
Type Safe Dynamic Linking for JVM Access Control

Christian Skalka
University of Vermont
skalka@cs.uvm.edu

Abstract
The Java JDK security model provides an access control mech-
anism for the JVM based on dynamic stack inspection. Previous
results have shown how stack inspection can be enforced at com-
pile time via whole-program type analysis, but features of the JVM
present significant remaining technical challenges. For instance,
dynamic dispatch at the bytecode level requires special consid-
eration to ensure flexibility in typing. Even more problematic is
dynamic class loading and linking, which disallow a purely static
analysis in principle, though the intended applications of the JDK
exploit these features. We propose an extension to existing byte-
code verification, that enforces stack inspection at link time, with-
out imposing new restrictions on the JVM class loading and link-
ing mechanism. Our solution is more flexible than existing type
based approaches, and establishes a formal type safety result for
bytecode-level access control in the presence of dynamic class link-
ing.

Categories and Subject DescriptorsD.3.3 [Programming Lan-
guages]: Constructs and Features

General Terms Security, Languages, Theory, Verification.

Keywords Static type analysis, bytecode verification, dynamic
linking, language-based security.

1. Introduction
A primary purpose of the JDK security model is to protect against
non-local extensions to local code in the Java Virtual Machine
(JVM) [9]. Sandboxingof dynamically loaded plug-ins and applets
provides security in web environments where non-local code au-
thors may not be fully trusted. Sandboxing relies on a combina-
tion of class loading discipline, bytecode verification, and dynamic
stack inspection to enforce security. An essential point is that the
intended applications of the JDK are in program settings where dy-
namic class loading and linking are used, and possibly abused.

Stack inspection is a language-based security mechanism used
in the JVM, which ensures that executing programs can access
a protected resource only if they’re trusted to do so. The stack
inspection algorithm examines the dynamic caller history of the
program, as recorded on the call stack, to ensure that particular
resources are not accessed by unprivileged code either directly or
through man-in-the-middle attacks [9, 24]. A variety of previous

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPDP’07 July 14–16, 2007, Wroclaw, Poland.
Copyright c© 2007 ACM 978-1-59593-769-8/07/0007. . . $5.00

results have demonstrated that stack inspection can be enforced
statically in a variety of language models (e.g. core ML), using
both type theories [20] and control flow graph abstractions [16].
It is argued that static verification of stack inspection promotes
program efficiency and understanding, and provides a more eager
approach to security. However, despite this body of work, only one
group has studied static enforcement of stack inspection for Java
bytecodes [13, 14], and none have thoroughly considered how to
integrate their analyses with dynamic linking and loading in the
JVM. But to be practical, it is obviously necessary for any analysis
to be applicable to the language model where stack inspection is
employed, so a consideration of the problem of dynamic linking
and loading is essential.

In this paper we develop a type analysis for a Java bytecode lan-
guage, and show how it can be integrated with class loading and
linking in the JVM to obtain link time enforcement of stack inspec-
tion. An obvious problem is that purely static analysis is literally
impossible in this setting, since not all code involved in the pro-
gram is known at compile-time. However, bytecode verification as
it currently exists in the JVM [8] illustrates a compromise solu-
tion: even though dynamically loaded code is not known statically,
it can be type checked at link time, yielding a form oflink time
type safety. Note that this is different than e.g. soft typing [4] or
dynamic typing [1], since link time type safety guarantees that dy-
namic checks will succeed, whereas those approaches are based on
an interaction of type checks and dynamic checks. Link time typing
is essentially static typing performed incrementally as new code is
available (linked).

Requirements for a solution The addition of dynamic loading
and linking to a bytecode level model raises some subtle issues
in the implementation. For example, we can imagine a scheme
whereby theentire program codebase is type checked again upon
every new linkage, but while this could obtain type safety it is not
a good solution to the problem. Thus, we enumerate four require-
ments for a solution as follows, with the understanding that this
foundational study will focus on a simplified core language model.
(1) The analysis must provably eliminate the need for run time
checks, or any run time overhead associated with stack inspection.
This requirement is in place to preserve a known practical advan-
tage of type analysis of stack inspection, namely that it allows elim-
ination of run time checks and enables compiler optimizations. (2)
The analysis must not impose on the flexibility of dynamic linking
and loading as it currently exists in the JVM, in the sense that it
should not force earlier loading or linking of code. Since dynamic
linking and loading provides significant flexibility in JVM execu-
tion for web applications, this requirement ensures that flexibility
is preserved. (3) The analysis must be modular, in that analysis of
dynamically loaded and linked code must not require re-analysis of
previously linked code. (4) The analysis must be sufficiently flexi-
ble to provide a foundation for realistic program analysis. This last
point will be clarified when we examine previous related work that
imposes perhaps unrealistic restrictions on code.



CT ` C<: C
CT ` B<: C CT ` C<: D

CT ` B<: D

CT (C) = class C extends D {. . .}π

CT ` C<: D

Figure 1. Nominal subtyping for FJ

Our contribution We claim that our system is a solution in the
previously defined sense, because: (1) We develop metatheory for
a link time type safety result demonstrating that run time stack in-
spection checks can be eliminated in the presence of dynamic load-
ing and linking (Theorem 4.2). (2) Our type analysis works as an
extension to bytecode verification, within the existing mechanism
for loading and linking. In particular, the analysis does not require
any classes to be loaded or linked earlier than they would be in
the existing JVM. (3) A polymorphic constraint type system, com-
bined with a novel technique calledreification, provides a mod-
ular solution, that does not require re-computation of types when
new classes are linked. (4) Through the use of parametric polymor-
phism, our analysis is more complete than existing type systems for
JVM access control such as [14].

1.1 Linking and Type Reification

We define the semantics of programs as a single-step operational
relation onconfigurationsK. Leaving aside details for the moment,
anyK is a model of machine and program state. Execution in the
model depends on a class tableCT , which is a mapping from class
namesC to class definitionsL. In a setting with dynamic loading
and linking of classes, the given class table grows monotonically
during execution. We writeCT [C : L] to denote the extension of
CT with a mapping fromC to L, andCT ⊆ CT ′ means that every
mapping inCT is also inCT ′.

In the JVM, loading and linking are separate processes, hence
we are careful not to conflate the terms.Linking of a classC in the
JVM implies bytecode verification ofC, and general preparation
of C for execution [14], e.g. resolution of references. Note that
bytecode verification ofC depends on checking subtyping relations,
for example if a method is invoked on some classD, thenD must be
a subclass of the declared method parameter type. Hence, linking of
a classC requires that all classesD mentioned inC beloadedso that
their code is on hand and subtype relations can be checked. But
class subtyping in Java isnominal (Fig. 1), not structural, so that
checking subtype relations involvingD does not requireD to itself
be typechecked. Once the code is on hand, the associated subtyping
relation is easily obtained from code annotations.

Our formalization of program execution thus mentions loaded
class tablesCT ld and linked class tablesCT lk as well as configu-
rationsK, so that one step reduction is written:

CT ld , CT lk ,K → CT ′ld , CT ′lk ,K′

Linking steps are predicated on verification of the linked class, and
verification is predicated on the inheritance relation induced by the
loaded class table. Writing “CT `verify C” to denote thatC is
verifiable given the inheritance relation declared in class tableCT ,
the following rule approximates our linkage model:

C ∈ dom(CT ld) CT ld `verify C

CT ld , CT lk ,K → CT ld , CT lk [C : L],K
Link time verification enforces safety during run time– that is,
given a series of non-linking computation steps, since any execu-
tion is based on verified linked code, any resulting machine state is
guaranteed not to be ill-formed. In the remainder of the paper, we

will fill in the details of verification with an analysis guaranteeing
that run time stack inspections and associated machinery can be
eliminated in a simplified bytecode language model.

Our analysis is a type and effect system, where effects approxi-
mate the security effects of programs (stack inspection checks and
privilege activations [9]). In particular, method types are of the form
T1..Tn

R−→ T, whereT1..Tn andT are the domain and range types
andR is the effect of the method. Object types are of the form[T C],
whereC is the object class name andT describes the fields and
methods of the object; thus our type system combines nominal and
structural features. A constraint systemD is a component of any
given type, and this, combined with effect polymorphism, allows
the necessary flexibility for our analysis in the presence of linking.

