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Abstract
We present pmlB, a programming language that includes primitive sets and asso-
ciated operations. The language is equipped with a precise type discipline that
statically captures dynamic properties of sets, allowing runtime optimizations. We
demonstrate the utility of pmlB by showing how it can serve as a practical implemen-
tation language for higher-level programming language based security systems, and
characterize pmlB by comparing the expressiveness of pmlB sets with enumerations.

1 Introduction
In this paper we present the pmlB programming language, which includes
primitive records, sets, and associated operations, as well as a static type dis-
cipline that provides accurate speci�cations of these constructs. We demon-
strate how pmlB can serve as a practical implementation language for higher-
level language features that can be encoded in terms of sets and records; in
particular, the type discipline of pmlB allows dynamic set manipulation and
membership checks to be captured statically, which in turn allows runtime
optimizations. There are a wide array of set-based properties in languages
studied today, so there are multiple applications of pmlB.

The pmlB language of records includes default values in the style of Rémy's
Projective ML [11]. The language of sets includes syntax for de�ning sets of
atomic elements, as well as operations such as intersection, union, di�erence,
etc. Sets are at �rst approximation records, where all values are of trivial type
unit. However, since sets are simpler than records, there are set operations
which can be e�ectively modeled statically that are di�cult or impossible in
the case of records, and set types can also be simpler than record types. We
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equip the language with a type system that accurately speci�es the contents of
records, sets, and the results of associated operations; we also show that this
type system is sound. To de�ne the type system, we make use of the HM(X)
framework [15], instantiating it with a constraint system containing row types
[12] and conditional constraints [8]; row types were originally developed for
application to records with default values; we show here how they can also
be used to type sets which include new operations not de�ned for record row
types [9,16].

The language and type system presented here is a more general version
of the λset language and type system, de�ned in [9]. In that presentation,
one element of set union and intersection operations was always statically
known; in pmlB, these operations are fully generalized. The pmlB language
also extends λset with a general set di�erence operation, co�nite set de�nitions,
and extensible records. Thus, the language is signi�cantly more expressive.
Also more expressive is the interpretation of conditional constraints, which
provides accurate types for pmlB set operations, and we de�ne an abbreviated
type form for more succinct and readable set types.

The pmlB language is most useful as an implementation language for
higher-level languages, its type system serving as an indirect static analysis
and speci�cation of high-level features, allowing run-time checks to be elimi-
nated as a result of type safety. Thus, the pmlB language facilitates run-time
optimizations of source languages. We discuss examples of this, including
an implementation of Java-style stack inspection [9], and an implementation
of an Object-Oriented language model with object con�nement mechanisms
[16]. Using pmlB to implement these languages has distinct technical bene�ts;
in particular, type safety in the source languages is easily developed on the
uniform foundation of pmlB type safety.

To characterize the expressiveness of the pmlB language, and to suggest
alternate implementations of the semantics and type system, we also present
some observations on the duality of set types and enumeration types. In partic-
ular, we show that sets can be fully and faithfully encoded with enumerations,
and enumerations can be fully and faithfully encoded with records.

2 The pmlB language: syntax and semantics
The grammar for pmlB is given in Fig. 1, the semantics in Fig. 2. The lan-
guage is based on Rémy's Projective ML [11], containing records with de-
fault values, manipulated with the elevation and modi�cation record con-
structors {e} and e{a = e′}, and the projection destructor e.a. For example,
{1}{a1 = true}{a2 = 2.1} is a record with the a1 �eld set to true and the
a2 �eld set to 2.1, and with default contents 1� that is, every other �eld (a
countably in�nite collection) is implicitly set to 1.

We take as given a countably in�nite set of record labels La, and a count-
ably in�nite set of atomic set elements Lb. Borrowing language from set
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x ∈ V , a ∈ La, b ∈ Lb, A ⊆ La, B ⊆ Lb identi�ers

v ::= �x z.λx.e | s | {v} | v{a = v} values

s ::= B | B̄ | ∨ | ∧ | ª | 3b | ?b sets, set operations

e ::= x | v | e e | let x = v in e | {e} | e{a = e} | e.a expressions

E ::= [ ] | E e | v E | {E} | E{a = e} | v{a = E} | E.a eval. contexts

Fig. 1. Grammar for pmlB

theory, we refer to the latter as urelements. The language allows de�nition of
�nite sets B of urelements b ∈ Lb, and countably in�nite cosets B̄. This latter
feature presents some practical implementation issues, but in this presenta-
tion we take it at mathematical �face value�� that is, we take B̄ to denote
Lb\B. Basic set operations are provided, including 3b, ∧, ∨ and ª, which are
membership check, intersection, union and di�erence operations, respectively.
Also provided is a set membership test operation ?b, which allows branching
on the presence or absence of a set element in a given set, as opposed to fail-
ure in the case of absence à la 3b . For clarity of presentation, we de�ne the
following syntactic sugar:

(3b e) , (e 3 b)

(∧e1e2) , (e1 ∧ e2)

(∨e1e2) , (e1 ∨ e2)

(ªe1e2) , (e1 ª e2)

To abbreviate certain function de�nitions, we take λx.e to denote the function
�x z.λx.e where z does not occur free in e.

