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Abstract results have demonstrated that stack inspection can be enforced
statically in a variety of language models (e.g. core ML), using
both type theories [20] and control flow graph abstractions [16].
It is argued that static verification of stack inspection promotes
program efficiency and understanding, and provides a more eager
approach to security. However, despite this body of work, only one
group has studied static enforcement of stack inspection for Java
bytecodes [13, 14], and none have thoroughly considered how to
integrate their analyses with dynamic linking and loading in the
JVM. But to be practical, it is obviously necessary for any analysis
to be applicable to the language model where stack inspection is
employed, so a consideration of the problem of dynamic linking
and loading is essential.

The Java JDK security model provides an access control mech-
anism for the JVM based on dynamic stack inspection. Previous
results have shown how stack inspection can be enforced at com-
pile time via whole-program type analysis, but features of the JVM
present significant remaining technical challenges. For instance,
dynamic dispatch at the bytecode level requires special consid-
eration to ensure flexibility in typing. Even more problematic is
dynamic class loading and linking, which disallow a purely static
analysis in principle, though the intended applications of the JDK
exploit these features. We propose an extension to existing byte-
code verification, that enforces stack inspection at link time, with-
out imposing new restrictions on the JVM class loading and link- ) .
ing mechanism. Our solution is more flexible than existing type In this paper we develop a type analysis for a Java bytecode lan-

based approaches, and establishes a formal type safety result fo _ul?_ge,_anr(]j SJEUDI:I/IV hOV\t’) it 'ca}_n Ee. integrfated with cI?ss Icl)(a_ding and
bytecode-level access control in the presence of dynamic class link-"King in the to obtain link time enforcement of stack inspec-
tion. An obvious problem is that purely static analysis is literally

ing- impossible in this setting, since not all code involved in the pro-
Categories and Subject DescriptorsdD.3.3 [Programming Lan- gram is known at compile-time. However, bytecode verification as
guage§ Constructs and Features it currently exists in the JVM [8] illustrates a compromise solu-
. L tion: even though dynamically loaded code is not known statically,
General Terms Security, Languages, Theory, Verification. it can be type checked at link time, yielding a formlifk time

type safetyNote that this is different than e.g. soft typing [4] or
dynamic typing [1], since link time type safety guarantees that dy-
namic checks will succeed, whereas those approaches are based on
. an interaction of type checks and dynamic checks. Link time typing
1. Introduction is essentially static typing performed incrementally as new code is
A primary purpose of the JDK security model is to protect against available (linked).
non-local extensions to local code in the Java Virtual Machine
(JVM) [9]. Sandboxingf dynamically loaded plug-ins and applets
provides security in web environments where non-local code au-
thors may not be fully trusted. Sandboxing relies on a combina-
tion of class loading discipline, bytecode verification, and dynamic
stack inspection to enforce security. An essential point is that the
intended applications of the JDK are in program settings where dy-
namic class loading and linking are used, and possibly abused.
Stack inspection is a language-based security mechanism use
in the JVM, which ensures that executing programs can access
a protected resource only if they're trusted to do so. The stack

inspection algorithm examines the dynamic caller history of the tage of type analysis of stack inspection, namely that it allows elim-
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y unp 9 Y OThe analysis must not impose on the flexibility of dynamic linking

through man-in-the-middle attacks [9, 24]. A variety of previous 4 loading as it currently exists in the JVM, in the sense that it

should not force earlier loading or linking of code. Since dynamic

linking and loading provides significant flexibility in JVM execu-

tion for web applications, this requirement ensures that flexibility
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Requirements for a solution The addition of dynamic loading
and linking to a bytecode level model raises some subtle issues
in the implementation. For example, we can imagine a scheme
whereby theentire program codebase is type checked again upon
every new linkage, but while this could obtain type safety it is not
a good solution to the problem. Thus, we enumerate four require-
ments for a solution as follows, with the understanding that this
oundational study will focus on a simplified core language model.
1) The analysis must provably eliminate the need for run time
checks, or any run time overhead associated with stack inspection.
This requirement is in place to preserve a known practical advan-



CTHB<:C CTFc<:D will fill in the details of verification with an analysis guaranteeing

CTFC<:C that run time stack inspections and associated machinery can be
CTHB<D eliminated in a simplified bytecode language model.
Our analysis is a type and effect system, where effects approxi-
CT(C) = class CextendsD {...}" mate the security effects of programs (stack inspection checks and
CTFC<:D privilege activations [9]). In particular, method types are of the form
T,..T, = T, whereT;..T, andT are the domain and range types
Figure 1. Nominal subtyping for FJ andR is the effect of the method. Object types are of the ¢,

whereC is the object class name arddescribes the fields and
methods of the object; thus our type system combines nominal and
Our contribution We claim that our system is a solution in the structural features. A constraint systdbhis a component of any
previously defined sense, because: (1) We develop metatheory forgiven type, and this, combined with effect polymorphism, allows
a link time type safety result demonstrating that run time stack in- the necessary flexibility for our analysis in the presence of linking.
spection checks can be eliminated in the presence of dynamic load-  For example, consider the following class definitieso, con-
ing and linking (Theorem 4.2). (2) Our type analysis works as an taining a single method that invokes thén method of &unnable
extension to bytecode verification, within the existing mechanism object, the latter specified as containing a single methadthat
for loading and linking. In particular, the analysis does not require takes and returns @bject:
any classes to be loaded or linked earlier than they would be in
the existing JVM. (3) A polymorphic constraint type system, com-
bined with a novel technique calledification provides a mod-
ular solution, that does not require re-computation of types when
new classes are linked. (4) Through the use of parametric polymor- Clearly, the statically assigned effect of the methodill be the
phism, our analysis is more complete than existing type systems for effect of therun method of the giverkunnable object. But any

class Foo extends Object {
Object m(Object x, Runnable y){ return y.run(x); }

JVM access control such as [14]. version of therun method may be dynamically dispatched at this
" L point, and more than one version may exist. Previous authors [14]
1.1 Linking and Type Reification have proposed an approach whereby the effesi®fipproximated

We define the semantics of programs as a single-step operationafs the join of the effects of all known versionsraf. A scheme for
relation onconfigurationsC. Leaving aside details for the moment, ~ Verifying linked classes is also outlined by those authors, whereby
any K is a model of machine and program state. Execution in the the effects of new versions a@fan must be contained in that join.
model depends on a class talilé", which is a mapping from class ~ However, this approach has two signifipant drawbacks. Firstly, in
namesC to class definition&. In a setting with dynamic loading  large codebases, where there may exist mRmnable classes,

and linking of classes, the given class table grows monotonically the join of effects will be very large and nonspecific. Secondly,
during execution. We Writ€T[C . L] to denote the extension of linked classes should be able to establish new security contexts—
CT with a mapping front to L, andC'T C C'T" means that every the point of the JDK after all is to allow interaction with unknown

mapping inC'T is also inCT". code. But in our system, polymorphic effects stand in for unknown
In the JVM, loading and linking are separate processes, henceéffects. Assuming the existence of @mject class with no fields

we are careful not to conflate the terrhinking of a clas<C in the or methods, and lettingnit £ [Object] be its type in our system,