For example, consider the following class definitionFoo, con-
taining a single method that invokes therun method of aRunnable
object, the latter specified as containing a single methodrun that
takes and returns anObject:

class Foo extends Object {
Object m(Object x, Runnable y){ return y.run(x); }

}
Clearly, the statically assigned effect of the methodm will be the
effect of therun method of the givenRunnable object. But any
version of therun method may be dynamically dispatched at this
point, and more than one version may exist. Previous authors [14]
have proposed an approach whereby the effect ofm is approximated
as the join of the effects of all known versions ofrun. A scheme for
verifying linked classes is also outlined by those authors, whereby
the effects of new versions ofrun must be contained in that join.
However, this approach has two significant drawbacks. Firstly, in
large codebases, where there may exist manyRunnable classes,
the join of effects will be very large and nonspecific. Secondly,
linked classes should be able to establish new security contexts–
the point of the JDK after all is to allow interaction with unknown
code. But in our system, polymorphic effects stand in for unknown
effects. Assuming the existence of anObject class with no fields
or methods, and lettingUnit , [ Object] be its type in our system,
we can assign the following type toFoo’s methodm:

(Unit, [run : Unit
{v}−−→ Unit Runnable])

{v}−−→ Unit

Here,v is a polymorphic type variable that may be lower bounded
by different type constraints at different application points ofm.
This allows us to achieve greater type precision and scalability to
large codebases, as we will illustrate in Sect. 3.3 by returning to
this example.

More significantly, polymorphic constraints serve as the basis
for reification, a technique we develop to obtain precise typings for
dynamically linked code. In essence, we delay the lower bound-
ing of polymorphic effects until relevant code is linked, by main-
taining a closure that is filled in and elaborated by link time ver-
ification. Reification has the same computational complexity and
precision of purely static type analysis, the latter established in
Lemma 4.6. We obtain an appropriately phrased type safety result
in Theorem 3.1, based on a subject reduction argument, that also
obtains type safety for link time verification in Theorem 4.2. We
will revisit the above example in Sect. 2.2, Sect. 3.3, and Sect. 4.5
to illustrate our language, type system, and reification.

2. The Language Model
We begin our development with an overview of our language
model. Ohori et al. have already defined a simplified bytecode
model with OO features including inheritance and dynamic dis-
patch [14]. This serves as an appealing core model for develop-
ment of our type analysis, and using it allows a direct comparison



r ∈ R, π ⊆ R, R ⊆ R privileges

J ::= C | C..C→ C JVM types

I ::= enable(r) | check(r) | new C | invoke(C, m) instructions

B ::= return | goto(`) | I · B blocks

v ::= h | new C values

M ::= {`1 = B1, . . . , `n = Bn} methods

L ::= class C extends D {m1 : J1 = M1, . . . , mn : Jn = Mn}π class definitions

ς ::= nil | v :: ς stacks

D ::= nil | (R, ς, Mπ{B}) :: D dumps

H ::= {h1 7→ new C1, . . . , hn 7→ new Cn} heaps

K ::= 〈R, ς, Mπ{B}, D, H〉 configurations

Figure 2. JVMsec language syntax

CT (C) = class C extends D {. . . , m : J = M, . . .}π

mtypeCT (m, C) = J

CT (C) = class C extends D {m1 : . . . , . . . , mn : . . .}π

m 6∈ m1..mn

mtypeCT (m, C) = mtypeCT (m, D)

CT (C) = class C extends D {. . . , m : J = M, . . .}π

mbodyCT (m, C) = Mπ

CT (C) = class C extends D {m1 : . . . , . . . , mn : . . .}π

m 6∈ m1..mn

mbodyCT (m, C) = mbodyCT (m, D)

Figure 3. Auxiliary functions

with their results. Therefore our language model is an extension of
Ohori et al.’s with dynamic loading and linking in the JVM style.
There are some important nuances to these mechanisms, so we first
provide intuitions as to how they work, prior to our formalization.

2.1 Configurations and Bytecode Instructions

We now define the syntax and run time semantics of a simple byte-
code language, called JVMsec, assuming given a single linked, un-
changing class table. The treatment is cursory since the specifica-
tion is adapted from Higuchi et al.’s previous work [14], though for
simplicity, we leave out native code, and numeric values and oper-
ations, as in their model. Also, rather than specifying authorization
requirements for methods, we adapt a stack inspection check that
is closer in spirit to existing Java. The JVMsec bytecode language
is functional, and omits object fields and mutual recursion between
classes to focus our technical treatment (recursion within a class
definition is allowed).

The syntax of JVMsec is given in Fig. 2. We add to a standard
bytecode language resourcesr taken from a countably infinite set
R. Sets of privileges are denotedR, while principals π are also
defined as sets of privileges, following [20]. Classes contain a
supertype declaration, and a collection of labeled method bodies
along with their type annotationsJ, that we assume are function
types. In any function typeC1..Cn → C, the notationC1..Cn

represents a possibly empty sequence of JVM types, and we write
C ∈ C1..Cn iff C is an element in the sequence. The empty sequence
is denoted∅. This sequence notation will be reused for other
syntactic forms.

Method type and supertype annotations are declared by the pro-
grammer, and form an important part of the backbone of type anal-
ysis. Themtype function defined in Fig. 3 retrieves the declared
types of methods. As in Java, we require that overridden methods
do not differ in their type annotations from supertype versions. For-
mally:

DEFINITION 2.1. A class tableCT is annotation consistentiff for
all C ∈ dom(CT ), CT (C) = class C extends B {. . .}π, and
mtypeCT (m, C) = J andmtypeCT (m, B) = J′ together imply that
J = J′.

Hereafter we assume that all class tables are annotation consistent.
Method bodies are sets of labeled blocks. All labels` are unique

within a particular block. We assume that every methodm contains
one block labeledentry . BlocksB are sequences of instructions,
which have access to an operand stackς of valuesv which are ob-
ject referencesh. The instructiongoto(`) is the standard goto in-
struction, andreturn terminates a method. Thenew C instruction
creates a new object of classC. The instructionsenable(r) and
check(r) enable and check for a privileger respectively.

Arguments for and return values of instructions reside on the
stackς. When we say that instructionsB “return” a valuev, this
literally means thatv is on the top of the stack whenB terminates.
When a method withn parameters is invoked, it is provided a stack
of depthn+1; the additional element is a reference to the invoking
object at the bottom of the stack, so thatself is always accessible
via acc(0). The result of evaluating a program is the value at the
top of the stack when it terminates.

ConfigurationsK are then constructed from these elements.
Each configuration includes a setR of enabled privileges, in the
security passing style. Each configuration also contains an operand
stackς. TheredexcomponentMπ{B} of a configuration represents
the blockB being executed, the methodM the block was defined
in, and the method’s defining principalπ– that is, the principal that
owns the class in which the method is defined. Configurations also
containheapsH, which are mappings from locationsh to objects.
Dumpsare sequences of continuations; when a method is invoked,
the context of invocation is stored on the dump for subsequent
execution when the method returns. Selected operational semantics
rules for configurations are defined in Fig. 4. We write→?

CT to
denote the reflexive, transitive closure of→CT . We assume that
every program execution begins in an initial configuration with no
privileges enabled, as follows.