3 The type constraint system RS
We de�ne the type system for pmlB as an instance of the HM(X) frame-
work [15,6]. The HM(X) framework provides a functional language core and
type system with let-polymorphism; the type judgement rules for this func-
tional core are de�ned in Fig. 3, where constrained type schemes ∀ᾱ[C].τ are
denoted σ, and constraint entailment (resp. scheme consistency) is denoted
C ° D (resp. C ° σ) and is de�ned near the end of Sect. 3.3. This core can
be specialized by instantiation with a sound type constraint system, and by
extension with additional language constants and their initial type bindings,
which must be sound with respect to their semantics (the so-called δ-typability
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(�x z.λx.e)v → e[v/x][�x z.λx.e/z] (β)

let x = v in e → e[v/x] (let)
{v}.a → v (default)

v1{a = v2}.a → v2 (access)
v1{a′ = v2}.a → v1.a a′ 6= a (skip)

B 3 b → B if b ∈ B (memcheck)

B1 ∧B2 → B1 ∩B2 (intersect)
B1 ∨B2 → B1 ∪B2 (union)

B1 ªB2 → B1 −B2 (di�erence)
?b B → λf.λg.f(B) if b ∈ B (memtesty)

?b B → λf.λg.g(B) if b 6∈ B (memtestn)

E[e] → E[e′] if e → e′ (context)

Fig. 2. Operational semantics for pmlB

property). Any specialization meeting these requirements enjoys type sound-
ness in the framework. The details of HM(X) are omitted here for brevity;
interested readers are referred to the previous citations.

The type analysis for pmlB is de�ned, in part, by instantiating HM(X)
with the RS type constraint system, comprising row types and conditional
constraints. The de�nition includes the type and constraint language itself
(Sect. 3.1), together with its logical interpretation in a model (Sect. 3.2 and
Sect. 3.3).

3.1 The type and constraint language

The syntax of types and constraints is de�ned in Fig. 4, where ` ranges over
La ∪ Lb. The syntax contains language for expressing record and set types
(hence the name RS: Records and Sets).

To describe the contents of sets and records, we use polymorphic row types
[11,12], which were originally proposed to describe extensible records with
default contents. Recalling the example record {1}{a1 = true}{a2 = 2.1} from
Sect. 2, in the rows setting a type of this record is {a1 : bool ; a2 : real ; ∂int},
where the row type ∂int speci�es that every �eld not otherwise mentioned in
the type contains an int. Since in general the row type ∂τ is shorthand for an
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Var

Γ(x) = σ C ° σ

C, Γ ` x : σ

Sub

C, Γ ` e : τ C ° τ ≤ τ ′

C, Γ ` e : τ ′

Abs

C, (Γ; x : τ) ` e : τ ′

C, Γ ` λx.e : τ → τ ′

App

C, Γ ` e1 : τ2 → τ C, Γ ` e2 : τ2

C, Γ ` e1 e2 : τ

Let
C, Γ ` e1 : σ C, (Γ; x : σ) ` e2 : τ

C, Γ ` let x = e1 in e2 : τ

∀ Intro
C ∧D, Γ ` e : τ ᾱ ∩ fv(C, Γ) = ∅

C ∧ ∃ᾱ.D, Γ ` e : ∀ᾱ[D].τ

∀ Elim
C, Γ ` e : ∀ᾱ[D].τ ′ C ° [τ̄ /ᾱ]D

C, Γ ` e : [τ̄ /ᾱ]τ ′

Fig. 3. The system HM(X)

in�nite, pointwise-uniform type speci�cation, it can be unrolled, so that:

∂τ = (a3 : τ ; ∂τ) = (a3 : τ ; a4 : τ ; ∂τ) = · · ·
Thus, another type for the previous example record is {a1 : bool ; a2 :
real ; a3 : int ; ∂int}. The ability of row types to �nitely specify in�nite pro-
gram objects makes them especially useful for describing the potentially co�-
nite sets of pmlB, and �ne-grained polymorphism over row �eld types makes
them useful for describing the set operations of pmlB. The original presen-
tation of rows [11,12] also includes an equational theory, which in particular
allow rows to commute (i.e., �eld orderings don't matter). Here these equa-
tions are not axiomatic, but rather they hold as a result of the interpretation
de�ned in Sect. 3.3.