JVM implies bytecode verification of, and general preparation  we can assign the following type Reo’s methodn:

of C for execution [14], e.g. resolution of references. Note that v} o}

bytecode verification of depends on checking subtyping relations, (Unit, [run : Unit — Unit Runnable]) — Unit

for example if a method is invoked on some clasthenD must be

o Here,v is a polymorphic type variable that may be lower bounded
asubclass of the declared method parameter type. Hence, linking ofy,, jjiterent type constraints at different application pointsof
a clas< requires that all class@smentioned irc beloadedso that

heir code | hand and sub lati be checked. B This allows us to achieve greater type precision and scalability to
their code Is on hand and subtype relations can be checked. Butjyqe codebases, as we will illustrate in Sect. 3.3 by returning to
class subtyping in Java isominal (Fig. 1), not structural, so that

; - . . X X this example.
checking subtype relations involvirigdoes not requir® to itself P

. ! . More significantly, polymorphic constraints serve as the basis
be typechecked. Once the code is on hand, the associated subtyping, gification a technique we develop to obtain precise typings for
relation is easily obtained from code annotations.

2 X . dynamically linked code. In essence, we delay the lower bound-
Our formalization of program execution thus mentions loaded

; ) ing of polymorphic effects until relevant code is linked, by main-
class table€'T",; and linked class tableST: as well as configu-  (4ining a closure that is filled in and elaborated by link time ver-
rations/C, so that one step reduction is written:

ification. Reification has the same computational complexity and
CTy,CTy, K — CT}y, CTh, K’ precision of purely static type analysis, the latter established in
Lemma 4.6. We obtain an appropriately phrased type safety result
in Theorem 3.1, based on a subject reduction argument, that also
obtains type safety for link time verification in Theorem 4.2. We
will revisit the above example in Sect. 2.2, Sect. 3.3, and Sect. 4.5
to illustrate our language, type system, and reification.

Linking steps are predicated on verification of the linked class, and
verification is predicated on the inheritance relation induced by the
loaded class table. WritingC'T' +yer5y C” to denote thatC is
verifiable given the inheritance relation declared in class tafile

the following rule approximates our linkage model:

CTw, CTw, K — CTw, CTy[C: L], K We begin our development with an overview of our language
Link time verification enforces safety during run time— that is, model. Ohori et al. have already defined a simplified bytecode
given a series of non-linking computation steps, since any execu- model with OO features including inheritance and dynamic dis-
tion is based on verified linked code, any resulting machine state is patch [14]. This serves as an appealing core model for develop-
guaranteed not to be ill-formed. In the remainder of the paper, we ment of our type analysis, and using it allows a direct comparison




reRTCR,RCR privileges
J &= C|C.C—C JVM types
I = enable(r) | check(r) | new C | invoke(C,m) instructions
B = return|goto({)|I-B blocks
v == h|newC values
M == {l1=Bi,...,0, =B,} methods
L == classCextendsD{mi:Ji = M,...,mp:Jp=DM,}" class definitions
¢ u= mil|vug stacks
D == nil|(R,¢,M™{B})::D dumps
H = {h1+—newCi,...,h, —newCy,} heaps
K (R,s, M™{B}, D, H) configurations

Figure 2. JVMseclanguage syntax

CT(C) = classCextendsD{...,m: J=M,...}"
mtypeor(m,C) = J

CT(C) = classCextendsD{m; :...,...,mpy :...}"

m¢Z m;..mp,
mtype o (m, C) = mtyper(m,D)
CT(C) = class CextendsD{...,m: J=M,...}"
mbodycr(m,C) = M™

CT(C) =classCextendsD{m; :...,...,mp:...}"

m ¢ m;..m,

mbody - (m, C) = mbody - (m, D)

Figure 3. Auxiliary functions

with their results. Therefore our language model is an extension of
Ohori et al's with dynamic loading and linking in the JVM style.

There are some important nuances to these mechanisms, so we first
provide intuitions as to how they work, prior to our formalization.

2.1 Configurations and Bytecode Instructions

Method type and supertype annotations are declared by the pro-
grammer, and form an important part of the backbone of type anal-
ysis. Themtype function defined in Fig. 3 retrieves the declared
types of methods. As in Java, we require that overridden methods
do not differ in their type annotations from supertype versions. For-
mally:

DEFINITION 2.1. A class tableC'T is annotation consisteriff for

all ¢ € dom(CT), CT(C) = class CextendsB{...}", and
mtypeor(m, C) = J and mtype 1 (m, B) = J’ together imply that
J=17.

Hereafter we assume that all class tables are annotation consistent.
Method bodies are sets of labeled blocks. All lalfedse unique
within a particular block. We assume that every methawntains
one block labelettntry. Blocks B are sequences of instructions,
which have access to an operand staci valuesv which are ob-
ject reference#. The instructiongoto(¢) is the standard goto in-
struction, andreturn terminates a method. Thew C instruction
creates a new object of class The instructionsnable(r) and
check(r) enable and check for a privilegerespectively.
Arguments for and return values of instructions reside on the
stacks. When we say that instructiorss “return” a valuev, this
literally means that is on the top of the stack whenterminates.
When a method with parameters is invoked, it is provided a stack
of depthn + 1; the additional element is a reference to the invoking

We now define the syntax and run time semantics of a simple byte- gpject at the bottom of the stack, so tisatLf is always accessible

code language, called JVi, assuming given a single linked, un-

via acc(0). The result of evaluating a program is the value at the

changing class table. The treatment is cursory since the specifica-op of the stack when it terminates.

tion is adapted from Higuchi et al.’s previous work [14], though for

ConfigurationsKC are then constructed from these elements.

simplicity, we leave out native code, and numeric values and oper- Each configuration includes a sBtof enabled privilegesin the
ations, as in their model. Also, rather than specifying authorization security passing style. Each configuration also contains an operand
requirements for methods, we adapt a stack inspection check thatstacks. Theredexcomponent\/ ™ {B} of a configuration represents

is closer in spirit to existing Java. The J\Mbytecode language

the blockB being executed, the methdd the block was defined

is functional, and omits object fields and mutual recursion between jn and the method’s defining principat that is, the principal that
classes to focus our technical treatment (recursion within a class owns the class in which the method is defined. Configurations also

definition is allowed).

containheapsH, which are mappings from locatiorsto objects.

The syntax of JVNkcis given in Fig. 2. We add to a standard  puympsare sequences of continuations; when a method is invoked,

bytecode language resouraetaken from a countably infinite set
‘R. Sets of privileges are denotd®, while principals = are also

the context of invocation is stored on the dump for subsequent
execution when the method returns. Selected operational semantics

defined as sets of privileges, following [20]. Classes contain a ryles for configurations are defined in Fig. 4. We write}.. to
supertype declaration, and a collection of labeled method bodies denote the reflexive, transitive closure -ofcr. We assume that

along with their type annotations, that we assume are function
types. In any function type;..C, — C, the notationC;..C,
represents a possibly empty sequence of JVM types, and we write

every program execution begins in an initial configuration with no
privileges enabled, as follows.

