
Trace Effects and Object Orientation

Christian Skalka
Department of Computer Science

University of Vermont

skalka@cs.uvm.edu

ABSTRACT
Trace effectsare statically generated program abstractions, that can
be model checked for verification of assertions in a temporal pro-
gram logic. In this paper we develop a type and effect analysis
for obtaining trace effects of Object Oriented programs in Feath-
erweight Java. We observe that the analysis is significantly com-
plicated by the interaction of trace behavior with inheritance and
other Object Oriented features, particularly overridden methods,
dynamic dispatch, and downcasting. We propose an expressive
type and effect inference algorithm, combining polymorphism and
subtyping/subeffecting constraints, to obtain a flexible trace effect
analysis in an Object Oriented setting.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Language Classifications—Ob-
ject oriented languages; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features—Polymorphism

General Terms
Security, Languages, Theory, Verification.

Keywords
Type and effect, type constraints, temporal program logic.

1. INTRODUCTION
Program type analysis and model checking have a shared goal:

to statically enforce properties of programs. A number of authors
have recently observed [24, 20, 17] that these two approaches can
play complementary roles in the verification of generaltrace based
program properties, expressed in temporal logics: type systems can
be used to compute program abstractions, which can in turn be used
as inputs to model checking [26]. In other words, type analysis can
serve as a technique for model extraction [16] in this setting.

Trace based program properties are properties ofevent traces,
where events are records of program actions, explicitly inserted
into program code either manually (by the programmer) or auto-
matically (by the compiler). Events are intended to be sufficiently

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP’05,July 11–13, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-090-6/05/0007 ...$5.00.

abstract to represent a variety of program actions—e.g. opening a
file, access control privilege activation, or entry to or exit from crit-
ical regions. Event traces maintain the ordered sequences of events
that occur during program execution. Assertions enforce properties
of event traces–e.g. certain privileges should be activated before a
file can be opened. Results in [24, 20, 5] have demonstrated that
static approximations of program event traces can be generated by
type and and effect analyses [27, 3], in a form amenable to existing
model-checking techniques for verification. We call these approxi-
mationstrace effects.

Related trace based analyses have been shown capable of stati-
cally enforcing flow-sensitive security properties such as safe lock-
ing behavior [15], and resource usage policies such as file usage
protocols and memory management [20, 17]. The history-based ac-
cess control model of [1] can be implemented with event traces and
checks [24], as can be the policies realizable in that model, e.g. so-
phisticated Chinese Wall policies [1]. Also, in previous work we
have shown how trace effects can be post-processed to statically
verify stack-based checks [24, 25] such as stack inspection. In
short, the combination of a primitive notion of program events, and
a temporal program logic for asserting properties of event traces,
comprises a powerful and general tool for enforcing program prop-
erties. Type and effect inference provides an expressive and adapt-
able technique for trace effect model extraction. The automated
character and generality of the overall approach provides program-
mers with a flexible tool for specifying program properties.

The analyses cited above have been developed in functional lan-
guage settings, but practical use of these tools require adaptation
to realistic languages. In this paper we address foundational tech-
nical considerations for application of trace effects to Object Ori-
ented languages, particularly Java. As discussed in Sect. 2, inher-
itance, dynamic dispatch, and downcasts present significant chal-
lenges to trace effect analysis. To isolate these issues, we extend
Featherweight Java (FJ)[18] with events, traces, and checks, and a
polymorphic type and effect inference analysis for static enforce-
ment of checks, yielding the language FJsec. We demonstrate that
the combination of parametric polymorphism, subtyping, and type
constraints can be used to obtain a flexible and sound trace effect
analysis in an Object Oriented setting.

1.1 Outline of the Paper
The remainder of the paper is organized as follows. In Sect. 2,

the central issues of our type and effect analysis in relation to Ob-
ject Oriented programming are described and discussed. In Sect. 3,
the FJsec language is formally defined, which is FJ extended with
primitives for a security logic of program traces. In Sect. 4, we
formalize the language and meaning of trace effects. In Sect. 5 a
logical type system for FJsec is presented and discussed, along with
a type safety result. A type inference algorithm is defined in Sect. 6,

that is shown to be sound with respect to the logical type system,
implying type safety in the implementation. We conclude with a
discussion of related work and a final summary in Sect. 7.