Record types are built up from row types ρ using the record type construc-
tor {ρ}. Set types are also built up from a particular form of row types, using
the set type constructor {·ρ·}. These particular row types are built up from
presence constructors, which specify whether a given element may be present
in a set (+), may not be present in it (−), may or may not appear in it (>),
or whether this information is irrelevant, because the set itself is unavailable
(⊥) (NB : ⊥ and > here are not the same as the �top� and �bottom� types
in non-structural subtyping systems!). This form is enforced by the kinding
rules, de�ned below. We will also de�ne a succinct, more readable form of
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τ ::= α, β, . . . | τ → τ | {τ} | {·τ ·} | ` : τ ; τ | ∂τ | c types
c ::= + | − | > | ⊥ constructors

C ::= true | C ∧ C | ∃α.C | τ = τ | τ ≤ τ | if c ≤ τ then τ ≤ τ constraints

Fig. 4. RS Grammar

set types in Sect. 3.4, which are de�ned as syntactic sugar for the primitive
form. A signi�cant consequence of this primitive de�nition of set types as
specialized rows, is that set types can be implemented by re-use of existing
row type implementations.

The constraint language of RS o�ers standard equality and subtyping con-
straints, as well as conditional constraints. To ensure that only meaningful
types and constraints can be built, we equip them with kinds, de�ned by:

k ::= Con | Row(τ)A | Row(c)B | Type

where A ranges over �nite subsets of �eld labels La and B ranges over �nite
subsets of set urelements Lb. Row kinds are parameterized by τ or c, specify-
ing whether they describe the contents of a record or a set, respectively. For
every kind k, we assume given a distinct, denumerable set of type variables
Vk. We use α, β, γ, . . . to represent type variables. From here on, we consider
only well-kinded types and constraints, as de�ned in Fig. 5 and Fig. 6. The
formal purpose of these rules is to guarantee that every constraint has an
interpretation in our model, de�ned in Sect. 3.2. Intuitively, aside from the
usual well-formedness properties of type terms, the type kinding rules guaran-
tee that no row type mentions a particular �eld twice. The constraint kinding
rules admit two syntactic forms of conditional constraints, one in which two
type constructors are related in the condition, and one in which a type con-
structor c is related with a row τ in the condition. This latter constraint may
seem ill-formed, but it turns out to be an abbreviation for an in�nite collection
of conditional constraints, conditioned on relations of the constructor c with
every �eld type in τ . The behavior of conditional constraints is precisely spec-
i�ed by our interpretation of constraints, de�ned in Sect. 3.3 and discussed in
Example 4.1.

3.2 The model

The model for RS is constructed by associating with every kind k a math-
ematical structure denoted JkK. Informally, each of these structures contain
inductively de�ned variable-free elements, which are either presence construc-
tors, functions from �eld labels to other elements, or elements built up with
the binary constructor → and the unary constructors {·} and {· · ·}. These
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α ∈ Vk

α : k

τ, τ ′ : Type
τ → τ ′ : Type

τ : Row(τ)?
{τ} : Type

τ : Row(c)?
{·τ ·} : Type

τ : Type
∂τ : Row(τ)A

τ : Con
∂τ : Row(c)B

c : Con

τ : Con b 6∈ B τ ′ : Row(c)B∪{b}
(b : τ ; τ ′) : Row(c)B

τ : Type a 6∈ A τ ′ : Row(τ)A∪{a}
(a : τ ; τ ′) : Row(τ)A

Fig. 5. Kinding rules for RS types

` true
` C1, C2

` C1 ∧ C2

` C

` ∃α.C

τ, τ ′ : k

` τ = τ ′

` τ ≤ τ ′

τ : Con ` C

` if c ≤ τ then C

τ, τ ′, τ ′′ : Row(c)B

` if c ≤ τ then τ ′ ≤ τ ′′

Fig. 6. Kinding rules for RS constraints

structures are formally de�ned below. We let τ̂ range over elements of any
kind. Each structure JkK is equipped with a partial ordering ≤ of its elements.
Accordingly, the relation on each JkK is de�ned to be transitive and re�exive,
by requiring the following inferences to be axiomatic for all τ̂ :

τ̂ ≤ τ̂
τ̂ ≤ τ̂ ′ τ̂ ′ ≤ τ̂ ′′

τ̂ ≤ τ̂ ′′

The model is explicated for each JkK as follows:
JConK: The elements of JConK are contained in the set {+,−,⊥,>}. As

is made clear by the full de�nition of our model, continued below, the char-
acteristics of the ordering ≤ over the model is determined by the de�nition of
≤ over JConK; if we de�ne ≤ over JConK as equality, then ≤ is an equivalence
relation over the entire model� that is, over each JkK. On the other hand, we
may choose a subtype ordering over JConK, axiomatized as follows:

⊥ ≤ + ⊥ ≤ − + ≤ > − ≤ >
7



Skalka, Smith

ρ(τ → τ ′) = ρ(τ) → ρ(τ ′)
ρ({τ}) = {ρ(τ)} ρ({·τ ·}) = {·ρ(τ)·}

ρ(` : τ ; τ ′)(`) = ρ(τ) ρ(` : τ ; τ ′)(`′) = ρ(τ ′)(`′) (` 6= `′)
ρ(∂τ)(`) = ρ(τ) ρ(c) = c

Fig. 7. Type-to-kind assignment de�nition

By choosing this ordering, we generate a model of structural, atomic subtyp-
ing. Note well that although the symbols ⊥ and > are used, the reader should
not be misled into thinking that this is a non-structural subtyping system.