DEFINITION 2.2. We require that any class tableCT contains at
least a definition for a classMain owned by∅ containing only
one methodmain. The initial heapHι contains a single mapping



R-GOTO
〈R, ς, Mπ{goto(`)}, D, H〉 →CT 〈R, ς, Mπ{Mπ(`)}, D, H〉

R-RETURN
〈R, v :: ς, Mπ{return}, (R0, ς0, M

π0
0 {B}) :: D, H〉 →CT 〈R0, v :: ς0, M

π0
0 {B}, D, H〉

R-CHECK
r ∈ R

〈R, ς, Mπ{check(r) · B}, D, H〉 →CT 〈R, ς, Mπ{B}, D, H〉

R-ENABLE
r ∈ π

〈R, ς, Mπ{enable(r) · B}, D, H〉 →CT 〈R ∪ {r} , ς, Mπ{B}, D, H〉

R-NEW
〈R, ς, Mπ{new C · B}, D, H〉 →CT 〈R, h :: ς, Mπ{B}, D, H[h 7→ new C]〉

R-INVOKE
H(h) = new D mbodyCT (m, D) = Mπ0

0 mtypeCT (m, D) = C1..Cn → E

〈R, v1 :: · · · :: vn :: h :: ς, Mπ{invoke(C, m) · B}, D, H〉
→CT

〈R ∩ π0, v1 :: · · · :: vn :: h :: nil, Mπ0
0 {M0(entry)}, (R, ς, Mπ{B}) :: D, H〉

Figure 4. JVMsec configuration operational semantics

from a distinguished locationrι to an instance ofMain, and the
initial stackςι contains justrι. Formally,ςι , hι :: nil andHι ,
{hι 7→ new Main} The initial configurationKι is then defined as
follows:

Kι , 〈∅, ςι,∅∅{invoke(Main, main) · return},nil, Hι〉
2.2 Examples

Here are some examples that illustrate JVMsecbytecode and extend
the running example begun in the introduction. We use syntactic
sugar(m : J = B) , (m : J = {entry = B}) to abbreviate methods
with only one block (necessarily labeledentry) in unlabeled form.
Letπ1, π2, π3, π4 be arbitrary principals such that their intersection
includes distinctr1 and r2. Then theFoo class introduced in
Sect. 1.1 can be rewritten in bytecode as follows, assuming that
it is owned byπ4:

class Foo extends Object {
m : (Object, Runnable) → Object =
invoke(Runnable, run) · return

}π4

We further imagine two subclasses ofRunnable that we assume
are annotation consistent, one that inspects for a privileger1 and
one that has no security restrictions:

class Bar extends Runnable {
run : Object→ Object = check(r1) · return

}π1

class Baz extends Runnable {
run : Object→ Object = return

}π2

Later in Sect. 3.3 we will show what types our system assigns to
these classes statically, and how link time typings are obtained in
Sect. 4.5.

3. Type System Specification
Our type theory is based onpolymorphic subtyping constraints,
which are well-known to be useful in OO settings for e.g. typing

c ::= Pre | Abs presence constructors

V ::= c | v | c∗ | r : V; V rows

R ::= {V} security effects

T ::= R | X | [T C] | (m : T)..(m : T) | T..T R→ T types

X ::= v | t | s type variables

S ::= nil | s | T :: S stack types

C ::= T<: T | C ∧ C | true constraints

Figure 5. JVMsec type and constraint syntax

binary methods and object self-reference [6]. A constraint repre-
sentation is also advantageous for the implementation of link time
type analysis, as we will observe in Sect. 4. We begin with formal
details of the type specification, leading up to a type safety result
(Theorem 3.1). However, the reader may wish to skip to Sect. 3.3
for examples and discussion, including discussion of how our state-
ment of type safety anticipates dynamic linking in the implementa-
tion.

3.1 The Type and Effect Language

The type and constraint grammar of JVMsec is given in Fig. 5. The
type language includes method typesT1..Tn

R−→ T whereR is the
latentsecurity effectof the method. The “guts” of security effects
are represented asrow typesV, discussed in more detail below.
Object types are denoted[T C], whereC is the class name of the
object andT is either a type variable or a sequence of method type
bindings for the object(m1 : T1)..(mn : Tn). To accommodate
stacks, we introducestack typesS, which are just sequences of
types.

The type language specified in the grammar is more liberal than
what is actually allowed in type judgements. We endow types with
kinding rulesdefined in Fig. 6. Kinding rules are necessary for the
correct definition of row types, to impose the syntactic constraint
that row type variables can mention only a specific subset of fields



X ∈ Vk

X : k
c : Pres c∗ : RowR

V0 : Pres V1 : RowR∪{r} r 6∈ R

(r : V0; V1) : RowR

V : Row∅
{V} : Eff

mtypeCT (m, C) = D0..Dn → D
[T0 D0] : Type · · · [Tn Dn] : Type [T D] : Type R : Eff

[T0 D0]..[Tn Dn]
R−→ [T D] : Methm,C

methsCT (C) = m1..mn T1 : Methm1,C · · · Tn : Methmn,C

(m1 : T1)..(mn : Tn) : BodyC

T : BodyC
[T C] : Type

T : Type S : Stack

(T :: S) : Stack
nil : Stack

Figure 6. Type Kinding Rules

[20], wherever they occur in a type. Context free grammars are not
sufficient to express this constraint.Kindsk are defined as follows,
and we require that type terms be well-kinded:

k ::= Type| Pres| RowR | Eff | Methm,C | BodyC | Stack

Here, the kindRowR is the kind of rows that mention every field
exceptthose inR. Note that each kindk has a distinct associated
set of type variablesVk– except forMethm,C, since we will not need
function type variables in our theory.

Abusing notation, variables of kindStackare denoteds, of kinds
RowR and Pres are denotedv, and of kindType and BodyC are
denotedt or u. We also letU range over types of kindType. An
important feature of the type language is that in any object type
[T C], if T is a vector of type bindings of kind, the kinding rules for
BodyC restrict the set bound names to be exactly the method names
of C, providing an “inlined” width constraint on the form of the
type.

Restricted Row Types for EffectsSecurity effectsR represent the
security needs of instructions and methods– i.e. the privileges re-
quired to execute and invoke them. We use a restricted form of
row type to denote security effects. This allows us to leverage tech-
niques developed in previous related work on types for Java access
control [20]. As we will see, subtyping is invariant on security ef-
fects, i.e. subtyping on rows is just row equality. This allows the im-
plementation to use well-developed algorithms for row type equal-
ity constraint solutions [19], with high efficiency since our row field
presence types are just nullary type constructors, not arbitrary types
as for row types in general.

Specifically, security effects are constructed frompresence con-
structorsPre andAbs, denoting the presence or absence of partic-
ular resources in security effects. The row typePre∗ represents a
constant row specifying every element as being present, andAbs∗
specifies every element as being absent. The row typer : V1; V2

says something particular about the presence or absence ofr, along
with the information inV2; note thatV1 andV2 can both be vari-
ables, in which caser and all remaining elements can be present
or absent. This sort of polymorphism provides flexibility in our
theory, for example if some code block requires a privileger to
be used, but notr′, then its security effect may be of the form
{r : Pre; r′ : v; V}, wherer′ can be constrained to bePre or Abs
at a later stage if conditions require. When typing method bodies,
the effect of the body is constrained to only allow presence of priv-
ileges allowed to the method owner, so for example ifπ = {r}

owns a methodm, then the security effect of the body ofm will be
of the form{r : V; Abs∗}.
Interpretation of Constraints Subtyping constraintsC are con-
junctions ofatomicconstraints of the formT<: T, with true being
the trivial constraint. We also letD andE range over constraints.
We require that in any atomic constraintT<: U thatT andU be of
the same kindk 6= BodyC for any C, disallowing constraints on
naked class type bodies.

Constraints are interpreted in a regular tree model, the full de-
tails of which we omit here for brevity. It is essentially a combi-
nation of the models in [22] and [20] with new features to accom-
modate stack types.Interpretationsµ map types of kindk to ele-
ments of the semantic structure for each kind, denotedJkK, which
are sets of regular trees in the usual sense. A primitive subtyping
relation4 is defined as a partial order over these structures. The
relation can be understood as the logical equivalent of consistent
closure as defined in Sect. 3 (see Lemma 4.3), so details of subtyp-
ing can be gleaned from that definition. The major points are that
the interpretation obtains width and depth subtyping for class types
while incorporating standard nominal JVM subtyping, and speci-
fies subtyping on row types as row type equality. The interpretation
of subtyping constraints is formalized on the basis of the model as
follows.

DEFINITION 3.1 (Interpretation of Constraints).We axiomitize the
relationµ `CT C, pronouncedµ CT satisfiesor CT solvesC, as
follows:

µ `CT true
µ(S) 4 µ(T) givenCT

µ `CT S<: T

µ `CT C µ `CT D

µ `CT C ∧D

The relationC °CT D, pronouncedC CT entailsD, holds iff
µ `CT C impliesµ `CT D for all interpretationsµ. Constraints
C andD areCT equivalent, writtenC =CT D, iff C °CT D and
D °CT C.