2. TRACE EFFECTS AND OBJECT
ORIENTATION

Subtyping is a common discipline for relating behavior of ob-
jects in an inheritance hierarchy. However, as we illustrate below,
imposing a subsumption relation on the trace behavior of methods
in an inheritance hierarchy is overly restrictive for applications such
as access control. It is possible and useful to extend the definition
of subtyping to trace effects, as we do in Sect. 5, but a realistic
analysis requires that we develop some mechanism for allowing
independence of inheritance and effects, and accommodate this in-
dependence in the presence of dynamic dispatch. We propose the
use ofparametric polymorphismfor this purpose. We also propose
a type constraintrepresentation; along with known benefits of this
approach in application to Object Oriented programming [14, 8],
we show how type constraints can be used for a novel soft-typing
of downcasts. In this section we discuss and illustrate these issues,
before providing formal details in Sect. 5.

2.1 Effects and Inheritance
The manner in which inheritance and dynamic dispatch com-

plicates trace effect analysis is best illustrated by example. Con-
sider the application of event traces to enforce a history-based ac-
cess control mechanism, as in [24, 1], where code is statically
signed by its owner (an authorization event), and a local access con-
trol list A associates owners with their authorizations. Ademand

predicate ensures that the intersection of all authorizations encoun-
tered up to the point of the check contains a specified privilege.
Let r denote the specified privilege, and letP range over own-
ers. Thus, given an authorization traceP1; . . . ; Pn, we require that
r ∈ A(P1)∩· · ·∩A(Pn) in order for the trace to satisfydemand(r).
Note that standard practice allows class owners to extend classes
owned by others, i.e. ownership need not be consistent throughout
an inheritance hierarchy. In our encoding, distinct ownership im-
plies method override, at least with regard to authorization events;
an accurate analysis therefore requires independence of trace ef-
fects of different method versions in the inheritance hierarchy.

The issue is complicated further by dynamic dispatch. Imagine a
classWriter that implements asafewrite method signed with a
System authorization event, wheresafewrite takes aFormatter
and aFile as arguments, and requires that theFileWrite privi-
lege be active before writing the formatter output to the file, via an
access control checkdemand(FileWrite). Note especially that
the specification of the check requires thatFileWrite must be
among the authorizations of thex.format method, since these will
affect the flow of control and therefore appear in thesafewrite

event trace:

class Writer extends Object {
void safewrite(Formatter x, File f){

System;
String s = x.format()
demand(FileWrite);
write(s, f);

}
}

Thus, we can statically approximate the trace generated by the
safewrite method as:

System; H; demand(FileWrite)

whereH represents the trace effect approximation ofx.format().
The central issue is, what isH? Note that in a language with dy-
namic dispatch such as Java, the trace generated byx.format()
could be generated by any version offormat among the subclasses
of Formatter, so it is unsound to imagineH as just the approxima-
tion of Formatters version.

In the FJ subtyping system, the typeFormatter subsumes its
subclass types via the subtyping relation. So as a first approxima-
tion, we can imagine extending subtyping to trace effects, mean-
ing thatH should subsume the effect of theformat method in the
Formatter class,as well as the effects of everyformat method in
Formatter subclasses. A standard approach [24, 3, 20] is to ap-
proximate the effect ofx.format() as the nondeterministic choice
of trace effects of theformat method in everyFormatter sub-
class. For example, suppose that there exist only two such classes,
one which is owned bySystem, and the other which is owned
by an Applet. This would be implemented by prepending the
former’s format method with aSystem event, and the latter’s
with anApplet event. For simplicity, we assume that these meth-
ods are otherwise event-free. In this case, we would haveH =
System|Applet, where| is a choice constructor. But since it is
natural to assume thatApplets are notFileWrite authorized, ver-
ification of:

System; (System|Applet); demand(FileWrite)

will fail. This means thatany invocation ofsafewrite would be
statically rejected, even if invoked with aSystem formatter. Fur-
ther, the scheme requires the entireFormatter class hierarchy be
known in advance for static analysis, since any addition would re-
quire re-computation of its effects. This would disallow modularity.