JRow(τ)AK and JRow(c)BK: Given a �nite set of labels A ⊆ La, JRow(τ)AK
is the set of total, almost constant functions from La\A into JTypeK. (A
function is almost constant if it is constant except on a �nite number of inputs.)
In short, Row(τ)A is the kind of rows which do not carry the �elds mentioned
in A; Row(τ)? is the kind of complete rows. Similarly, JRow(c)BK is the set
of total, almost constant functions from Lb\B into JConK, so that Row(c)B

is the kind of set types which do not carry the elements mentioned in B,
and Row(c)? is the kind of complete set types. The ordering ≤ is extended
inductively to JRow(c)BK and JRow(τ)AK, mutually with JTypeK, pointwise
and covariantly as follows:

τ̂ , τ̂ ′ ∈ JRow(τ)AK ∀a ∈ La\A . τ̂(a) ≤ τ̂ ′(a)

τ̂ ≤ τ̂ ′

τ̂ , τ̂ ′ ∈ JRow(c)BK ∀b ∈ Lb\B . τ̂(b) ≤ τ̂ ′(b)

τ̂ ≤ τ̂ ′

JTypeK: The elements of JTypeK are contained in the free algebra generated
by the constructors→, with signature JTypeK×JTypeK→ JTypeK, and {·} and
{· · ·}, with signatures JRow(τ)?K→ JTypeK and JRow(c)?K→ JTypeK, respec-
tively. The ordering ≤ is inductively extended, mutually with JRow(τ)AK, to
JTypeK by treating the constructor → as contravariant in the �rst argument
and covariant in the second, and by treating the constructors {·} and {· · ·}
as covariant; that is:

τ̂ ′1 ≤ τ̂1 τ̂2 ≤ τ̂ ′2
τ̂1 → τ̂2 ≤ τ̂ ′1 → τ̂ ′2

τ̂ ≤ τ̂ ′

{τ̂} ≤ {τ̂ ′}
τ̂ ≤ τ̂ ′

{·τ̂ ·} ≤ {·τ̂ ′·}

This completes the de�nition of the model.
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ρ ` true
ρ ` C1 ρ ` C2

ρ ` C1 ∧ C2

ρ = ρ′ [α] ρ′ ` C

ρ ` ∃α.C

ρ(τ) = ρ(τ ′)

ρ ` τ = τ ′
ρ(τ) ≤ ρ(τ ′)

ρ ` τ ≤ τ ′
c ≤ ρ(τ) ⇒ ρ ` τ ′ ≤ τ ′′

ρ ` if c ≤ τ then τ ′ ≤ τ ′′

τ, τ ′, τ ′′ : Row(c)B ∀b ∈ Lb\B . (c ≤ ρ(τ)(b) ⇒ ρ(τ ′)(b) ≤ ρ(τ ′′)(b))

ρ ` if c ≤ τ then τ ′ ≤ τ ′′

Fig. 8. Interpretation of constraints

3.3 Interpretation in the model

We may now give the interpretation of types and constraints within the model.
It is parameterized by an assignment ρ, i.e. a function which, for every kind
k, maps Vk into JkK. The interpretation of types is obtained by extending ρ
so as to map every type of kind k to an element of JkK, as de�ned in Fig. 7.
Fig. 8 de�nes the constraint satisfaction predicate · ` ·, whose arguments
are an assignment ρ and a constraint C. (The notation ρ = ρ′ [α] means
that ρ and ρ′ coincide except possibly on α.) These rules are not particu-
larly surprising, except those that involve conditional constraints of the form
if c ≤ τ then τ ′ ≤ τ ′′, where τ, τ ′ and τ ′′ are row types; we call these com-
plex conditional constraints. These allow a �nite speci�cation of a countably
in�nite collection of conditional constraints, decomposed pointwise from the
initial complex conditional, with c being the lower bound in the condition of
each constraint in the collection. We clarify the meaning and utility of com-
plex conditional constraints in Example 4.1. Constraint entailment is de�ned
as usual: C ° C ′ (read: C entails C ′) holds i�, for every assignment ρ, ρ ` C
implies ρ ` C ′. We write C ° ∀ᾱ[D].τ (read: ∀ᾱ[D].τ is consistent with
respect to C) i� C ° ∃ᾱ.D.