For example, given a class tableCT containing classesA andB as
defined previously and lettingC = [t0 A] <: [t1 B]∧[t1 B] <: [t2 B],
then C has a solution, and the relationC °CT [t0 A] <: [t2 B]
holds. A constraint of the form[T0 B] <: [T1 A] has no solution due
to the declared nominal relationA<: B.

3.2 Type Judgements and Validity

Types are logically assigned to JVMsec programs via type judge-
ment derivations. Since we use a constraint representation of types,
it is also necessary to restrict typing judgements to mention only
solvable constraints. Subsequently, when considering type infer-
ence, we will show that solvability is decidable.

Execution in JVMsec is based on evaluation of configurations,
which comprise a number of elements. Since type safety relates
typing and execution, typing must apply to these elements. Thus,
different type judgement forms need to be defined. The fundamen-
tal judgement is typing of instructionsΓ,L ` C, S, R¤B : T, where
Γ is a class and object reference type environment,L is a mapping
from labels to types,S is the type of the argument stack forB, the se-
curity effectR is a static approximation of which privilegesB needs
to execute, andT is the type returned byB. We require thatT be of
kind Type.

To accommodate polymorphism, we introduce constrained type
schemes of the form∀X1..Xn[C].T, ranged over byσ. Letting fv(T)
denote the free variables inT, if X1..Xn ∩ fv(T) = ∅ we abbre-
viate ∀X1..Xn[true].T asT. Substitutionsmapping type variables
to types are denoted[T1/Xn..Tn/Xn], and are extended to types in



T-BLOCKS
L(`1) = S1, R1, T1 · · · L(`n) = Sn, Rn, Tn Γ,L ` C, S1, R1 ¤ B1 : T1 · · ·Γ,L ` C, Sn, Rn ¤ Bn : Tn

Γ,L, C ` {`1 : B1; . . . ; `n : Bn}

T-METH

mbodyCT (m, C) = M{r1,...,rn} Γ,L, C ` M L(entry) = S1, R1, U1 Γ(C).m = T1..Tj
R0−→ U0

C °CT U1 <: U0 ∧ T1 :: · · · :: Tj :: Γ(C) :: S0 <: S1 C °CT R1 <: {r1 : V1; . . . ; rn : Vn; Abs∗} ∧ {r1 : V1; . . . ; rn : Vn; V} <: R0

Γ, C ` m, C

T-CLASS
Γ; C : [T C], C ` m, C for all m ∈ methsCT (C) C °CT [T C] <: [U C] X1..Xn ∩ fv(Γ) = ∅

Γ ` C : ∀X1..Xn[C].[U C]

Figure 8. JVMsec Typing Rules for Blocks, Methods, and Classes

T-OBJ
Γ(C) = ∀X̄[D].T C °CT D[T̄/X̄]

Γ, C ` new C : T[T̄/X̄]

T-LOC
Γ, C ` h : Γ(h)

T-STACK-EMPTY
Γ, C ` nil : nil

T-STACK-CONS
Γ, C ` v : T Γ, C ` ς : S

Γ, C ` (v :: ς) : (T :: S)

T-HEAP
Γ, C ` H(h) : Γ(h) for all h ∈ dom(H)

Γ, C ` H

T-DUMP-EMPTY
Γ ` C, R ¤ nil[T] : T

T-DUMP-CONS
π = {r1, . . . , rn} π ∩R = {r1, . . . , rj} R = {r1 : Pre; . . . ; rj : Pre; rj + 1 : Vj + 1; . . . ; rn : Vn; Abs∗}

Γ,L, C ` M Γ, C ` ς : S Γ,L ` C, U0 :: S, R ¤ B : U1 Γ ` C, R ¤ D[U1] : T

Γ ` C, {r1 : V1; . . . ; rn : Vn; Abs∗}¤ ((R, ς, Mπ{B}) :: D)[U0] : T

T-CONFIG
Γ, C ` H Γ, C ` v : U Γ ` C, R ¤ ((R, ς, Mπ{B}) :: D)[U] : T

Γ, C, R ` 〈R, v :: ς, Mπ{B}, D, H〉 : T

Figure 9. JVMsec Runtime Entity Typing Rules

the usual manner. We require that substitutions be idempotent. En-
vironments are specified as follows. Environments contain typing
assumptions for classes, and also for run-time heap locations:

Γ ::= ∅ | Γ; (C : σ) | Γ; (h : T) type environments

Lookup in an environment, denotedΓ(C) or Γ(h), is defined as
usual, returning the rightmost binding for the given parameter inΓ
and undefined if the parameter has no binding.

Typing rules for selected instructions are defined in Fig. 7 (we
omit a full listing for brevity). We use the notation[T C].m to abbre-
viateT′ such that(m : T′) ∈ T, implying thatT must be a sequence
of method type bindings of kindBodyC for the notation to be de-
fined. Note that this restricts the form ofT0 in theT-INVOKE rule. A
weakening rule (T-WEAKEN) integrates subtyping with type judge-
ments, which is contravariant in the type of the stack. Recalling
contravariance of subtyping for function domain types, this is nec-
essary since the type of the stack represents the types of instruction
arguments. Typing rules for blocks, methods, and classes are given
in Fig. 8. Label typingsL are local to method bodies, since method
labels are. The stack type for method typing reflects that the method
expectsself at the bottom of its argument stack. Now, we can de-
fine well-formedness of type environments with respect to a given
class table:

DEFINITION 3.2 (Realizability of Environments).We say thatΓ
is CT realizable iff every class type binding inΓ is of the form
C : ∀X1..Xn[D].[T C] andD is CT solvable.

Validity of typing is then predicated on both derivability and real-
izability of type judgements, as follows.

DEFINITION 3.3 (Type Judgement Validity).A type judgement is
CT valid iff it is derivable givenCT , and for anyΓ and C
occurring in the judgement,Γ is CT realizable andC is CT
solvable.

Type Safety Now we are ready to consider type safety. The result
is stated to anticipate the implementation of link time type infer-
ence defined in the next section. In the JVM, when configurations
evaluate with linked and loaded class tables, it is only required that
linked classes are verified on the basis of type declarations in the
loaded class table. So, we formalize the idea of sound typing of a
class table (the linked class table), on the basis of type declarations
in a superset of that class table (the loaded class table).

DEFINITION 3.4 (Class Table Typing).The environmentΓ is CT ′

sound for a class tableCT iff CT ⊆ CT ′ and for all C ∈
dom(CT ) the judgementΓ ` C : Γ(C) is CT ′ valid.

Intuitively, our formal results guarantee safe configuration reduc-
tion by well-typedness of the class table linkages allowing that re-
duction, rather than whole-program typing. Most of the proofs are
omitted here for brevity.

In order to formulate type safety, we extend typing judgements
to run-time entities in Fig. 9. Notable among these rules is the
judgement form for dumps. Observe that a dump is a low-level
evaluation context, with the top of the stack being the “hole” in the



T-RETURN
C, T :: S, R ¤ return : T

T-GOTO
L(`) = S, R, T

C, S, R ¤ goto(`) : T

T-ENABLE
C, S, {r : Pre; V1}¤ B : T

C, S, {r : V0; V1}¤ enable(r) · B : T

T-CHECK
C, S, {r : Pre; V0}¤ B : T

C, S, {r : Pre; V0}¤ check(r) · B : T

T-INVOKE

C, U :: S, R ¤ B : T C °CT T0.m<: T1..Tn
R→ U

C, T1 :: · · · :: Tn :: [T0 C] :: S, R ¤ invoke(C, m) · B : T

T-NEW
Γ(C) = ∀X1..Xn[D].T0 C °CT D[T1/Xn..Tn/Xn]

C, T0[T1/Xn..Tn/Xn] :: S, R ¤ B : T

C, S, R ¤ new C · B : T

T-WEAKEN
C, S0, R0 ¤ B : T C °CT S<: S0 ∧ R0 <: R

C, S, R ¤ B : T

Figure 7. JVMsec Instruction Typing

context. Hence, the judgement formC, R ¤ D[T1] : T2 assigns the
typeT2 as the return type of the dump, assuming that a value of type
T1 is pushed on the stack. This technique allows us to demonstrate
subject reduction as the foundation of type safety, as opposed to
previous techniques that require a big-step operational view [14].
Subject reduction is stated as follows. By viewingCT as the linked
class table andCT ′ as the loaded class table, it becomes clear how
this statement formally anticipates link time typing.

