4

Observe that JiauthK is equivalent to the following:

<Request>
<Says><Prin>MedServ</>ϕ1</>

<RoleCerts></>

and:

L JiauthK M = M says D says privMDB

Alternatively, trust transformation can be performed ea-
gerly, eliminating the need for Joe and WSM to sign au-
thorization information for online transactions. In this case,

the wire formatted assertion JiauthK would be communicated
from WSM to WSMDB .

4.2.6 Logging and Auditing
For auditing, it is necessary to reconstruct the signed

statements and role certi�cates of extrapolated forms. In
general, we imagine that auditing will be driven by the log-
ging of signed statements and certi�cates in the online stage;
although they're not used in online checking, they're saved
and retrieved for o�ine veri�cation. The details constitute
a signi�cant engineering problem and are beyond the scope
of this paper.
Firstly, assuming that signed statements and signatures

are logged, who exactly does the logging is another ques-
tion. For example, everyone could be required to log their
own statements, or the request statements they receive, or
the source or target machine could be required to log all rel-
evant statements, or perhaps a distinguished machine could
be established as a log server, etc. We propose a model
wherein these details are abstract; we posit log locations ι,
and a lookup function that, given a location ι, returns the
statements and certi�cates at that location. The concrete
form and de�nition of locations ι and lookup, as well as
logging conventions, determine the particulars for a given
implementation.
Furthermore, noting that requests are single statements

involving possibly multiple intermediaries, to obtain maxi-
mal �exibility in logging we would like the ability to �break
up� statements into those parts made by each intermedi-
ary, in case each is independently responsible for logging.
Thus, rather than statements such as KWS says R says s,
we introduce indexed statements as de�ned in Fig. 8, allow-
ing auditing to �follow the trail� to reconstruct extrapolated
statements from multiple log locations.
Thus, given these de�nitions, we impose the following dis-

cipline:

1. If a user J wishes to make a request for a privilege priv
in role R when invoking web service WS, the statement
R says priv will be sent to WS, and the statement:

(KJ says R says priv) ∧ (KR says J ⇒ R)

will be logged at a fresh location ι; this location will
be determined by or communicated to WS.

2. If a web service WS wishes to propagate a request s
to a web service WS′ in role R, and the log location
associated with s is ι, then WS sends the statement
R says s to WS′, and the indexed statement:

(KWS says R says ι) ∧ (KR says WS⇒ R)

will be logged at a fresh location ι′; this location will
be determined by or communicated to WS′.



aud(R says priv, ι) = let ŝ ∧R = lookup(ι) in
assert(R = KR says J ⇒ R) for
assert(ŝ = KJ says R says priv) for
ŝ ∧R

aud(R says s, ι) = let ŝ ∧R = lookup(ι) in
assert(R = KR says J ⇒ R) for
assert(ŝ = KJ says R says ι′) for
let s′ ∧R′ = aud(s, ι′) in
(KJ says R says s′) ∧ (R∧R′)

Figure 11: An Auditing Technique

If a web service WS receives a request s, with associated
log location ι, online checking will be done with respect s,
which is in trusted form. Auditing will use s together with
location ι to reconstruct the extrapolated form of s; in par-
ticular, given such s and ι, in a security context containing
ACL A and CCL C, we de�ne:

audit(s ∧ C ∧ A) = aud(s, ι) ∧ C ∧ A

where aud is de�ned as in Fig. 11. In the de�nition of aud,
the function assert(P ) blocks execution i� the predicate P
is not valid. Therefore, aud reconstructs an authorized ex-
trapolated statement from an authorized trusted contexts,
and logged indexed statements, satisfying Condition 2; the
result follows by induction on the trusted request:

Lemma 3. Suppose s is a trusted context, and audit(s)
returns s′; then Js′K = s.

Furthermore, aud fails if it cannot reconstruct an extrapo-
lated statement that is not authorized for the relevant priv-
ilege. Note that this property is implicit in the de�nition
of aud; it is not necessary to actually perform automated
ABLP theorem proving on the extrapolated statement:

Lemma 4. Suppose s is a trusted context, s ` priv is
valid, and audit(s) returns s′; then s′ ` priv is valid.

The key to this result is to note that audit(s) ` s, since aud
only reconstructs valid role certi�cations and signed state-
ments, via the assertions embedded in its de�nition.
To implement log locations and auditing, we �rst of all ex-

tend the XML encoding of ABLP terms in Fig. 6, to include
wire formatted locations:

ϕ ::= <Says>α, `</> formulae
` ::= <LogLoc>ι̂</> log locations

where ι̂ is some standardized representation of the location ι.
We also extend the format of AuthInfo items with location
information LogLoc, providing the �rst link in the auditing
discovery chain. Thus, AuthInfo items have the form:

<Request>
ϕ1

<RoleCerts>
ϕ2

<LogLoc>
`

Example 4.1. (continued) We assume that the transac-
tion involving Joe, WSM and WSMDB adhere to the trust

transformation and logging discipline described above. Let
s = M says D says privMDB . Now, it is clearly the case
that:

s ∧ CMDB ∧ AMDB ` priv

so online checking succeeds. Furthermore, if WSMDB audits
this statement, it will obtain:

audit(s ∧ CMDB ∧ AMDB)

=

(KWSM says M says KJ says D says privMDB)
∧ (KD says J ⇒ D) ∧ (KM says WSM ⇒ M)
∧ CMDB ∧ AMDB

and we note that Jaudit(s)K = s ∧ CMDB ∧ AMDB , and
audit(s) ` priv, as indicated by Lemma 3 and Lemma 4.