We address this problem by using polymorphism, rather than
subtyping, to approximate the effects of method parameters; to wit,
the effectH in question is represented by a universally quantified
type variable. This is accomplished via the object type form[T C],
whereT contains the inferred type and effects of a given object’s
methods, andC is the declared object class– so that the type lan-
guage of FJsec is “superimposed” over the type language of FJ, as
a conservative extension of the latter (as is discussed more exten-
sively in Sect. 5). LetStringT, andFileT be the types ofString,
andFile objects respectively, the details of which are unimpor-
tant to the example. Then, when typing thesafewrite method in
theWriter class, the FJsec type system will assign an abstract ef-
fect h to its x parameter, as in the following type we abbreviate as
AbsFormatterT:

AbsFormatterT , [format : ()
h−→StringT Formatter]

andsafewrite may be assigned the type we abbreviate asT:

T , (AbsFormatterT, FileT)
System;h;demand(FileWrite)−−−−−−−−−−−−−−−−−→ void

and the typingWriter : ∀h.[safewrite : T Writer] may be as-
signed, where the abstract effecth of x.format() is quantified. At
specific application points,h can then be instantiated with the ac-
curate trace effect of the substituant ofx. This example is extended
and discussed in Sect. 5.3.1 following formal development of the
type system.

2.2 Constraint Subtyping and Casting
To maintain decidability in the type system, we propose only

first-order parametric polymorphism. This means that ifx is a for-
mal parameter of some methodm, any methodx.m′ cannot be in-
voked withinm in a polymorphic fashion. To obtain the flexibility
necessary to statically allow application of abstracted methods to
objects of multiple types, we propose a subtyping relation, similar

L ::= class C extends C {C̄ f̄; K M̄} class definitions

K ::= C(C̄ f̄){super(f̄); this.f̄ = f̄; } constructors

M ::= C m(C̄ x̄){return e; } methods

e ::= x | e.f | e.m(ē) | new C(ē) | (C)e | ev[i] | chk[i] expressions

η ::= ε | η; η | ev[i] | chk[i] traces

Figure 1: FJsec language syntax

to that discussed above, that can be used where parametric poly-
morphism cannot due to first-orderly restrictions.

A number of considerations motivate subtyping in our type and
effect system, beyond the fact that it integrates neatly with FJ sub-
typing analysis. Firstly, while a top-level effect weakening rule, as
in [24], is sufficient for a flexible type and effect analysis, a sub-
typing rule that incorporates weakening of latent effects on func-
tion types is more precise and complete, as observed in [3]. Also,
we implement subtyping via a recursive constraint representation,
which has been shown to allow precise typing of common object-
oriented idioms, such as binary methods [14, 8].

A constraint type representation also supports a soft typing anal-
ysis of downcasts, which combines static and dynamic checks to
ensure soundness [10]. For example, suppose some expression
e has a typeT, whereT is constrained to be a supertype of both
Triangle andPolygon objects, whereTriangle is a subclass of
Polygon, and whereR andS are the field and method types of the
Triangle andPolygon objects, respectively:

[R Triangle]<: T [S Polygon]<: T

Then, given the cast(Triangle)e, we first observe that an FJ dy-
namic cast check will ensure that any run-time scenario in which
e evaluates to an object strictly in a superclass ofTriangle will
be stuck [18]. Guided by the intuition that constraints represent
data flow paths, we further observe that any constraint representing
flow of an object strictly in a superclass ofTriangle to the pro-
gram point represented byT can be ignored when analyzing the cast
(Triangle)e, without compromising type safety, since this unsafe
flow will be caught at run time by a dynamic cast check. In our type
analysis, we implement this idea by positing a typeT′ such that:

(Triangle)e : [T′ Triangle]

with the condition thatT be asoft subtypeof T′, written:

Tl [T′ Triangle]

This requires only that if[U C]<: T, then[U C]<: [T′ Triangle] if
C<: Triangle; see Definition 3 for a formalization of the idea.
This implies:

[R Triangle]<: [T′ Triangle]

andnot [S Polygon]<: [T′ Triangle]. Note that requiring the lat-
ter would yield an inconsistent constraint set in any case, so a ben-
efit of this approach is completeness in the presence of dynami-
cally checked downcasts. We believe that a constraint representa-
tion yields a distinctly precise type analysis; it is hard to see how
the precision obtainable by selective pruning of the constraint graph
used in our implementation of soft subtyping (Sect. 6) can be recre-
ated with e.g. a unification-based approach. Subtyping and soft
subtyping is further discussed in Sect. 5.2.1 following formal de-
velopment of the interpretation of subtyping constraints.

C<: C
B<: C C<: D

B<: D

CT (C) = class C extends D {. . .}
C<: D

Figure 2: Nominal subtyping for FJ

3. THE LANGUAGE FJsec

In this section we define the syntax and semantics of FJsec, which
comprises FJ extended with primitive features for specifying events
and local checks, as well as the notion of a run-time event trace.

3.1 Syntax
The syntax of FJsec is defined in Fig. 1. It is the same as the syn-

tax of FJ, whereA, B, C, D ranges over class names,x ranges over
variables,f ranges over field names, andm ranges over method
names.Values, denotedv or u, are objects, i.e. expressions of the
form new C(v1, . . . , vn). A class tableCT is a mapping from
class namesC to definitionsL, and aprogram is a pair(CT, e);
for brevity in the following, we assume a fixed class tableCT .
As in [18] we assumeObject values that have no fields or meth-
ods; we let() denote the valuenew Object(). The essential distin-
guishing features of FJsec areeventsev[i] andlocal checkschk[i].
Both events and checks are distinguished by labelsi. Events and
checks encountered during execution are accrued in linear order
in tracesη, with execution blocking if unsuccessful checks are
encountered. Events and checks are therefore side-effecting in-
structions; the value() is the direct evaluation result of checks and
events, as specified in the next section.

In this presentation we leave the logic of checks abstract, spec-
ifying only that checks are predicates on traces, and writeη `
chk[i] to denote thatη satisfieschk[i]. We could for example in-
stantiate the language of checks with the linear mu-calculus, as in
[24], but presently we are mainly concerned with the typing aspect
of the analysis.

3.1.1 Vector Notations
For brevity in numerous instances, we adopt the vector notations

of [18]. We write f̄ to denote the sequencef1, . . . , fn, similarly
for C̄, m̄, x̄, ē, etc., and we writēM as shorthand forM1 · · · Mn. We
write the empty sequence as∅, we use a comma as a sequence
concatenation operator, and we write|x̄| to denote the length of̄x.
If and only if m is one of the names in̄m, we writem ∈ m̄. Vector
notation is also used to abbreviate sequences of declarations; we
let C̄ f̄ and C̄ f̄; denoteC1 f1, . . . , Cn fn andC1 f1; . . . ; Cn fn;
respectively. The notationthis.f̄ = f̄; abbreviates the sequence of

R-FIELD
fields(C) = C̄ f̄

η, (new C(v̄)).fi → η, vi

R-INVK
mbody(m, C) = x̄.e

η, (new C(v̄)).m(ū)→ η, [ū/x̄, new C(v̄)/this]e

R-CAST
C<: D

η, (D)(new C(v̄))→ η, new C(v̄)

R-EVENT

η, ev[i]→ η; ev[i], ()

R-CHECK
η ` chk[i]

η, chk[i]→ η; chk[i], ()

RC-FIELD
η, e→ η′, e′

η, e.f→ η′, e′.f

RC-INVK -RECV
η, e→ η′, e′

η, e.m(ē)→ η′, e′.m(ē)