LEMMA 3.1 (Subject Reduction).Given an environmentΓ that is
CT ′ sound forCT , andK1 →CT K2, and supposeΓ, C, R `
K1 : T is CT ′ valid. Then there exists aCT ′ valid judgement
Γ′,L, C, R ` K2 : T′, whereC °CT ′ T′<: T and Γ′ is an
extension ofΓ to new heap locations inK2.

While our subject reduction result guarantees standard type
safety properties, for example well-formedness of method invoca-
tion, we focus here on how the result guarantees that stack inspec-
tion checks will succeed. First, we observe that the top level se-
curity effectR in a sound typing of a configuration where the next
instruction is a check for a resourcer will definitely reflect whether
r has been activated.

LEMMA 3.2 (Type Form of Checks).Given a CT valid judge-
ment as follows:

Γ, C, R ` 〈R, v :: ς, Mπ{check(r) · B}, D, H〉 : T

ThenC °CT {r : Pre; V} <: R for someV iff r 6∈ R.

On the basis of these results, we can demonstrate that sound typing
of an initial configuration ensures that it will not encounter a failing
check during execution.

THEOREM 3.1 (Type Enforcement of Checks).If Γ is CT ′ sound
for CT andKι →?

CT 〈R, ς, Mπ{check(r) · B}, D, H〉, thenr ∈
R.

Proof. By Definition 2.2, classMain is owned by∅. By virtue of
this, soundness ofΓ, and rulesT-CONFIG and T-DUMPCONS, it

follows that a judgement of the formΓ, C, {Abs∗} ` Kι : T is
CT ′ valid. Thus by Lemma 3.1 and induction on the length of the
computation there exists aCT ′ valid judgementΓ′, C, {Abs∗} `
〈R, ς, Mπ{check(r) · B}, D, H〉 : T′. The result then follows by
Lemma 3.2. ut

3.3 Examples and Discussion

The formalism just presented allows us to statically assign typings
in the manner discussed in Sect. 1.1. In particular, recalling class
Foo as defined in Sect. 2.2 and lettingT be the type:

(Unit, [run : Unit
{v}−−→ Unit Runnable])

{v}−−→ Unit

we observe that the following typing is valid:

Foo : ∀v[true].[m : T Foo]

Note that the typing is presented in unconstrained form for clarity.
The polymorphic effectv is quantified, so that different instances
of the class can be independently constrained. For example, recall
also the classesBar andBaz introduced in Sect. 2.2, that can be
statically assigned the following types in our system:

Bar : ∀v3[true].[run : Unit
{r1:Pre;v3}−−−−−−−→ Unit Bar]

Baz : ∀v4[true].[run : Unit
{v4}−−−→ Unit Baz]

Now, imagine that some program contains the following code snip-
pets:

new Foo · new Bar · new Object · invoke(Foo, m) (1)

new Foo · new Baz · new Object · invoke(Foo, m) (2)

Types of the differentFoo instances created by the first instruction
in each snippet can instantiatev differently, say withv(1) andv(2)

respectively. The constraints imposed by typing of this code will
then entail the following relations, assuming that the type instances
of Bar andBaz are instantiated trivially:

r1 : Pre; v3 <: v(1) v4 <: v(2)

However, it is important to observe that a relation betweenv(1) and
v(2) is not imposed in general, so the types assigned to snippets (1)
and (2) accurately reflect their independent security requirements,
unlike the join of all effects approach [14], which will in fact reject
snippet (2) outside of a context wherer1 is activated, violating the
principle of least privilege.

How Static Type Safety Anticipates Link Time SafetyNow, let
CT be a class table containing the definitions ofFoo, Bar, and
Baz as in Sect. 2.2, letCT ′ be a class table containing only the
definition of Foo, and supposeΓ′ contains only the above bind-
ing for Foo and the bindingBar : ∀t[true].[t Bar]. Although this
latter binding is abstract and not a sound typing forBar, the en-
vironmentΓ′ is CT sound forCT ′ by definition. Observe that a
CT derivable typing of the code snippet (1) givenΓ′ can assign a
purely abstract typing for the effect of this snippet, since the type
of Bar is abstract. Clearly this does not reflect the run-time secu-
rity requirements of the invocation ofBar’s version ofrun during
execution of the snippet givenCT . However, givenCT ′, this code
snippet can only execute up to the invocation ofFoo’s methodm,
sinceBar is not inCT ′ hencembodyCT ′(run, Bar) is undefined.
Furthermore, the typing obtained givenΓ′ does ensure safety up to
the point of that instruction. Therefore, sinceΓ′ is CT sound for
CT ′, this ensures safety for program execution givenCT ′. While
progress in general cannot be guaranteed due to remaining class
linkage issues, Theorem 3.1 does ensure progress of stack inspec-
tions. What remains is to devise a general way toreify class typings
at link time without requiring re-analysis of linked code, that will in



mtypeCT (m, C) = D1..Dn → D

texpandCT (m, C) = [t1 D1]..[tn Dn]
{v}−−→ [t D]

methsCT (C) = m1..mn

texpandCT (C) =
[(m1 : texpandCT (m1, C))..(mn : texpandCT (mn, C)) C]

Figure 10. texpand Type Construction

this example concretize the purely abstract binding forA in Γ′ with
the sound binding forA in Γ at link time, as well as types of code
derived underΓ′ that depend on this binding. We consider these
issues in the next section.

4. Type System Implementation
We now consider the implementation of link time type analysis
based on our type theory. We will show that an algorithm exists
for inferring valid type judgements, based on constraintclosure. In
addition to these standard type inference features, we also specify
an implementation of link time typing in the presence of dynamic
loading and linking. Essentially, we will extend the machine model
to include an environment representing the types of linked classes.
When a class is loaded, an abstract type for it is added to the envi-
ronment. When a class is dynamically linked, the class is verified
by typing and the environment is reified with the new class typ-
ing, or rejected as ill-typed. Our approach does not require any sort
of recomputation of previously inferred types– in fact, the link time
analysis can be viewed as the same as static analysis, but performed
incrementally over the course of computation. Correctness of the
algorithms with respect to the logical specification in the previous
section obtains a link time type safety result for the implementa-
tion.

4.1 Link Time Typing: Intuitions

When class types are inferred, the type of a classC is of the form
∀X1..Xn[C].[t C], where the constraintC forms a lower bound on
the abstract typet. This constraint is the main artifact of type infer-
ence. However, since type inference is a verification technique, at
load time this constraint is not available. But dynamic loading and
linking in Java allows linked code to reference unverified classes;
hence, when typing code that references an unlinked classC, some
type must be assumed forC. We call this theload versiontyping of
C.

A load version class typing is a maximally general class type
of the form∀t[true].[t C]. At link time the appropriate constraint
ont will be generated by inference. The process ofreificationfills
in the constraint. Both the type binding forC, and every instruction
new C in linked code that will have been typed by an instance of
C’s load version, needs to be reified. Each of these reified instances
must be uniquely instantiated to enjoy the full benefit of polymor-
phism in our system. It is also critical to distinguish load version
typings of objects from the typing of method parameters, since the
latter are directly lower bounded at method usage points, not by
class typings.

Thus, for each class nameC in a given class table, we distin-
guish a countable subset of variables inVBodyC , denotedtC. These
markedvariables differentiate load version class typings from types
of method parameters. They are not interpreted any differently from
normal type variables by any processes other than type instantiation
and reification. The normal machinery of polymorphism allows
to differentiate distinct type instances, by requiring that whenever
types are instantiated byrenamingquantified variables, marked

I-RETURN
true, t :: s, v3 return : t

I-GOTO
L(`) = s, v, t

true, s, v3 goto(`) : t

I-ENABLE
C, S, R3 B : t

C ∧ R<: {r : Pre; v1}, S, {r : v0; v1}3 enable(r) · B : t

I-CHECK
C, S, R3 B : t

C ∧ R<: {r : Pre; v}, S, R3 check(r) · B : t

I-I NVOKE
C0, S, R3 B : t

T1..Tn
v→ U = texpandCT (m, C) [T0 C] = texpandCT (C)

C =set C0 ∧ T0.m<: T1..Tn
v→ U ∧ U :: s<: S ∧ R<: v

C, T1 :: · · · :: Tn :: [T0 C] :: s, v3 invoke(C, m) · B : t

I-NEW
C0, S, R3 B : t

Γ(C) = ∀X1..Xn[D].T0 C =set C0 ∧ ρ(D) ∧ ρ(T0) :: s<: S

C, s, R3 new C · B : t

Figure 11. JVMsec Instruction Type Inference

variables are substituted for marked variables, so markings promul-
gate appropriately.