We refer to the type and constraint logic, together with its interpretation,
as RS. More precisely, we have de�ned two logics, where ≤ is interpreted as
either equality or as a non-trivial subtype ordering. We will refer to them as
RS= and RS≤, respectively. Both are sound term constraint systems [6].

3.4 Abbreviated set types

Although the set types de�ned in previous sections are expressive, and the
form of their contents as kinds of row types allows re-use of existing imple-
mentations, an abbreviation of their form is possible. We now de�ne a more
readable, succinct form of set types as syntactic sugar for primitive set types.
Each �eld b : τ is shortened to bτ . We also de�ne abbreviated row type con-
structors ∅ and ω, specifying that all elements not otherwise mentioned in a
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row are absent or present, respectively. For example, the set {r1, r2} will be
one (and the only) value of type {r1+, r2+,∅}. Formally, the grammar for
abbreviated set types is de�ned as follows:

ς ::= {ς} | bτ, ς | ω | ∅ | β abbreviated set types

The interpretation of abbreviated set types L ς M as primitive set types is de�ned
as follows:

L {ς} M = {·L ς M·}
L bτ, ς M = (b : τ ; L ς M)
L∅ M = ∂−
Lω M = ∂+

L β M = β

We say that an abbreviated set type ς is well-kinded i� L ς M is, and we write
ρ(ς) to denote ρ(L ς M). In the presentation of the type system for pmlB, we
will use abbreviated set types for a more succinct and readable presentation;
however, we note that their de�nition as syntactic sugar for primitive set types
allows for an implementation that re-uses row type implementations.

4 Types for pmlB

To de�ne a type system for pmlB, we instantiate HM(X) with one of RSrel ,
where rel ranges over {=,≤}, and postulate records, sets, and associated oper-
ations, along with their semantics, as extensions of the core HM(X) language.
We also de�ne initial type bindings for these extensions, which we prove sound.
This obtains a sound type system for pmlB� more than one, in fact, since
our choice of rel results in either a uni�cation or subtyping-based system.

4.1 Constants and initial type bindings for pmlB

To begin our conception of pmlB as an extension of the core HM(X) language,
we postulate the constant {·}, and the families of constants ·.a and ·{a = ·},
with semantics as de�ned in Fig. 2. Thus, we de�ne the constants of pmlB,
along with their initial type bindings, in Fig. 9.

As is evident in Fig. 9, we make extensive use of complex conditional
constraints to provide accurate types for set operations. To demonstrate how
these work, and their usefulness in this context, we give the following example.

Example 4.1 Let the sets B1 and B2 be de�ned as follows:

B1 = {b1, b2, b3}
B2 = {b1, b2, b4}

10
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{·} : ∀α.α → {∂α}
·{a = ·} : ∀α1α2β.{a : α1 ; β} → α2 → {a : α2 ; β}

·.a : ∀αβ.{a : α ; β} → α

B : {B+,∅}
B̄ : {B−, ω}
3 b : ∀β.{b+, β} → {b+, β}
∧ : ∀β1β2β3[C].{β1} → {β2} → {β3}

where C = if − ≤ β1 then ∅ ≤ β3

∧ if + ≤ β1 then β2 ≤ β3

∨ : ∀β1β2β3[C].{β1} → {β2} → {β3}
where C = if + ≤ β1 then ω ≤ β3

∧ if − ≤ β1 then β2 ≤ β3

ª : ∀β1β2β3[C].{β1} → {β2} → {β3}
where C = if + ≤ β2 then ∅ ≤ β3

∧ if − ≤ β2 then β1 ≤ β3

?b : ∀ᾱβ̄γ[C].{bγ, β} → ({b+, β1} → α1) → ({b−, β2} → α2) → α

where C = if + ≤ γ then β ≤ β1 ∧ if − ≤ γ then β ≤ β2

∧ if + ≤ γ then α1 ≤ α ∧ if − ≤ γ then α2 ≤ α

Fig. 9. Constants and initial type bindings for pmlB

Suppose then that we wish to type the expression B1∧B2, using the uni�cation-
based constraint system RS=. Given the typing for ∧ de�ned in Fig. 9, the
variables β1 and β2 will be uni�ed with the types of the contents of B1 and
B2, respectively:

β1 = (b1+, b2+, b3+,∅)

β2 = (b1+, b2+, b4+,∅)

Additionally, β3 will be uni�ed with a type that is �splittable� into the ap-
propriate form for the expansion of the complex conditional constraint in the
type of ∧:

β3 = (b1γ1, b2γ2, b3γ3, b4γ4, β)

Then, given the rules for complex conditional constraints de�ned in Fig. 8,
which specify that any complex conditional constraint is decomposable point-
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wise into an arbitrary length conjunction of �normal� conditional constraints,
the constraint C in the type of ∧ can be expanded as follows:

C = if − ≤ + then − ≤ γ1 ∧ if + ≤ + then + ≤ γ1

∧ if − ≤ + then − ≤ γ2 ∧ if + ≤ + then + ≤ γ2

∧ if − ≤ + then − ≤ γ3 ∧ if + ≤ + then − ≤ γ3

∧ if − ≤ − then − ≤ γ4 ∧ if + ≤ − then + ≤ γ4

∧ if − ≤ ∅ then ∅ ≤ β ∧ if + ≤ ∅ then ∅ ≤ β

This expansion will force the following uni�cation:

β3 = (b1+, b2+, b3−, b4−,∅)

or
β3 = (b1+, b2+,∅)

And this in fact is the type of {b1, b2}, and B1 ∧B2 → {b1, b2}.

4.2 Type soundness for pmlB

Given the previous development, we may now de�ne the type systems for
pmlB. Speci�cally, these are denoted S= and S≤ and obtained from extending
HM(RS=) and HM(RS≤), respectively, with the constants and type bindings
de�ned in Fig. 9 and the associated semantics, de�ned in Fig. 2. To prove
syntactic type soundness for HM(X) in either of Srel , we demonstrate the
requisite δ-typability lemma, which means that the initial type bindings for
the pmlB constants are sound:

Lemma 4.2 pmlB is δ-typable in Srel .

The proof is straightforward, and is omitted here for brevity; interested
readers are referred to [14] for details. Given this lemma, the soundness of
RSrel , and results demonstrated in [15], we immediately obtain type soundness
for pmlB in both type systems:

Theorem 4.3 (pmlB Type Soundness) If e is a pmlB expression which is
well-typed in Srel , then e does not go wrong.

In addition to this result, the systems Srel enjoy the bene�ts of type infer-
ence: HM(X) provides a type inference algorithm modulo constraint solution
[6], and a row type and conditional constraint solution algorithm exists and
has been proven correct [7].

A consequence of Theorem 4.3 is that certain pmlB runtime optimizations
may be e�ected. For example, this result implies that all membership checks
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3b may be removed at runtime from a well-typed program. This property is
veri�ed by the following result, which follows by type soundness:
Proposition 4.4 Let ; be de�ned as →, but with the memcheck rule rede-
�ned as B 3 b ; B; that is, no runtime membership checks are performed.
Suppose e is well typed; then e ;? v i� e →? v.

5 Characterizing pmlB: enumeration encoding
In this section we show that sets are a dual of enumerations (nullary variant
constructors); intuitively, sets are a conjunction of elements, whereas enu-
merations are a disjunction of elements. This is another obvious instance
of the well-known duality between and-or, records-variants, and products-
coproducts. The asymmetric nature of programs and continuations causes the
duality between records and variants [1,5] to be imperfect: while the type-
indexed rows of [13] are able to encode both records and variants, they are
more expressive than both records and variants, and the fact remains that
neither can fully and faithfully be encoded using the other. However, the sit-
uation is better with set and enumeration types. There is still an asymmetry,
in that records are needed to encode enumerations, but enumeration types can
fully and faithfully encode set types. The main point of this characterization
is that it illuminates the expressiveness of pmlB, reinforcing our argument
that pmlB types can be used to give expressive static types for languages with
primitive program labels.

To begin, we imagine a new functional language core containing syntax for
expressing enumerations (where 8b is an injection of b into an enumeration):

e ::= 8b | match e with b → e | (match e with b → e | → e) | · · ·

Note that in match expressions with defaults, the vertical bar is part of the
language syntax, not the grammar. Long match expressions may be expressed
by �chaining� shorter matches; for ease of presentation we de�ne the following
syntactic sugar:

match e with b1 → e1 | b2 → e2 | · · · | bn → en | → e0

,
match e with b1 → e1 | → match e with b2 → e2 | → · · ·

match e with bn → en | → e0

5.1 Encoding enumerations with records
We will give the term-level encodings only, but the translations are faithful
with respect to typing as well. The encoding of enumerations as records
requires us to freeze the encoded results of matches using abstractions, to
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thaw the appropriate result in the case of a match, and also to ensure failure
in the case of a mismatch:

freeze e , λx.e where x not free in e

thaw e , e {} fail , ∅ 3 b

J8bK = λr. (thaw r.ab)

Jmatch e1 with b → e2K = Je1K({freeze fail}{ab = freeze Je2K})
Jmatch e1 with b → e2 | → e3K = Je1K({freeze Je3K}{ab = freeze Je2K})

...

And so on trivially for the other functional language constructs. Since pmlB
comes with an accurate static analysis of records, this encoding suggests an
alternate, typed implementation of enumerations, as well as any higher-level
language with a labeling system that can be expressed via enumerations.