RC-INVK -ARG
η, ei → η′, e′i

η, v.m(v̄, ei, ē)→ η′, v.m(v̄, e′i, ē)

RC-NEW-ARG
η, ei → η′, e′i

η, new C(v̄, ei, ē)→ η′, new C(v̄, e′i, ē)

RC-CAST
η, e→ η′, e′

η, (C)e→ η′, (C)e′

Figure 3: FJsec operational semantics

initializationsthis.f1 = f1; . . . ; this.fn = fn;. Sequences of
names and declarations are assumed to contain no duplicate names.

3.2 Operational Semantics
The operational semantics of FJsec are defined in Fig. 3. The

small-step reduction relation→ is defined on closedconfigura-
tions, which are pairs of traces and expressionsη, e. As in [18],
we divide the operational rules intocomputationandcongruence
rules; the former (resp. latter) are those whose names are prefixed
by R- (resp. RC-). The semantics are defined in terms of a number
of auxiliary functions and a nominal subtyping relation<: taken
from [18] and recalled in Fig. 2 and Fig. 5. We let→? denote the
reflexive, transitive closure of→.

The operational semantics are largely the same as FJ, with the
addition of run-time traces and the treatment of events and checks.
The rules that directly affect the trace include R-EVENT, which
appends an eventev[i] encountered during execution to the end of
the trace. The R-CHECK rule is defined similarly, except the check
chk[i] is required to be satisfied by the current trace, otherwise
computation becomes stuck. Each of the congruence rules propa-
gates changes to the trace effected by the reduction of subterms.

4. SEMANTICS OF TRACE EFFECTS
The aim of our analysis is to statically guarantee the satisfaction

ev[i]
ev[i]−−−→ ε chk[i]

chk[i]−−−→ ε ε; H
ε−→ H

H1; H2
a−→ H

′
1; H2 if H1

a−→ H
′
1 H1|H2

ε−→ H1 H1|H2
ε−→ H2

µh.H
ε−→ H[µh.H/h]

JHK =
{a1 · · · an | H

a1−→ · · · an−−→ H′}
∪

{a1 · · · an ↓ | H
a1−→ · · · an−−→ ε}

Figure 4: Interpretation of trace effects

of run-time checks in programs. To this end, our analysis infers
an approximation of the trace that will be generated during pro-
gram execution, by reconstructing thetrace effectof programs. In
essence, trace effectsH conservatively approximate tracesη that
may develop during execution, by representing a set of traces con-
taining at leastη. The grammar of trace effects is given in Fig. 6.
A trace effect may be an eventev[i] or checkchk[i], or a sequenc-
ing of trace effectsH1; H2, a nondeterministic choice of trace effects
H1|H2, or aµ-bound trace effectµh.H which finitely represents the
set of traces that may be generated by a recursive function. Noting
that the syntax of tracesη is the same as linear, variable-free trace
effects, we abuse syntax and letη also range over linear, variable-
free trace effects.

We define a Labeled Transition System (LTS) interpretation of
trace effects as sets ofabstract traces, which include a↓ symbol to
denote termination. Abstract traces may be infinite, because pro-
grams may not terminate. The interpretation is defined via strings
denotedθ, over the following alphabet:

a ::= ev[i] | chk[i] | ε | ↓

The interpretation of an effectH, denotedJHK, is then taken to be
the prefix-closed, finite approximation of the trace sets that may be
generated byH, when viewed as a program in a transition semantics
defined by relations

a−→; this interpretation is specified in Fig. 4.
Trace effect equivalence is defined via this interpretation, i.e.H1 =
H2 iff JH1K = JH2K. This relation is in fact undecidable: trace effects
are equivalent to BPA’s (basic process algebras) [24], and their trace
equivalence is known to be undecidable [9].