DEFINITION 4.1. A renamingis a total substitution mapping type
variables to type variables. For eachVBodyC we distinguish a strict,
countable subset ofmarkedvariables ranged over bytC. We re-
quire that for all ρ and tC0 there existstC1 such thatρ(tC0) = tC1.
The load versionof a classC, denotedloadvers (C), is defined as
follows:

loadvers (C) = ∀tC[true].[tC C]

Hereafter we assume that the type implementation uses marked
variables only in load version typings and their renamings.

4.2 Type Inference

Derivable typing judgements are reconstructed by type inference.
The fundamental judgement in type inference applies to instruc-
tions, is writtenΓ,L `W C, S, R3 B : t, and is entirely analogous
to typing judgements for instructions. TheW in the inference re-
lation symbol is intended to evoke the original polymorphic type
inference algorithm. WhenΓ andL are clear from context, these
judgements may be abbreviated asC, S, R3 B : t. In inference, the
label environmentL maps distinct labels in its domain to distinct
type variable tripless, v, t, a form we callcanonical.

Selected instruction type inference rules are given in Fig. 11 (we
omit a full listing for brevity). These rules and later definitions use
the following notation for brevity, which allows constraints to be
viewed as sets ofatomic constraints:

DEFINITION 4.2. Let Ĉ range overatomic constraints, i.e. con-
straints of the formtrue or T<: U, and for allC = Ĉ1∧· · ·∧ Ĉn,
let set(C) = {C1, . . . , Cn}. Then define:

C =set D ⇐⇒ set(C) = set(D)

D ⊆ C ⇐⇒ set(D) ⊆ set(C) Ĉ ∈ C ⇐⇒ Ĉ ∈ set(C)

∀X1..Xn[C].T =set ∀X1..Xn[D].T ⇐⇒ C =set D

ClearlyC =set D impliesC =CT for all CT .



I-BLOCK
L(`) = s, v, u Γ,L `W C, S, R3 B : t

Γ,L, C ∧ s <: S ∧ R <: v ∧ t <: u `W `, B

I-BLOCKS
Γ,L, C1 `W `1, B1 · · ·Γ,L, Cn `W `n, Bn

Γ,L, C1 ∧ · · · ∧ Cn `W {`1 : B1; . . . ; `n : Bn}

I-M ETH

mbodyCT (m, C) = M{r1,...,rn} Γ(C).m = T1..Tn
v0→ U

L(entry) = s1, v1, t1 Γ,L, C0 `W M
C1 =set t1 <: U ∧ T1 :: · · · :: Tj :: Γ(C) :: s0 <: s1

C2 =set v1 <: {r1 : w1; . . . ; rn : wn; Abs∗}
C3 =set {r1 : w1; . . . ; rn : wn; w} <: v0

Γ, C0 ∧ C1 ∧ C2 ∧ C3 `W m, C

I-CLASS
methsCT (C) = m1..mn T = texpandCT (C)

X1..Xn = fv(C) Γ; C : T, Ci `W mi, C for all mi ∈ m1..mn

C =set C1 ∧ · · · ∧ Cn ∧ T<: [t C]

Γ `W C : ∀X1..Xn[C].[t C]

Figure 12. JVMsec Type Inference for Blocks, Methods, and
Classes

The inference rules are nondeterministic in the choice of type
variables. We callcanonicalthose derivations that choose globally
fresh variables whenever possible, both explicitly, and via renam-
ings andtexpand construction as defined in Fig. 10. Hereafter we
assume that all derivations are canonical. A formal definition of
global freshness is easily obtained by adapting techniques such as
in [22], but we omit this definition and associatated machinery for
simplicity. Thetexpand construction returns an object type of the
form [T C], whereT includes fields for all the methods inC with
fresh abstract security effects, providing a “skeleton” on which to
hang inferred type constraints describing the class. As in most con-
straint systems, inference proceeds by adding constraints appropri-
ate to expressions in a syntax-directed manner, from the leaves to-
wards the root of expressions. We observe that inference is sound,
in the following sense. The result follows by straightforward induc-
tion on derivations.

LEMMA 4.1. GivenΓ andL. Then ifΓ,L `W C, S, R 3 B : t is
derivable givenCT , so isΓ,L ` C, S, R ¤ B : t.

Type inference is extended to blocks, methods, and classes in
Fig. 12. The rules are unremarkable except forI-M ETH, which
ties together inferred type constraints and type assumptions in the
class and label type environments. By straightforward inversion of
these rules and induction on derivations, we are able to obtain the
following result, which is in a convenient form for establishing link
time type safety in a later section.

THEOREM 4.1 (Soundness of Class Type Inference).Given envi-
ronmentΓ such that fv(Γ) = ∅. Then ifΓ `W C : ∀X1..Xn[C].t is
derivable givenCT , so isΓ ` C : ∀X1..Xn[C].t.

4.3 Closure and Consistency

To automatically check satisfiability of constraints, the type imple-
mentation comprises a constraint closure algorithm and consistency
check. We say that a constraintC is CT consistentiff ` C : ok is
derivable givenCT , as axiomatized in Fig. 14. These rules assume
given a class tableCT . We say that an environmentΓ is CT con-
sistent iff for allC ∈ dom(Γ) with Γ(C) = ∀X1..Xn[C].T, it is the
case thatC is CT consistent.

C-FN

(T1..Tn
R−→ T<: U1..Un

R′−→ U)
;close

(U1 <: T1 ∧ · · · ∧ Un <: Tn ∧ T<: U ∧ R<: R′)

C-TRANS
(T0 <: T1 ∧ T1 <: T2) ;close T0 <: T2

C-STACK
T0 :: S0 <: T1 :: S1 ;close T0 <: T1 ∧ S0 <: S1

C-OBJ
[(m1 : T1)..(mn : Tn) C] <: [(m1 : U1)..(mn : Un)..(mm : Um) D]

;close

T1 <: U1 ∧ · · · ∧ Tn <: Un

C-CONTEXT
C′ ⊆ C C ′ ;close D D 6⊆ C

C →close C ∧D

Figure 13. Constraint Closure (Selected Rules)

` true : ok ` T<: T : ok
X, T : k

` X<: T : ok

X, T : k

` T<: X : ok
` T0 :: S0 <: T1 :: S1 : ok

` C : ok ` D : ok

` C ∧D : ok

CT ` C<: D

` [T C] <: [S D] : ok

` (T1..Tn
R−→ T<: U1..Un

R′−→ U) : ok

Figure 14. Constraint Consistency (Selected Rules)

Well-developed and efficient techniques for solving row type
equality constraints have been presented by previous authors [19],
so we won’t dwell on the issue here. Given any constraintC, a sub-
set of the constraints generated by closure will be row type equality
constraints, and for the purposes of this presentation we imagine
that they are filtered out and dealt with by existing techniques [19].
Constraint closure for the remaining JVMsec type forms is defined
via the rewrite rules given in Fig. 13 and Definition 4.3.

DEFINITION 4.3 (Closure).The rewrite rules;close and→close

are defined in Fig. 13.C is closed iff there does not existD
such thatC →close D. The relation→?

close is the reflexive,
transitive closure of→close . We defineclose(C) as a closed
constraint such thatC →?

close close(C), and say thatC is
closed iff C =set close(C). Define close(∀X1..Xn[C].T) =
∀X1..Xn[close(C)].T, andclose(Γ) = Γ′ iff dom(Γ) = dom(Γ′)
andΓ′(C) = close(Γ(C)) for all C ∈ dom(Γ).

We observe that closure doesn’t change the logical meaning of a
constraintC. Intuitively, it simply makes explicit all the constraints
implicit in C for consistency analysis.