C € C;..C,, iff Cis an elementin the sequence. The empty sequence DEFINITION 2.2. We require that any class tabléT contains at

is denotedw. This sequence notation will be reused for other

syntactic forms.

least a definition for a clastiain owned by@ containing only
one methodhain. Theinitial heap H, contains a single mapping



R-GoTo

(R,¢, M™{goto(¥)}, D, H) —cr (R,c, M"{M"(¢)}, D, H)

R-RETURN

(R,v :: ¢, M™{return}, (Ro, 0, My°{B}) :: D, H) —c1 (Ro,v :: 0, M;°{B}, D, H)

R-CHECK

reR

(R,c,M"{check(r) -B}, D, H) —cr (R,¢, M"{B}, D, H)

R-ENABLE
remw

(R,s, M™{enable(r) -B}, D, H) —cr (RU{r},s, M"{B}, D, H)

R-NEW
(R,s,M™{newC-B},D,H) —cr (R,h :: ¢, M"{B}, D, H[h + new C])
R-INVOKE
H(h) =newD mbody o (m,D) = M[° mtypeop(m,D) = C1..C, — E
(R,v1 i+ vy i hiig, M"{invoke(C,m) - B}, D, H)
—CT
(RN o, vy i+ - 2t vy i hoimil, MTO{ Mo (entry)}, (R,s, M"{B}) :: D, H)

Figure 4. JVMsecconfiguration operational semantics

from a distinguished location, to an instance oflain, and the
initial stacke, contains justr,. Formally,¢, = h, :: niland H, £
{h. — new Main} Theinitial configurationkC, is then defined as
follows:

K. 2 (2,s, 2" {invoke(Main, main) - return}, nil, H,)

2.2 Examples

Here are some examples that illustrate JvMdytecode and extend
the running example begun in the introduction. We use syntactic
sugar(m : J = B) 2 (m: J = {entry = B}) to abbreviate methods
with only one block (necessarily labeledtry) in unlabeled form.
Letr, o, w3, w4 be arbitrary principals such that their intersection
includes distinctr; and r2. Then theFoo class introduced in
Sect. 1.1 can be rewritten in bytecode as follows, assuming that
it is owned bymy:

class Foo extends Object {
m: (Object,Runnable) — Object =
invoke(Runnable, run) - return
3

We further imagine two subclassesRfnnable that we assume
are annotation consistent, one that inspects for a privitegend
one that has no security restrictions:

class Bar extends Runnable {
run : Object — Object = check(r:1) - return
3
class Baz extends Runnable {
run : Object — Object = return
3
Later in Sect. 3.3 we will show what types our system assigns to

these classes statically, and how link time typings are obtained in
Sect. 4.5.

3. Type System Specification

Our type theory is based gmolymorphic subtyping constraints
which are well-known to be useful in OO settings for e.g. typing

c u= Pre]|Abs presence constructors
V u= cl|v|ex|r:V;V rows
R == {Vv} security effects
T == R|X|[TC]|(@m:T).(m:T)|T.T>T  types
X == v|t|s type variables
S u= nil|s|T:S stack types
C

T<:T|CAC |true constraints

Figure 5. JVMsectype and constraint syntax

binary methods and object self-reference [6]. A constraint repre-
sentation is also advantageous for the implementation of link time
type analysis, as we will observe in Sect. 4. We begin with formal

details of the type specification, leading up to a type safety result
(Theorem 3.1). However, the reader may wish to skip to Sect. 3.3
for examples and discussion, including discussion of how our state-
ment of type safety anticipates dynamic linking in the implementa-

tion.

3.1 The Type and Effect Language

The type and constraint grammar of JVdvis given in Fig. 5. The

type language includes method types. T, £, T wherer is the
latentsecurity effecof the method. The “guts” of security effects
are represented asw typesV, discussed in more detail below.
Object types are denotdd C], whereC is the class name of the
object andr is either a type variable or a sequence of method type
bindings for the objectm; : T1)..(m, : T,). To accommodate
stacks, we introducstack typess, which are just sequences of
types.

The type language specified in the grammar is more liberal than
what is actually allowed in type judgements. We endow types with
kinding rulesdefined in Fig. 6. Kinding rules are necessary for the
correct definition of row types, to impose the syntactic constraint
that row type variables can mention only a specific subset of fields



Xey
XG: kk c: Pres c* : Rowg
Vo : Pres V1 : ROWgU{r) r¢ R V: Rows
(r:Vo; V1) : Rowg {v} : Eff

mtype s (m, C) = Do..Dr, — D
[ToDo] : Type--- [TnD,]: Type  [TD]:Type R:

[To Do)..[Ts D] — [TD] : Methy ¢

Eff

methscr(C) = my..my, T1 : Methy, ¢ -+ Tn : Meth,, ¢

(m1 : T1)..(my : Tn) : Body,
T : Body, T:Type  S: Stack 1 - Stack
[TC]: Type (T :: S) : Stack e

Figure 6. Type Kinding Rules

owns a method, then the security effect of the body efwill be
of the form{r : V; Absx}.

Interpretation of Constraints Subtyping constraint§’ are con-
junctions ofatomicconstraints of the forrr <: T, with true being
the trivial constraint. We also |éD and E range over constraints.
We require that in any atomic constraih&: U thatT andU be of
the same kindc # Body, for any C, disallowing constraints on
naked class type bodies.

Constraints are interpreted in a regular tree model, the full de-
tails of which we omit here for brevity. It is essentially a combi-
nation of the models in [22] and [20] with new features to accom-
modate stack typesnterpretationsy, map types of kindc to ele-
ments of the semantic structure for each kind, deniddwhich
are sets of regular trees in the usual sense. A primitive subtyping
relation x is defined as a partial order over these structures. The
relation can be understood as the logical equivalent of consistent
closure as defined in Sect. 3 (see Lemma 4.3), so details of subtyp-
ing can be gleaned from that definition. The major points are that
the interpretation obtains width and depth subtyping for class types
while incorporating standard nominal JVM subtyping, and speci-
fies subtyping on row types as row type equality. The interpretation

[20], wherever they occur in a type. Context free grammars are not of subtyping constraints is formalized on the basis of the model as

sufficient to express this constraiitinds £ are defined as follows,
and we require that type terms be well-kinded:

k ::= Type| Pres| Rowg | Eff | Meth, ¢ | Body, | Stack

Here, the kindRowz is the kind of rows that mention every field
exceptthose inR. Note that each kin& has a distinct associated
set of type variable¥,— except foMeth, ¢, since we will not need
function type variables in our theory.

Abusing notation, variables of kirStackare denoted, of kinds
Rowz and Pres are denotedr, and of kind Type and Body, are
denotedt or u. We also letU range over types of kindype An

follows.