5. DISCUSSION
In this section we conclude with a discussion of future and

related work, and a brief summary of the main points of the
paper.

5.1 Authentication and Auditing
In Sect. 4, we showed how signed ABLP formulae could

be implemented, but we did not address messaging authen-
tication. For example, although signatures assure the origi-
nal source of an authorization assertion, we did not specify
to check the authenticated identity of Web Service users
against these sources, providing no defense against spoof-
ing and replay attacks. However, in addition to providing
an appealing XML syntax with cryptography, the system in
[7] embeds this syntax in the applied Pi-calculus [3]. This
setting allows veri�cation of SOAP message authentication
protocols in a Dolev-Yao model, and several such protocols
are veri�ed. By expressing our messages in their syntax,
we immediately obtain techniques for authenticating mes-
sages between principals. Of course, this allows only point-
to-point authentication, whereas several linked intermedi-
aries can be involved in authorization decisions in our TbV
model. In [12], techniques for verifying authorization safety
in a Dolev-Yao model are developed, that apply to these
more complicated authorization decisions. Adapting these
techniques to a TbV setting is future work.
Another interesting topic for future work is auditing. In

particular, we have only sketched a technique for logging
and retrieving assertions during o�ine veri�cation, but we
have not considered who is to be held responsible for provid-
ing information during auditing, nor what the consequences



will be for failure. This is an important topic that needs
to be considered at both high (conceptual) levels and low
(implementation) levels.

5.2 Related Work
Our system is a novel web services application of an idea

that has been explored in other settings, namely previous au-
thorization frameworks based on ABLP logic. Most closely
related in this regard is proof carrying carrying authoriza-
tion (PCA) [5, 4], a framework for specifying and enforcing
webpage access policies (though the logic used there is not
ABLP, but an application speci�c variant). However, that
system comprises a general framework for webpage access
control, so expressible policies are potentially more compli-
cated than those we propose for web services. Furthermore,
there is no distinction between online and o�ine checking
in that framework as currently conceived, though our trust-
but-verify approach could be adapted to it.
Other authorization systems founded in ABLP logic in-

clude that used in the Taos operating system [21], essentially
a direct implementation of a subset of ABLP logic. Also,
Wallach et al. have formalized the �security-passing style�
of the Java stack inspection mechanism in a subset of ABLP
[18, 20], which has served as a foundation for the SAFKASI
programming language-based security architecture [19].
The SPKI/SDSI architecture [10, 16] is another authoriza-

tion system for distributed communication. Their security
model is similar to ABLP, but is based on a system of lo-
cal names and emphasizes delegation. While SPKI/SDSI
is a well-designed and appealing authorization framework,
we conjecture that its emphasis on local namespaces may
not be as salient in a web services context. In particular,
SPKI/SDSI namespaces are based on known names, but a
point we emphasize is that web services operate in the highly
open and volatile environment of the web, so that web ser-
vices generally cannot expect to know their invokers. Of
course, our use of ABLP does not preclude the adoption of
SPKI/SDSI principles later on, in future considerations of
e.g. revocation, since the semantics of SPKI/SDSI has been
shown to be embeddable within ABLP [15, 1].
In [17], a web services authorization system is de�ned,

allowing speci�cation of security policies in temporal logic,
which are translated into reference monitors embedded in
applications software. However, their approach is focused
on complex policies for usage patterns similar to [4], and
they make no online/o�ine checking phase distinction.
Related work on web services authentication includes an

XML-based logic for web services authentication [7, 13], that
is embedded within the applied Pi-calculus [11], allowing
veri�cation of web service security protocols via both hu-
man and machine proof techniques. It is likely that their
approach will be relevant to future considerations of web
services request authentication for our model.

5.3 Conclusion
In this paper, we have introduced a trust-but-verify frame-

work for web services. We have used ABLP logic to establish
a formal setting for framework design, and speci�ed the con-
ditions that any trust-but-verify implementation must sat-
isfy. The central ideas we have presented are the separation
of online and o�ine authorization phases, the notion of a
trust transformation that establishes a meaningful relation
between these phases, and a characterization of auditing for

o�ine veri�cation of online checking. We have speci�ed an
XML wire format for ABLP assertions in SOAP messages,
and have described an example TbV system architecture.
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