LEMMA 4.2. close(C) =CT C for all C andCT .

The following result establishes that consistent closure is equivalent
to solvability of constraints. It is obtained by composition of rele-
vant results for row types, and for a similar Java source language



ρ(t) = t
C

reify(tC, C, t) = ρ(C)

t
D
1..t

D
k = labvarsD(X1..Xn)

∀i ∈ 1..k . reify(tDi , D, u) = Di

E =set C ∧D1 ∧ · · · ∧Dk

reify(∀X1..Xn[C].[t C],∀Y1..Ym[D].[u D]) = ∀fv(E, t)[E].[t C]

Figure 15. Constraint Reification

R-EVAL
K →CT lk K′

(CT ld , CT lk ),K, Γ → (CT ld , CT lk ),K′, Γ

R-LOAD
(CT ld , CT lk ),K, Γ

→
(CT ld [C : L], CT lk ),K, (Γ; C : loadvers (C))

R-LINK
C 6∈ dom(CT lk ) CT ld(C) = L Γ `W C : σ givenCT ld

Γ′ = close(reify(Γ, σ)) Γ′ is CT ld consistent

(CT ld , CT lk ),K, Γ → (CT ld , CT lk [C : L]),K, Γ′

Figure 16. Semantics of Type Safe Dynamic Linking

type constraint system [22] (modulo security effects), extended in
a straightforward manner to accommodate stack types.

LEMMA 4.3. C is CT satisfiable iffclose(C) is CT consistent for
all C andCT .

4.4 Reification and Type Safe Dynamic Linking

Now we are ready to put the pieces together for type safe dynamic
linking. It remains to define reification, to define the operational
semantics of dynamic linking to incorporate our bytecode verifica-
tion technique, and to frame the metatheory correctly to obtain a
type safety result in the presence of dynamic linking.

We begin by specifying a type inference relation for loaded and
linked class table pairs(CT ld , CT lk ) that is the implementation
analogue of Definition 3.4 as observed in the lemma following the
definition. In this definition and afterwards, we assume that in any
pair (CT ld , CT lk ) thatCT lk ⊆ CT ld .

DEFINITION 4.4. The relationΓ `W (CT ld , CT lk ) holds iffΓ is
closed andCT ld consistent, and for allC ∈ dom(CT lk ) there ex-
ists aCT ld derivable judgementΓ `W C : σ such thatΓ(C) =set

close(σ), and for allC ∈ dom(CT ld)− dom(CT lk ) it is the case
thatΓ(CT ld) = loadvers (C).

LEMMA 4.4. If Γ `W (CT ld , CT lk ) then Γ is CT ld valid for
CT lk .

The type inference relation just defined applies to a given pair
of loaded and linked class tables, but in the presence of dynamic
linking and loading these tables will evolve as computation pro-
ceeds. Since type inference accompanies linking, and old types
may need to be reified and new types may depend on existing
types, a type environment must also be maintained during com-
putation. Hence, states in our full machine model are of the form
(CT ld , CT lk ),K, Γ, whereΓ maintains load version typings of
loaded classes and fully verified typings of linked classes. The
goal of our type implementation is to maintain the relation thatΓ

is CT ld sound forCT lk throughout computation. This is accom-
plished through composition of type inference, reification, closure,
and consistency checks, which are all performed at link time.

The full operational semantics with type safe dynamic linking
is defined in Fig. 16. Evaluation based on the linked class table is
allowed via theR-EVAL rule. TheR-LOAD rule specifies dynamic
loading, which includes an extension of the environmentΓ with
a load version typing of the loaded class. Type verification is per-
formed at link time, as specified in theR-LINK rule: after inferring
the type of the newly linked classC, the load version typings ofC in
existing typings inΓ are reified, the reified environment is closed,
and its consistency checked. Reification has been defined at an in-
tuitive level above. We now define it formally:

DEFINITION 4.5. Constraintreificationfor type schemes is defined
in Fig. 15, wherelabvarsC(D, T) =

�
tC | tC ∈ fv(D, T)

	
. Fur-

thermore, we definereify(Γ, σ) = Γ′ iff dom(Γ′) = dom(Γ) and
for all C ∈ dom(Γ) it is the case thatreify(Γ(C), σ) = Γ′(C).

In the metatheory, we need to establish soundness of reifica-
tion. That is, we need to show that reified types are inferrable. The
lemma follows by inversion of the type inference rules, and induc-
tion on instruction type derivations:

LEMMA 4.5. Given Γ(C) = loadvers (C) and Γ `W C : σ
derivable givenCT . Then ifΓ `W D : σ′ is derivable givenCT ,
so isreify(Γ, σ) `W D : reify(σ′, σ).

We also need to show that “staged” closure in the presence of
dynamic linking and reification is the same as whole program
closure.

LEMMA 4.6. If Γ `W C : σ is CT derivable then so is the
judgementclose(Γ) `W C : σ′ with close(σ) =set close(σ′).

Now, we can show a crucial technical result, which establishes that
type verification in theR-LINK rule preserves soundness of class
table typings.

LEMMA 4.7. Given:
Γ(C) = loadvers (C) Γ `W (CT ld , CT lk )

Γ `W C : σ givenCT ld Γ′ = close(reify(Γ, σ))

Γ′ is CT ld consistent

ThenΓ′ `W (CT ld , CT lk [C : L]).

Proof (Sketch).By assumptionΓ′ is closed and consistent, and by
the definition ofreify it is easy to see that for allD ∈ dom(CT ld)−
dom(CT lk [C : L]) it is the case thatreify(loadvers (D), σ) =
loadvers (D), since loadvers (D) will not contain any variable
marked byC. AssumingD ∈ dom(CT lk [C : L]), it remains to be
shown that there exists aCT ld derivable judgementΓ′ `W D : σ′

such thatΓ′(D)n =set close(σ′), which follows by assumption,
Definition 4.4, Lemma 4.5, and Lemma 4.6. ut
On the basis of these results and link time type safety (Theo-
rem 3.1), we are now able to demonstrate that our link time byte-
code verification technique enforces access control in JVMsec, writ-
ing→? to denote the reflexive, transitive closure of→.

THEOREM 4.2 (Link Time Enforcement of Checks).If the rela-
tion Γ `W (CT ld , CT lk ) holds and:

(CT ld , CT lk ),Kι, Γ →?

(CT ′ld , CT ′lk ), 〈R, ς, Mπ{check(r) · B}, D, H〉, Γ′
thenr ∈ R.

Proof. By induction on the length of the computation and case
analysis on reduction steps, the crucial case beingR-LINK where



Lemma 4.7 applies, we have thatΓ′ `W (CT ′ld , CT ′lk ). But it is
easy to show thatKι →?

CT ′
lk
〈R, ς, Mπ{check(r) · B}, D, H〉, so

the result follows by Lemma 4.4 and Theorem 3.1. ut

4.5 Examples and Discussion

We now return to the running examples last visited in Sect. 3.3, to
illustrate the main ideas behind reification. For clarity, we present
typings in term form not actually generated by type inference, that
generates typings in constraint form. Assume that classesBar and
Baz are in the linked class tableCT lk , and have been assigned
typings as in Sect. 3.3. Assume also that classFoo is in the loaded
class tableCT ld , but has not yet been linked, so that it has been
assigned a load version typing∀tFoo[true].[tFoo Foo]. Recalling
the code snippets (1) and (2) in Sect. 3.3, observe that each snippet
will generate a distinctFoo instance. Type instantiation due to
the I-NEW inference rule will assign distinct types[tFoo1 Foo] and
[tFoo2 Foo] to these distinct instances. Additionally, theI-I NVK rule
will impose these types as lower bounds of the types of the objects
whosem methods are invoked onBar andBaz objects in snippets
(1) and (2) respectively. WhenFoo is eventually linked, reification,
and closure will fill in these type instances with lower bounds
defined by class type inference onFoo and instantiation, obtaining
constraints of the following form, whereT is as defined in Sect. 3.3;
variablesv(1) andv(2) are chosen for the purposes of the example,
though any fresh variables would be canonically correct:

[(m : T[v(1)/v]) Foo]<:[tFoo1 Foo]

[(m : T[v(2)/v]) Foo]<:[tFoo2 Foo]

Now, because[tFoo1 Foo] and [tFoo2 Foo] form lower bounds of the
invoked object, therefore typesT[v(1)/v] andT[v(1)/v] form lower
bounds on them invocation types by transitivity, and the types of
Bar and Baz lower bound the argument types of these by con-
travariance of function domain subtyping, thus closure will yield
the following constraints, assuming the types ofBar andBaz in
Sect. 3.3 are inferred and instantiated trivially:

r1 : Pre; v3 <: v(1) v4 <: v(2)

In short, reification yields the same accurate typings obtainable
statically as in Sect. 3.3, via the mechanism of polymorphism.