DeFINITION 3.1 (Interpretation of Constraints)Ve axiomitize the
relation i For C, pronounced: CT satisfiesor CT solvesC, as
follows:

1 For true 11(S) < w(T) givenCT

whker S<:T
wker C wter D
/Ll_cT CAND

important feature of the type language is that in any object type The relationC' I-cr D, pronouncedC' C'T entails D, holds iff

[TC], if Tis a vector of type bindings of kind, the kinding rules for

uteor Cimpliesy For D for all interpretationsy.. Constraints

Body, restrict the set bound names to be exactly the method namesC and D are CT equivalentwrittenC' =cr D, iff C I-cr D and

of C, providing an “inlined” width constraint on the form of the
type.

Restricted Row Types for EffectsSecurity effect® represent the

DlFer C.

For example, given a class talfl&" containing classes andB as
defined previously and letting = [to A] <: [t1 BJA[t1 B] <:[t2B],

security needs of instructions and methods— i.e. the privileges re-then C' has a solution, and the relatiafl I-or [to A] <: [t B]
quired to execute and invoke them. We use a restricted form of Nolds. A constraint of the forr{T B] <: [T: 4] has no solution due

row type to denote security effects. This allows us to leverage tech-
nigues developed in previous related work on types for Java acces

control [20]. As we will see, subtyping is invariant on security ef-
fects, i.e. subtyping on rows is just row equality. This allows the im-

to the declared nominal relatian<: B.

S3.2 Type Judgements and Validity

Types are logically assigned to JMMprograms via type judge-

plementation to use well-developed algorithms for row type equal- ment derivations. Since we use a constraint representation of types,

ity constraint solutions [19], with high efficiency since our row field

it is also necessary to restrict typing judgements to mention only

presence types are just nullary type constructors, not arbitrary typessolvable constraints. Subsequently, when considering type infer-

as for row types in general.

Specifically, security effects are constructed frprasence con-
structorsPre andAbs, denoting the presence or absence of partic-
ular resources in security effects. The row tyjxex* represents a
constant row specifying every element as being presentpasd
specifies every element as being absent. The row typ&/;; Vo
says something particular about the presence or absercalohg
with the information invq; note thatv, andv, can both be vari-
ables, in which case and all remaining elements can be present
or absent. This sort of polymorphism provides flexibility in our
theory, for example if some code block requires a privileg®
be used, but not’, then its security effect may be of the form
{r : Pre;r’ : v; V}, wherer’ can be constrained to lfre or Abs

at a later stage if conditions require. When typing method bodies,

the effect of the body is constrained to only allow presence of priv-
ileges allowed to the method owner, so for example i= {r}

ence, we will show that solvability is decidable.

Execution in JVMg. is based on evaluation of configurations,
which comprise a number of elements. Since type safety relates
typing and execution, typing must apply to these elements. Thus,
different type judgement forms need to be defined. The fundamen-
tal judgement is typing of instructiods £ + C, S,R>B : T, where
T"is a class and object reference type environméns, a mapping
from labels to typess is the type of the argument stack farthe se-
curity effectR is a static approximation of which privilegeseeds
to execute, and is the type returned by. We require that be of
kind Type

To accommodate polymorphism, we introduce constrained type
schemes of the foriX; ..X,, [C].T, ranged over by-. Letting fv(T)
denote the free variables 1 if X;..X, N fv(T) = @ we abbre-
viate VX;..X, [true].T asT. Substitutionamapping type variables
to types are denoteld /X,..T» /%], and are extended to types in



T-BLOCKS
L(¢1) =8S1,R1,T1 - L(¢n) = Sn,Rn, Tn I,LHC,81,Ri>By : Ty I, L+ C,8,, Ry >Bp : Ty

IL,CF{l :B1;...;4, : By}

T-METH
mbodycp(m,C) = M=} T £ C-M  L(entry) =S1,R1,U1  D(C)m=T,..T; =% Up
Clber U1 <:Up ATy -+ T; i T(C) :: 8o <: 81 Cller R <:{r1:Vi;...5Tn : Vs Absk A {r1 : Vi;...510 1 Vs V) <:Ro
I''Ckmn,C
T-CLASS
[;C: [TC),C Fm,Cforallm € methsor(C)  Clker [TC)<:[UC] XX, Nfv(I) =2
'k C:VXi.X,[C].[UC]
Figure 8. JVMsec Typing Rules for Blocks, Methods, and Classes
Lo T-Loc T-STACK-EMPTY LAcK-Cons
Tr(c) =VX[D].T C lker DIT/X - . N ICkv:T I'N'Ckg:8
(¢) = v[D] or DIT/X] I,CF h:D(h) I,C F nil : nil Y e
I',C + new C: T[T/X] ICk(v:ig):(T::8)
LHEaP T-DUMP-EMPTY
ICrHH : T for all H - B
,CFH(h):D(h)forall h € dom(H) I'FCR>nilT]: T

r'CrH

T-DumMP-CONS
m={r1,...,Tn} mNR={r1,...,r;} R={ri:Pre;...;rj:Pre;rj4+1:Vjq1;...;Tpn : Vy;Absk}
,L,C-M ICkg:8S I'LFHC,Up::S,R>B:U; '-C,R>D[U1]: T

TEC{r1:Vi;...;70 : Vo Absx} > (R, 5, M"{B}) :: D)[Uo] : T

T-CONFIG
IC+H Crv:U TFCRP>((R,s,M"{B})::D)U]:T

IC,Rt (R,v:¢,M"{B},D,H): T

Figure 9. JVMsec Runtime Entity Typing Rules

the usual manner. We require that substitutions be idempotent. En-Validity of typing is then predicated on both derivability and real-
vironments are specified as follows. Environments contain typing izability of type judgements, as follows.

assumptions for classes, and also for run-time heap locations: DEFINITION 3.3 (Type Judgement Validity)A type judgement is

Fu=o|;C:0)|T;(h:T) type environments CT valid iff it is derivable givenCT, and for anyT" and C
occurring in the judgement” is C'T realizable andC is CT
Lookup in an environment, denotdd C') or I'(h), is defined as solvable.
usual, returning the rightmost binding for the given parametér in )
and undefined if the parameter has no binding. Type Safety Now we are ready to consider type safety. The result

Typing rules for selected instructions are defined in Fig. 7 (we IS Statéd to anticipate the implementation of link time type infer-

omit a full listing for brevity). We use the notatidii ¢].m to abbre- ence defined in the next section. In the JVM, when configurations
viateT’ such thai(m : T') € T, implying thatT must be a sequence evaluate with linked and loaded class tables, it is only required that
of method type bindings of kinBody, for the notation to be de- linked classes are verified on the basis of type declarations in the
fined. Note that this restricts the formf in the T-INVOKE rule. A loaded class table. So, we formalize the idea of sound typing of a

weakening rule T-WEAKEN) integrates subtyping with type judge- ~ ¢lass table (the linked class table), on the basis of type declarations
ments, which is contravariant in the type of the stack. Recalling in @ superset of that class table (the loaded class table).

contravariance of subtyping for function domain types, this is nec- periniTION 3.4 (Class Table Typing)The environmertt is CT"
essary since the type of the stack represents the types of instructiorsound for a class tabl€T iff CT C CT’ and for all ¢ €
arguments. Typing rules for blocks, methods, and classes are givendom(CT) the judgement + C : F(C)_is CT’ valid.

in Fig. 8. Label typing< are local to method bodies, since method . ' .