5.2 Encoding sets with enumerations

Since sets in pmlB come with a rich library of operations, the transformation
from sets to enumerations is a bit trickier. However, it can be done in such
a way that set membership checks via 3b succeed or fail consistently in the
encoding, and likewise set membership tests via ?b branch consistently. The
encoding uses appropriately de�ned combinators to implement set operations,
where fresh elements are returned by calls to freshb() during the encoding.
First, we specify the following macros, intended to de�ne the operational be-
havior of succeeding and failing set membership checks, respectively:

succeed , λx.()

fail , λx.match x with freshb() → ()

In the de�nition of fail, the label generated by the call freshb() will be distinct
from any other label in a given program, so that any application of fail will
cause an operational match failure. Further, in a sound variant type system,
any use of fail will be statically rejected, meaning that failing set membership
checks are statically rejected in the encoding� thus, the encoding also pre-
serves type safety. If a purely operational encoding of pmlB is desired, we can
alternately de�ne fail in a language with exceptions as fail , λx.raise Fail.

The rest of the encoding is given as follows; note the use of succeed and
14
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fail in any membership check:

J{b1, . . . , bn}K = λf.λg.λx.match x with b1 → f(x) |
...

bn → f(x) | → g(x)

J{b1, . . . , bn

}K = λf.λg.λx. match x with b1 → g(x) |
...

bn → g(x) | → f(x)

J∧K = λs1.λs2.λf.λg. s1(s2f g) g

J∨K = λs1.λs2.λf.λg. s1f (s2f g)

JªK = λs1.λs2.λf.λg. s1(s2 g f) g

J3bK = λs. s succeed fail 8b
J?bK = λs.λy.λz. s (λx.y)(λx.z) 8b

...

And so on trivially for the other functional language constructs. At an op-
erational level, this encoding suggests an alternate implementation of sets in
e.g. OCaml, which comprises a rich language of variants. However, while
polymorphic variant types [3,10] do exist in OCaml, they are not expressive
enough to accurately type the above encoding, and so provide an alternate im-
plementation of our set type system. For this, it would be su�cient to extend
the OCaml variant type system with conditional constraints, an addition that
has been described in [4]. If the reader is interested in exploring this encoding
at the operational level in OCaml, the alternate de�nition of fail given above
should be used.

6 Applications
In this section we discuss several applications of pmlB as an implementation
language for higher-level languages, demonstrating its usefulness as a uniform
foundation for this purpose. In particular, the implementation of these lan-
guages in pmlB provides them with a sound, indirect type analysis with no
additional theoretical overhead, via composition of their translation into pmlB
and the pmlB type system. Furthermore, the precise static analysis of pmlB
facilitates run-time optimizations in the source languages. The pmlB type sys-
tem can also serve as a theoretical basis for the development of direct source
language type systems, saving signi�cant e�ort in the proof of direct type
safety.
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6.1 Stack inspection
In [9] the authors implement the so-called security-passing-style transforma-
tion from a language with stack inspection security, called λsec, into a less
general form of pmlB, called λset. That presentation uses binary set opera-
tions for which one element is always statically known, and does not require
complex conditional constraints for typings; the current presentation is thus an
extension in this regard. The λsec-to-λset transformation provides an indirect
static analysis for λsec, meaning that runtime security checks can be elimi-
nated, improving e�ciency of the language. This transformation also allows
certain compiler optimizations, such as CPS and tail-call optimizations, which
are otherwise prevented by the requirements of the runtime stack inspection
algorithm. In addition, the transformation drives the development of a direct
static analysis for λsec, providing insight into its form and greatly easing proof
of its soundness. By proving that the transformation preserves semantics, it
is su�cient to demonstrate a simple syntactic correspondence between direct
λsec type judgements and pmlB type judgements of transformed λsec terms;
the much more complicated route of proving subject reduction for the direct
λsec type system is unnecessary.

In the stack inspection security model, code owners p are associated with
regions of code p.e. Each code owner is locally associated with sets of privileges
R via an access-control-list A. Individual privileges r are explicitly activated
via expressions of the form enable r in e, and their activation may be checked
via expressions of the form check r then e. Security information is maintained
on the call-stack, and privilege checks are implemented via the stack inspection
algorithm, which analyzes the call-stack.

For example, on a local system, identi�ed as ps, we might wish to make
printing a privileged resource. To enforce this, we could provide a safeprint
function, which interposes a check of the PrintPriv privilege before printing:

safeprint = λx.ps.checkPrintPriv then print(x)

Printing could then be accomplished in an environment with PrintPriv en-
abled, by using safeprint in code owned by principals locally authorized for
PrintPriv. The stack inspection algorithm prevents any code owned by prin-
cipals not authorized forPrintPriv from gaining unauthorized access to print-
ing through man-in-the-middle attacks.