5. Conclusion: Related and Future Work
Related Work The work most related to ours is Higuchi et al.’s
type system for JVM access control [13, 14], that we have discussed
throughout the paper. Their work underlies and inspires ours. The
type system we present here is also based on a previous one that
uses polymorphism to achieve flexible typings in a Featherweight
Java (FJ) model [21, 22] called FJsec. However FJsec is at the
sourcecode level, not the bytecode level, its execution model does
not incorporate dynamic loading and linking, and although FJsec

does employ an access control mechanism, it is more general, more
computationally expensive to verify, and not an existing component
of the JVM.

Our use of polymorphic row types for type enforcement of
stack inspection is also inspired by previous type systems for stack
inspection, in a much simpler high level language model based on
theλ-calculus [20]. A variety of bytecode-level type theories have
been developed for enforcing type safety in the JVM [18, 12, 23],
that have focused on a rich set of type safety issues other than
access control.

The formalism we’ve developed for dynamic loading and link-
ing in the JVM is based on previous formalisms [8, 5], especially
work by Jensen et al. [15], though a number of previous authors
have studied the problem of formalizing the JVM to prove type

safety properties such as safe initialization of objects [7], and class
loader safety [17]. However, these works have not considered type
verification of stack inspection. Previous type systems for more
flexible dynamic linking in the JVM are related in their technical
approach, such as the use of polymorphism for expressive typing of
linked code [3, 2]. Other related foundational work in type theory
for languages with dynamic linking are in the same general vein as
ours [11], especially previous approaches to so-called incremental
typing for web applications that exploit dynamic linking [10].

Future Work A number of technical issues for continued study
exist. In particular, the language model studied in this paper lacks
many features of JVM bytecode. Object downcasting can be eas-
ily addressed by adapting the “soft subtyping” relation developed
in previous work [22], but side effecting features such as state, ex-
ception handling, and threading remain a significant issue. In this
richer setting, a soft typing approach probably needs to be adapted,
especially if parameterized privileges are considered as in [14].

Our type theory as it currently exists could also be refined, for
example while we have proven type inference sound for the logical
type specification, we have not demonstrated completeness. Effi-
ciency of the analysis could be improved, by modifying aspects of
the algorithm we have kept simple for purposes of this presentation.
For example, in theI-CLASS type inference rules, when a class is
typed every one of its methods is, including those that are inher-
ited from superclasses. This is to ensure sound typing of method
overrides and methods employing self-reference, but if an inherited
method is detected as not being self-referential its typing can be in-
herited as well. In the same vein, we have maintained a closure for
whole environments, but for a sound (though less eager) analysis
only a closure of classMain needs to be maintained.

At a higher level, empirical testing is an appropriate next step
to ensure that our proposed extension has tractable behavior in
practice. Furthermore, a comprehensive survey of common design
patterns should be made, to ensure that our system is sufficiently
flexible to accommodate them.

References
[1] Martín Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin.

Dynamic typing in a statically typed language.ACM Trans. Program.
Lang. Syst., 13(2):237–268, 1991.

[2] D. Ancona, F. Damiani, S. Drossopoulou, and E. Zucca. Even more
principal typings for Java-like languages. InECOOP Workshop on
Formal Techniques for Java Programs (FTfJP), 2004.

[3] A. Buckley and S. Drossopoulou. Flexible dynamic linking. In
ECOOP Workshop on Formal Techniques for Java Programs (FTfJP),
2004.

[4] Robert Cartwright and Mike Fagan. Soft typing. InProceedings
of the ACM SIGPLAN 1991 conference on Programming language
design and implementation, pages 278–292. ACM Press, 1991.

[5] Sophia Drossopoulou. An abstract model of Java dynamic linking and
loading. InWorkshop on Types in Compilation (TIC), Lecture Notes
in Computer Science, pages 53–84, London, UK, 2001. Springer-
Verlag.

[6] Jonathan Eifrig, Scott Smith, and Valery Trifonov. Type inference
for recursively constrained types and its application to OOP. In
Mathematical Foundations of Programming Semantics, volume 1 of
Electronic Notes in Theoretical Computer Science. Elsevier Science,
1995.

[7] Stephen N. Freund and John C. Mitchell. The type system for object
initialization in the Java bytecode language.ACM Transactions on
Programming Languages and Systems, 21(6):1196–1250, 1999.

[8] Allen Goldberg. A specification of Java loading and bytecode
verification. InCCS ’98: Proceedings of the 5th ACM conference



on Computer and communications security, pages 49–58, New York,
NY, USA, 1998. ACM Press.

[9] L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers. Going
beyond the sandbox: An overview of the new security architecture in
the Java Development Kit 1.2. InUSENIX Symposium on Internet
Technologies and Systems, pages 103–112, Monterey, CA, December
1997.

[10] Paul Graunke, Robert Findler, Shriram Krishnamurthi, and Matthias
Felleisen. Modeling web interactions. InEuropean Symposium on
Programming (ESOP), 2003.

[11] Michael Hicks, Stephanie Weirich, and Karl Crary. Safe and flexible
dynamic linking of native code. InWorkshop on Types in Compilation
(TIC), 2001.

[12] Tomoyuki Higuchi and Atsushi Ohori. Java bytecode as a typed
term calculus. InPPDP ’02: Proceedings of the 4th ACM SIGPLAN
international conference on Principles and practice of declarative
programming, pages 201–211, New York, NY, USA, 2002. ACM
Press.

[13] Tomoyuki Higuchi and Atsushi Ohori. A static type system for
JVM access control. InProceedings of the eighth ACM SIGPLAN
International Conference on Functional Programming, pages 227–
237. ACM Press, 2003.

[14] Tomoyuki Higuchi and Atsushi Ohori. A static type system for JVM
access control.ACM Transactions on Programming Languages and
Systems, 29(1), 2007.

[15] T. Jensen, D. Le Métayer, and T. Thorn. Security and dynamic class
loading in Java: A formalization. InICCL ’98: Proceedings of the
1998 International Conference on Computer Languages, Washington,
DC, USA, 1998. IEEE Computer Society.

[16] T. Jensen, D. Le Métayer, and T. Thorn. Verification of control
flow based security properties. InProceedings of the 1999 IEEE
Symposium on Security and Privacy, 1999.

[17] Sheng Liang and Gilad Bracha. Dynamic class loading in the
Java virtual machine. InACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA),
pages 36–44, 1998.

[18] Robert O’Callahan. A simple, comprehensive type system for
Java bytecode subroutines. InPOPL ’99: Proceedings of the 26th
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 70–78, New York, NY, USA, 1999. ACM Press.

[19] François Pottier. A versatile constraint-based type inference system.
Nordic J. of Computing, 7(4):312–347, 2000.

[20] François Pottier, Christian Skalka, and Scott Smith. A systematic
approach to static access control.ACM Transactions on Programming
Languages and Systems, May 2005.

[21] Christian Skalka. Trace effects and object orientation. InPPDP ’05:
Proceedings of the 7th ACM SIGPLAN international conference on
Principles and practice of declarative programming, pages 139–150,
New York, NY, USA, 2005. ACM Press.

[22] Christian Skalka. Types and trace effects for object orientation.
Journal of Higher Order and Symbolic Computation, 2006. Accepted
for publication pending revision.

[23] Raymie Stata and Martín Abadi. A type system for Java bytecode
subroutines. InPOPL ’98: Proceedings of the 25th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
149–160, New York, NY, USA, 1998. ACM Press.

[24] D. S. Wallach and E. Felten. Understanding Java stack inspection. In
Proceedings of the 1998 IEEE Symposium on Security and Privacy,
May 1998.