labels are. The stack type for method typing reflects that the method',ntu't'\’e'y' our formal results guarantee s.afe conflgurapon reduc-
expectsself at the bottom of its argument stack. Now, we can de- tion by well-typedness of the class table linkages allowing that re-

fine well-formedness of type environments with respect to a given duction, rather than whole-program typing. Most of the proofs are
omitted here for brevity.

class table:

In order to formulate type safety, we extend typing judgements
DEFINITION 3.2 (Realizability of Environments)We say thatl’ to run-time entities in Fig. 9. Notable among these rules is the
is C'T realizable iff every class type binding In is of the form judgement form for dumps. Observe that a dump is a low-level

C: VX1..X,[D].[TC] and D is C'T solvable. evaluation context, with the top of the stack being the “hole” in the



T-GoTo
L(6) =S,R,T

C,S,R>goto(f) : T

T-RETURN
C,T::S,R>return: T

T-ENABLE
C,S,{r:Pre;Vi} >B:T

C,8,{r : Vo;V1} >> enable(r)-B: T

T-CHECK
C,S,{r:Pre;Vo} >B:T

C,S,{r : Pre;Vo} I> check(r) -B: T

T-INVOKE
C,U:=S,R>B:T Clrer Tom<:T1.T, — U
C,Ty -+ Ty [ToC] :: S,R1> invoke(C,m) -B: T

T-NEw
I'(C) = VX1.X,[D].To  Clrer DIT1/Xp.. Ty /%n]
C,To[T1/Xn..Tp/%n] :: S,RI>B: T

C,S,R>newC-B: T

T-WEAKEN
C,S0,Ro>B: T ClFer S<:So ARg <:R

C,8,R>B:T

Figure 7. JVMsecInstruction Typing

context. Hence, the judgement folR > D[T4] : T2 assigns the
typeT; as the return type of the dump, assuming that a value of type

follows that a judgement of the form, C, {Absx} F I, : Tis
CT’ valid. Thus by Lemma 3.1 and induction on the length of the
computation there exists@T" valid judgement”’, C, {Absx}
(R,s, M™{check(r) - B}, D, H) : T'. The result then follows by
Lemma 3.2. O

3.3 Examples and Discussion

The formalism just presented allows us to statically assign typings
in the manner discussed in Sect. 1.1. In particular, recalling class
Foo as defined in Sect. 2.2 and lettiligoe the type:

{v} {v}

(Unit, [run: Unit —> Unit Runnable]) — Unit

we observe that the following typing is valid:
Foo : Vv[true].[m : T Foo]

Note that the typing is presented in unconstrained form for clarity.
The polymorphic effect is quantified, so that different instances
of the class can be independently constrained. For example, recall
also the classeBar andBaz introduced in Sect. 2.2, that can be
statically assigned the following types in our system:

{r1:Pre;va}
_

Bar Vvs[true].[run : Unit Unit Bar]

{va}

Baz Vvs[truel.[run : Unit — Unit Baz]

Now, imagine that some program contains the following code snip-
pets:

@)
)

Types of the differenFoo instances created by the first instruction

new Foo - new Bar - new Object - invoke(Foo, m)

new Foo - new Baz - new Object - invoke(Foo, m)

T, is pushed on the stack. This technique allows us to demonstratejn each snippet can instantiatadifferently, say withv ;) andv )
subject reduction as the foundation of type safety, as opposed torespectively. The constraints imposed by typing of this code will

previous techniques that require a big-step operational view [14].
Subject reduction is stated as follows. By viewii@ as the linked
class table and'T” as the loaded class table, it becomes clear how
this statement formally anticipates link time typing.

LEMMA 3.1 (Subject Reduction)Given an environmerit that is

CT' sound forCT, and K1 —cr K2, and supposd’, C,R F

K1 : T is CT' valid. Then there exists &7 valid judgement
I'L,C,R - K2 : T, whereC IForr T'<:T and I is an

extension of" to new heap locations ifC,.

While our subject reduction result guarantees standard type
safety properties, for example well-formedness of method invoca-

then entail the following relations, assuming that the type instances
of Bar andBaz are instantiated trivially:

r1 : Pre;vs <:1v(1) Vg <:V(2)

However, it is important to observe that a relation betwegnand

V(2 is notimposed in general, so the types assigned to snippets (1)
and (2) accurately reflect their independent security requirements,
unlike the join of all effects approach [14], which will in fact reject
snippet (2) outside of a context whereis activated, violating the
principle of least privilege.

How Static Type Safety Anticipates Link Time SafetyNow, let

tion, we focus here on how the result guarantees that stack inspec-C’I" be a class table containing the definitionsFob, Bar, and

tion checks will succeed. First, we observe that the top level se-
curity effectR in a sound typing of a configuration where the next
instruction is a check for a resoureavill definitely reflect whether

r has been activated.

LEMMA 3.2 (Type Form of Checks)Given a C'T' valid judge-
ment as follows:

I C,Rt (R,v::¢,M"{check(r) -B},D,H): T
ThenC IFeor {r : Pre;V} <:Rforsomeviffr ¢ R.

Baz as in Sect. 2.2, le€'T”’ be a class table containing only the
definition of Foo, and supposé&”’ contains only the above bind-
ing for Foo and the bindin@ar : Vt[true].[t Bar]. Although this
latter binding is abstract and not a sound typing Bat, the en-
vironmentI is CT sound forCT’ by definition. Observe that a
CT derivable typing of the code snippet (1) givEhcan assign a
purely abstract typing for the effect of this snippet, since the type
of Bar is abstract. Clearly this does not reflect the run-time secu-
rity requirements of the invocation @8&r’s version ofrun during
execution of the snippet giveiT. However, giverC'T”, this code

On the basis of these results, we can demonstrate that sound typingnippet can only execute up to the invocatiorFeb’s methodm,

of an initial configuration ensures that it will not encounter a failing
check during execution.

THEOREM 3.1 (Type Enforcement of Checkslf T is C'T’ sound
for CT andK, —¢p (R, s, M™{check(r) - B}, D, H), thenr €
R.

Proof. By Definition 2.2, clas#ain is owned by. By virtue of
this, soundness df, and rulesT-CoNFIG and T-DUMPCONS, it

sinceBar is not inC'T’ hencembody . (run, Bar) is undefined.
Furthermore, the typing obtained givEhdoes ensure safety up to

the point of that instruction. Therefore, sinEéis CT sound for

CT’, this ensures safety for program execution gi¢&r’. While
progress in general cannot be guaranteed due to remaining class
linkage issues, Theorem 3.1 does ensure progress of stack inspec-
tions. What remains is to devise a general wasetty class typings

at link time without requiring re-analysis of linked code, that will in



mitypesr(m,C) =D1.Dp — D
{v}

—_—

tezpand o (m, C) = [t1 D1]..[tn Dn] [tD]

methscr(C) = my..m,

tezpand o (C) =
[(m : tezpand op(m1,C))..(my : tezpand or(mp,C)) C]

Figure 10. texpand Type Construction

this example concretize the purely abstract bindingfior I with

the sound binding foa in " at link time, as well as types of code
derived unde that depend on this binding. We consider these
issues in the next section.