In the security-passing-style, security information is essentially passed down
the stack, rather than maintained on it. In our transformation, denoted JeKp,
with p the owner of e, security information is maintained in the program
variable s. Privilege activation is encoded as an addition to s:

Jenable r in eKp = let s = s ∨ ({r} ∩ A(p)) in JeKp
Note that this addition only occurs if the code owner is authorized for the
privilege. Privilege checking then becomes a matter of simply checking for the
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presence of the privilege in s:

Jcheck r then eKp = let = s 3 r in JeKp
When a new code owner p′ is encountered, s is intersected with the privileges
granted to p′ locally, to fully enforce the stack-inspection model:

Jp′.eKp = let s = s ∧ A(p′) in JeKp′

A signi�cant feature of this translation is that the λset type system� sub-
sumed in the pmlB system� provides a precise speci�cation of sets, so that
all privilege checks are statically enforced. This means that program execution
can be made more e�cient, since dynamic privilege checks are not necessary.

6.2 Object con�nement
In [16] the authors de�ne a language model for expressing various object con-
�nement mechanisms, called pop. An indirect static analysis is obtained for
pop by transformation into pmlB, utilizing most of the language and type
features presented here. However, pmlB and its type system is not formally
de�ned there, nor proven sound. This presentation provides these results,
with the caveat that state is not treated� but this is a minor detail, since the
presentation of HM(X) in [15] contains state as part of the core calculus. The
correctness of our general approach to encoding an OO language in a language
with records, state, and a constraint-based type system is established in [2].
As is the case for λsec, the pop-to-pmlB transformation also drives the develop-
ment of a direct type system for pop, and eases its soundness proof, while the
precise pmlB type discipline allows optimizations via the static enforcement
of dynamic security checks.

The pop system is an object-based calculus, where each object is assigned
a domain label d. These may be interpreted in various ways� as e.g. code
owners, or regions of static scope� allowing the language to model a variety
of approaches to security. Objects are also endowed with a user interface ϕ,
which is a mapping from domain labels to sets of method names, and speci�es
the per-domain access rights for objects; default access rights are speci�ed via
the �wildcard� domain ∂, and are universally authorized. For example, a �le
object o may be de�ned as follows, which is read/write in its own domain, but
read-only otherwise:

[read() = . . . ,write(x) = . . .] · d · {d 7→ {read,write} , ∂ 7→ {read}}

Security is then enforced on a use basis: when an object is used in a particular
domain, runtime checks ensure that the use is authorized. Continuing the
above example, the use o.read() is allowed in domain d′ 6= d, but o.write(e)
is not. This use-based approach has various bene�ts, e.g. a more �ne-grained
speci�cation of access rights.
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Highlights of the pop-to-pmlB transformation are then de�ned as follows.
The transformation of interfaces ϕ is denoted ϕ̂, and uses records of sets in
the image:

̂{d1 7→ ι1, · · · , dn 7→ ιn, ∂ 7→ ι} = {∅}{∂ = ι}{d1 = ι1} . . . {dn = ιn}

Objects are transformed roughly as follows 3 , where advanced features such
as the treatment of �self� are omitted here for brevity:

J[m1(x) = e1, . . . , mn(x) = en] · d · ϕKd′
=

{obj = {m1 = λx.Je1Kd, . . . ,mn = λx.JenKd}, ifc = ϕ̂}

Then, method selects are encoded so that access rights are always veri�ed; set
union is used to guarantee default access to the object:

Je1.m(e2)Kd = let c1 = Je1Kd in
(c1.ifc.d ∨ c1.ifc.∂) 3 m;

(c1.obj.m)(Je2Kd)

Again, a signi�cant feature of this transformation is that it highlights the ap-
plicability of the pmlB type analysis to security; all access checks associated
with method invocation are statically veri�ed, and may be removed at run-
time. This applicability extends to other language features, including access
restriction mechanisms implemented with intersection.

7 Conclusion
In this paper we have de�ned the pmlB programming language, whose princi-
pal novelty is a set of features for de�ning �nite and co�nite sets of urelements
and associated operations, along with a type system that exploits row types
and conditional constraints to accurately type these features. The type sys-
tem is de�ned by instantiation of HM(X), which provides an easy method for
proof of type soundness and de�nition of type inference.

We also describe applications of pmlB as an implementation language for
other systems, including a language incorporation stack inspection, and a
3 In these transformations, we use the following syntactic sugar:

{m1 = e1, . . . ,mn = en} , {∅}{m1 = e1} · · · {mn = en}
e1; e2 , letx = e1 in e2 x not free in e2
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language for modeling object con�nement mechanisms. Via these implemen-
tations, the precise pmlB type discipline provides a static analysis of dynamic
properties for these systems, allowing runtime optimizations. These distinct
applications also suggest that there may be other uses of pmlB as an imple-
mentation language for higher-level systems, indeed any system that contains
labels and associated operations as a central part of its feature set.
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