4. Type System Implementation
We now consider the implementation of link time type analysis

I-GoTo
L(0) =s,v,t

true,s,ve goto(d) 1 t

I-RETURN
true,t ::s,veoreturn:t

I-ENABLE
C,S,ReB:t

C AR<:{r:Pre;vi},S,{r:vo;vi} & enable(r) -B:t

I-CHECK
C,8,ReB:t

C AR<:{r:Pre;v},S,Rc check(r) -B:t

I-INVOKE
Co,S,RB:t

T1..Tn — U = texpand o7 (m, C) [To C] = tezpand ~+(C)
C =gt CoNTom<:T1.Tp D UAU:s<:SAR<:v
C,Ty -+ Ty it [ToC] :: s,v e invoke(C,m) -B: t

based on our type theory. We will show that an algorithm exists [-NEW

for inferring valid type judgements, based on constreiasure In

addition to these standard type inference features, we also specify ['(C) = VXi..X,[D].To

an implementation of link time typing in the presence of dynamic
loading and linking. Essentially, we will extend the machine model

Co,S,ReB:t
C =get Co A p(D) A p(To) ::
C,s,RenewC-B:t

s<:8

to include an environment representing the types of linked classes.
When a class is loaded, an abstract type for it is added to the envi-
ronment. When a class is dynamically linked, the class is verified

by typing and the environment is reified with the new class typ- variables are substituted for marked variables, so markings promul-

Figure 11. JVMgecInstruction Type Inference

ing, or rejected as ill-typed. Our approach does not require any sort gate appropriately.

of recomputation of previously inferred types— in fact, the link time

analysis can be viewed as the same as static analysis, but performe
incrementally over the course of computation. Correctness of the

EFINITION 4.1. A renamingis a total substitution mapping type
variables to type variables. For eadfoqy, We distinguish a strict,

5 C
algorithms with respect to the logical specification in the previous countable subset ofarkedvariables ranged over by ". We re-

. . R . . C H C C\ __ C
section obtains a link time type safety result for the implementa- 9uire that for all p and tg there existst7 such thatp(tg) = ti.

tion.

4.1 Link Time Typing: Intuitions

When class types are inferred, the type of a clagsof the form
VX1..X,[C].[t C], where the constrair®’ forms a lower bound on
the abstract type. This constraint is the main artifact of type infer-

Theload versionof a classC, denotedioadvers (C), is defined as
follows:

loadvers (C) = Vt°[true].[t°C]

Hereafter we assume that the type implementation uses marked
variables only in load version typings and their renamings.

ence. However, since type inference is a verification technique, at4.2 Type Inference

load time this constraint is not available. But dynamic loading and
linking in Java allows linked code to reference unverified classes

hence, when typing code that references an unlinked Classme
type must be assumed for We call this thdoad versiontyping of
C

A load version class typing is a maximally general class type

of the formVt[true].[t C]. At link time the appropriate constraint
ont will be generated by inference. The processaificationfills

in the constraint. Both the type binding foyand every instruction
new C in linked code that will have been typed by an instance of

C’s load version, needs to be reified. Each of these reified instances

must be uniquely instantiated to enjoy the full benefit of polymor-
phism in our system. It is also critical to distinguish load version

typings of objects from the typing of method parameters, since the

Derivable typing judgements are reconstructed by type inference.

' The fundamental judgement in type inference applies to instruc-

tions, is writtenl", £ w C,S,R B : t, and is entirely analogous
to typing judgements for instructions. TH¥ in the inference re-
lation symbol is intended to evoke the original polymorphic type
inference algorithm. Whei' and £ are clear from context, these

judgements may be abbreviated@ss,R B : t. In inference, the

label environmentZ maps distinct labels in its domain to distinct
type variable triples, v, t, a form we callcanonical

Selected instruction type inference rules are given in Fig. 11 (we
omit a full listing for brevity). These rules and later definitions use
the following notation for brevity, which allows constraints to be
viewed as sets aitomic constraints

latter are directly lower bounded at method usage points, not by DEFINITION 4.2. Let C' range overatomic constraints, i.e. con-

class typings.
Thus, for each class nantein a given class table, we distin-
guish a countable subset of variablesiay,, denotedt®. These

straints of the forntrue or T<: U, and forallC = Cy A--- A Cl,
let set(C') = {C4,...,Cr}. Then define:

C =4t D < set(C) = set(D)

markedvariables differentiate load version class typings from types
of method parameters. They are not interpreted any differently from
normal type variables by any processes other than type instantiation
and reification. The normal machinery of polymorphism allows
to differentiate distinct type instances, by requiring that whenever
types are instantiated bygnamingquantified variables, marked

D CC <= set(D) C set(C) CeC < Ccset(C)

VX1.. X [C].T =set VX1.Xn[D].T <= C =4 D
ClearlyC =t D impliesC =¢r forall CT.



I-BLOCK
L(l)=s,v,u DI LFwC,S,ReB:t

TVL,OANs<:SAR<:vAt<:ulw (B

|-BLOCKS
F,C,Cl Fw Zl,Bl .. ~F7£,Cn Fw Zn,Bn

D,L,Cy A+ ANCyp bw {€1:By;...50, : Bn}

I-METH
mbody o1 (m, C) = MEm}
L(entry) = s1,v1, t1 ,L,Cobw M
Ci =set t1 <tUATy -+ =T i T(C) it sg <:sy
Ca =get V1 <: {T1 :W1;...;Tpn : Wy; Absx}
C3 =set {T1:W15...;Tn i Wp; W} <:Vo

F,COAC1A02A03 Fw m,C

rC)m=T.T, 2U

I-CLASS
methscr(C) = my..my, T = tezpand -1 (C)
X1.X, = fV(C) I';C: T, Ci Fw m;, C forallm; € m;..m,
C:set Cl/\/\cn/\T<[tC}

I'tw C: VX1..XH[C}.[‘I‘, C]

Figure 12. JVMsec Type Inference for Blocks, Methods, and
Classes

The inference rules are nondeterministic in the choice of type
variables. We caltanonicalthose derivations that choose globally
fresh variables whenever possible, both explicitly, and via renam-
ings andtexzpand construction as defined in Fig. 10. Hereafter we
assume that all derivations are canonical. A formal definition of

global freshness is easily obtained by adapting techniques such as

in [22], but we omit this definition and associatated machinery for
simplicity. Thetezpand construction returns an object type of the
form [T ¢], whereT includes fields for all the methods with
fresh abstract security effects, providing a “skeleton” on which to

C-FN
(T1..Tp > T<:U1..U, 25 1)

~close

(U1 <:T1 A AU, <:T, AT<:UAR<:R')

C-TRANS
(To <:T1 ANT1 <: TQ) ~rclose To <: T2

C-STACK

To :: So<:T1 ::S1 ~ciose To<:T1 A Sp<:S1

C-0BJ
[(m1:T1)..(mp : Tr) C] <:[(m1 : U1)..(mp : Up)..(mpm : Upm) D]
~close

Ti1<Ul A---ATp <:Up

Cl ~*close D
C —close CAND

DgC

Figure 13. Constraint Closure (Selected Rules)

X,T:k
F true : ok FT<:T: ok L
FX<:T: ok
X,T:k
L FTo::80<:Ty::81: 0k
FT<:X: o0k 0 o<t Lo
FC: ok FD: ok CTHC<:D
FCAD: ok F[TC]<:[SD]: ok

F(T1. Ty 5 T<:Uy..U, ~>U) : ok

hang inferred type constraints describing the class. As in most con-
straint systems, inference proceeds by adding constraints appropri-
ate to expressions in a syntax-directed manner, from the leaves to-
wards the root of expressions. We observe that inference is sound,
in the following sense. The result follows by straightforward induc-
tion on derivations.

LEMMA 4.1. GivenT" and L. Then ifT', L +w C,S,Re=B: tis
derivable giverCT, soisI', L+ C,S,R>B : t.

Figure 14. Constraint Consistency (Selected Rules)

Well-developed and efficient techniques for solving row type
equality constraints have been presented by previous authors [19],
so we won't dwell on the issue here. Given any constr@ira sub-
set of the constraints generated by closure will be row type equality
constraints, and for the purposes of this presentation we imagine

. . ._that they are filtered out and dealt with by existing techniques [19].

_ Type inference is extended to blocks, methods, and classes incongtraint closure for the remaining JdMtype forms is defined

Fig. 12. The rules are unremarkable except fM ETH, which ;5 the rewrite rules given in Fig. 13 and Definition 4.3.
ties together inferred type constraints and type assumptions in the
class and label type environments. By straightforward inversion of DEFINITION 4.3 (Closure).The rewrite rulesw cjose and — ciose
these rules and induction on derivations, we are able to obtain theare defined in Fig. 13C is closediff there does not exisD
following result, which is in a convenient form for establishing link  such thatC —,sc D. The relation —%,,. is the reflexive,
time type safety in a later section. transitive closure of— ... We defineclose(C) as a closed
constraint such thatC —7,,. close(C), and say thatC is
closediff C =, close(C). Define close(VX1..Xn[C].T) =
VX1..Xn[close(C)].T, and close(T") = I iff dom(T") = dom(T")
andI”(C) = close(T'(C)) for all ¢ € dom(T).

4.3 Closure and Consistency We observe that closure doesn’'t change the logical meaning of a
To automatically check satisfiability of constraints, the type imple- constrainiC'. Intuitively, it simply makes explicit all the constraints
mentation comprises a constraint closure algorithm and consistencyimplicit in C' for consistency analysis.

check. We say that a constraifitis C'T' consistentff - C : ok is

THEOREM4.1 (Soundness of Class Type Inferenc&jven envi-
ronmentl” such that fyI") = @. Thenifl’ Fw C: VX;.X,[C].t is
derivable giverCT, soisI" I- C : VX1..X,[C].t.

derivable giverC'T’, as axiomatized in Fig. 14. These rules assume
given a class tabl€'T'. We say that an environmehtis C'T con-
sistent iff for allC € dom(I") with I'(C) = VX;..X,[C].T, itis the
case thatC' is C'T consistent.

LEMMA 4.2. close(C) =¢r C forall C andCT.

The following result establishes that consistent closure is equivalent
to solvability of constraints. It is obtained by composition of rele-
vant results for row types, and for a similar Java source language



is CT4 sound forCT', throughout computation. This is accom-

C
plt) =t plished through composition of type inference, reification, closure,
reify(t%, O, t) = p(O) and consistency checks, which are all performed at link time.
The full operational semantics with type safe dynamic linking
.48 = labvarsp(X1..X,) is defined in Fig. 16. Evaluation based on the linked class table is
Vi € 1.k . reify(+?, D,u) = D; allowed via theR-EVAL rule. TheR-LOAD rule specifies dynamic
E=3t CADiA--A Dy loading, which includes an extension of the environmenwith

a load version typing of the loaded class. Type verification is per-
formed at link time, as specified in tl&-LINK rule: after inferring

- - —— the type of the newly linked class the load version typings afin
Figure 15. Constraint Reification existing typings inl" are reified, the reified environment is closed,
and its consistency checked. Reification has been defined at an in-
tuitive level above. We now define it formally:

reify (V1. Xn[C].[t C], V¥1..Y,n [D].[uD]) = VIV (E, t)[E].[t C]

R-EvAL P . )
K —or, K DEFINITION 4.5. Constraintreificationfor type schemes is defined
Ik

T T KT (T OT 0 KT in Fig. 15, wherelabvarsc(D,T) = {t°|t° € fv(D,T)}. Fur-
(CTw, CTw),K,T" — (CTw, OTw), K, thermore, we definecify(T', o) = I iff dom(I") = dom(T") and
for all ¢ € dom(T) itis the case thateify(I'(C), o) = I'(C).

R-LoAD
(CTw,CTw),K,T In the metatheory, we need to establish soundness of reifica-
— tion. That is, we need to show that reified types are inferrable. The
(CTwlC: L],CTy), K, (I;C : loadvers(C)) lemma follows by inversion of the type inference rules, and induc-
tion on instruction type derivations:
R-LINK .
¢ ¢ dom(CTy) CTwu(C) =L I'Fw C:ogivenCT LEMMA 4.5.GivenT'(C) = loadvers(C) andT' Fw C : o

derivable givenCT. Then ifl’ -y D : ¢’ is derivable giverCT,

r_ . ’ . N
I = close(reify(T', o)) I'" is CTq consistent soisreify(T, o) Fw D : reify(c’, ).

(CTld,Cle),/C,F — (CTld,Cle[C : L]),/C,F/

We also need to show that “staged” closure in the presence of
dynamic linking and reification is the same as whole program
closure.

. . . LEMMA4.6.If T Fw C : o is C'T derivable then so is the
type constraint system [22] (modulo security effects), extended in j dgementiose(T") Fw C : o With close(0) =t close(a”).
a straightforward manner to accommodate stack types. ‘

Figure 16. Semantics of Type Safe Dynamic Linking

. o . . . Now, we can show a crucial technical result, which establishes that
LEMMA 4.3. C'is CT satisfiable iffclose(C') is CT consistentfor  type verification in theR-LINK rule preserves soundness of class

all C'andCT. table typings.

4.4 Reification and Type Safe Dynamic Linking LEMMA 4.7. Given:

Now we are ready to put the pieces together for type safe dynamic I'(C) = loadvers(C) I'tw (CTw, CTy)
linking. It remains to define reification, to define the operational

semantics of dynamic linking to incorporate our bytecode verifica- I'kw C: o givenCTy I'" = close(reify(T, o))
tion technigue, and to frame the metatheory correctly to obtain a

type safety result in the presence of dynamic linking. I is CT4 consistent

We begin by specifying a type inference relation for loaded and ' .
linked class table pairéCT 4, CT};,) that is the implementation Thenl™ Fw (€T, CTy[C : L]).
analogue of Definition 3.4 as observed in the lemma following the Proof (Sketch)By assumptior” is closed and consistent, and by
definition. In this definition and afterwards, we assume that in any the definition ofreify it is easy to see that for @l € dom(CTq)—
pair (CTq, CTy) thatCTy, C CTq. dom(CTy[C : L]) it is the case thateify(loadvers(D),o) =

DEFINITION 4.4. The relationl’ kv (C'Tu, CTy) holds iffT is loadvers (D), since loadvers (D) will not contain any variable

. marked byC. AssumingD € dom(CT[C : L]), it remains to be
closed andC'T';4 consistent, and for alt € dom(CT ') there ex- shown that there exists@T derivable iudaement’ w D : o
ists aC'T';4 derivable judgemeri Fy C : o such thail'(C) = ld Jucd W

= such thatl¥(D)n =, close(o”), which follows by assumption,
fégﬁ?&%ﬁ;ﬁfgﬂﬁ;ﬁg(CTM) — dom(CTy) itis the case Definition 4.4, Lemma 4.5, and Lemma 4.6. O

LEMMA 4.4.1f T Fw (CTuw, CTw) thenI' is CTiq valid for rem 3.1), we are now able to demonstrate that our link time byte-
CT . code verification technique enforces access control in 2\ Mrit-

The type inference relation just defined applies to a given pair iNg —" to denote the reflexive, transitive closure-ef
of loaded and linked class tables, but in the presence of dynamic Teorem4.2 (Link Time Enforcement of Checks)f the rela-
linking and loading these tables will evolve as computation pro- tionT -y, (CT'4, CTy) holds and:
ceeds. Since type inference accompanies linking, and old types .
may need to be reified and new types may depend on existing (CTw,CTw), K0, T —
types, a type environment must also be maintained during com- (CTy,CTy), (R,s, M™{check(r) - B}, D, H),T’
putation. Hence, states in our full machine model are of the form thenr € R
(CTw,CTw), K, T, whereI" maintains load version typings of :
loaded classes and fully verified typings of linked classes. The Proof. By induction on the length of the computation and case
goal of our type implementation is to maintain the relation fhat  analysis on reduction steps, the crucial case b&rgINK where

On the basis of these results and link time type safety (Theo-



Lemma 4.7 applies, we have that v (CT,;, CTy,). Butitis
easy to show that, _)Z'Tl/k (R,s, M™{check(r) - B}, D, H), SO
the result follows by Lemma 4.4 and Theorem 3.1. O

4.5 Examples and Discussion

We now return to the running examples last visited in Sect. 3.3, to
illustrate the main ideas behind reification. For clarity, we present
typings in term form not actually generated by type inference, that
generates typings in constraint form. Assume that clagsesnd

Baz are in the linked class tabl€'T";;, and have been assigned
typings as in Sect. 3.3. Assume also that clssis in the loaded
class tableC'T';4, but has not yet been linked, so that it has been
assigned a load version typing"°[true].[t"° Foo]. Recalling

safety properties such as safe initialization of objects [7], and class
loader safety [17]. However, these works have not considered type
verification of stack inspection. Previous type systems for more
flexible dynamic linking in the JVM are related in their technical
approach, such as the use of polymorphism for expressive typing of
linked code [3, 2]. Other related foundational work in type theory
for languages with dynamic linking are in the same general vein as
ours [11], especially previous approaches to so-called incremental
typing for web applications that exploit dynamic linking [10].

Future Work A number of technical issues for continued study

exist. In particular, the language model studied in this paper lacks
many features of JVM bytecode. Object downcasting can be eas-
ily addressed by adapting the “soft subtyping” relation developed

the code snippets (1) and (2) in Sect. 3.3, observe that each snippein previous work [22], but side effecting features such as state, ex-

will generate a distincFoo instance. Type instantiation due to
the I-NEw inference rule will assign distinct typési® Foo] and
[t5°° Foo] to these distinct instances. Additionally, thénvk rule

will impose these types as lower bounds of the types of the objects
whosem methods are invoked dBar andBaz objects in snippets
(1) and (2) respectively. Wheivo is eventually linked, reification,
and closure will fill in these type instances with lower bounds
defined by class type inference Boo and instantiation, obtaining
constraints of the following form, whemeis as defined in Sect. 3.3;
variablesv(;y andv,y are chosen for the purposes of the example,
though any fresh variables would be canonically correct:

[(m: T[v(1)/v]) Foo]<:[t]* Foo]
[(m: T[v(2)/v]) Foo]<:[t5” Foo]

Now, becauséti°° Foo] and [t5°° Foo] form lower bounds of the
invoked object, therefore typ&$v ) /v] andT[v(q/v] form lower
bounds on the invocation types by transitivity, and the types of
Bar andBaz lower bound the argument types of these by con-
travariance of function domain subtyping, thus closure will yield
the following constraints, assuming the typesBat andBaz in

Sect. 3.3 are inferred and instantiated trivially:
ri : Pre;vs <: V(1) Vg <:V(2)

In short, reification yields the same accurate typings obtainable
statically as in Sect. 3.3, via the mechanism of polymorphism.

5. Conclusion: Related and Future Work

Related Work The work most related to ours is Higuchi et al.'s
type system for JVM access control [13, 14], that we have discussed
throughout the paper. Their work underlies and inspires ours. The

type system we present here is also based on a previous one that

uses polymorphism to achieve flexible typings in a Featherweight
Java (FJ) model [21, 22] called &J However Fd is at the
sourcecode level, not the bytecode level, its execution model does
not incorporate dynamic loading and linking, and althougk.d=J

does employ an access control mechanism, it is more general, more [5]

computationally expensive to verify, and not an existing component
of the JVM.

Our use of polymorphic row types for type enforcement of
stack inspection is also inspired by previous type systems for stack
inspection, in a much simpler high level language model based on
the A-calculus [20]. A variety of bytecode-level type theories have
been developed for enforcing type safety in the JVM [18, 12, 23],
that have focused on a rich set of type safety issues other than
access control.

The formalism we've developed for dynamic loading and link-
ing in the JVM is based on previous formalisms [8, 5], especially
work by Jensen et al. [15], though a number of previous authors
have studied the problem of formalizing the JVM to prove type

ception handling, and threading remain a significant issue. In this
richer setting, a soft typing approach probably needs to be adapted,
especially if parameterized privileges are considered as in [14].

Our type theory as it currently exists could also be refined, for
example while we have proven type inference sound for the logical
type specification, we have not demonstrated completeness. Effi-
ciency of the analysis could be improved, by modifying aspects of
the algorithm we have kept simple for purposes of this presentation.
For example, in thé-CLASS type inference rules, when a class is
typed every one of its methods is, including those that are inher-
ited from superclasses. This is to ensure sound typing of method
overrides and methods employing self-reference, but if an inherited
method is detected as not being self-referential its typing can be in-
herited as well. In the same vein, we have maintained a closure for
whole environments, but for a sound (though less eager) analysis
only a closure of clasain needs to be maintained.

At a higher level, empirical testing is an appropriate next step
to ensure that our proposed extension has tractable behavior in
practice. Furthermore, a comprehensive survey of common design
patterns should be made, to ensure that our system is sufficiently
flexible to accommodate them.
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