We then base the notion of validity of trace effects on the validity
of checks that occur in traces in its interpretation. In particular, for
any given check in a trace, that check must hold for its prefix:

DEFINITION 1. H is valid iff for all (a1 · · · anchk[i]) ∈ JHK it
is the case thata1; . . . ; an ` chk[i] holds.

5. TYPES FORFJsec

Featherweight Java is equipped with a declarative, nominal type
system; the type language is based on class names, which anno-
tate function return and argument types, casts, and object creation
points. The system is algorithmically checkable, and enjoys a type
safety result [18]. Our intent is to not to redo the type system of FJ,
but to “superimpose” a type and effect analysis on it, thereby sub-
suming type safety for the FJ subset of FJsec. This superimposition
should be conservative and transparent to the programmer, both for
ease of use, and for backwards compatibility with Java. Thus, we
reuse the declared, nominal type system of FJ, but add machinery
to infer trace effects, for static verification of checks.

H ::= ε | ev[i] | chk[i] | h | H; H | H|H | µh.H trace effects

T ::= H | X | T̄ | [T C] | x : T | T H→ T types

X ::= h | t type variables

C ::= T<: T | Tl T | C ∧ C | true constraints

Figure 6: FJsec type and constraint syntax

fields(Object) = ∅

CT (C) = class C extends D {C̄ f̄; K M̄} fields(D) = D̄ ḡ

fields(C) = D̄ ḡ, C̄ f̄

CT (C) = class C extends D {C̄ f̄; K M̄}
B m(B̄ x̄){return e; } ∈ M̄

mtype(m, C) = B̄→ B

CT (C) = class C extends D {C̄ f̄; K M̄} m 6∈ M̄

mtype(m, C) = mtype(m, D)

CT (C) = class C extends D {C̄ f̄; K M̄}
B m(B̄ x̄){return e; } ∈ M̄

mbody(m, C) = x̄.e

CT (C) = class C extends D {C̄ f̄; K M̄} m 6∈ M̄

mbody(m, C) = mbody(m, D)

Figure 5: Auxiliary functions

We define our type and effect analysis via subtyping constraints
interpreted in a regular tree model. This representation promotes
type reconstruction for common Object Oriented idioms such as bi-
nary methods [14, 8]. A constraint type representation also yields
an elegant definition of thesoft subtypingrelation for static analysis
of casts, discussed in Sect. 2 and formalized below, which supports
a simple form of soft typing [10]. Furthermore, as has been ob-
served frequently in previous related type and effect analyses [24,
17, 20], some flavor of subeffecting is necessary to conservatively
extend underlying type structure, with a subtyping approach being
particularly flexible [3]. A constraint representation is an effective
implementation of subtyping, providing the expressiveness of in-
tersection and union types [14]. While a recursive constraint repre-
sentation is not the most human-readable type abstraction, our goal
here is a transparent program analysis, and automatic extraction of
trace effects for verification.

As discussed in Sect. 2, we also incorporateeffect polymorphism
[24], in a manner that allows flexibility and modularity of trace ef-
fect analysis in the presence of method override and dynamic dis-
patch.

5.1 Type and Constraint Language
The type and constraint grammar of FJsec is given in Fig. 6. We

immediately endow types with kinding rules; hereafter we implic-
itly consider only well-kinded types. The kinding rules refer to
auxiliary functions borrowed from [18] and defined in Fig. 5. Our
type term language incorporates the nominal type language of [18].

t : BodyC
fields(C) = D̄ f̄ S̄ : BodȳD T̄ : Meth̄m,C

(f̄ : ¯[S D] m̄ : T̄) : BodyC

T : BodyC
[T C] : Type

mtype(m, C) = D̄→ D T̄ : BodȳD
T : BodyD CT (C) = class C extends B {. . .}

if mtype(m, B) = Ē→ E thenĒ = D̄ andE = D

¯[T D]
H−→ [T D] : Methm,C

Figure 7: FJsec type kinding rules

Types[T C] of kind Typeare object types, whereC is the declared
name of the object’s class andT denotes the object’s instance and
method types. The class name component of the type fixes the in-
stance and methods appearing in the type to conform to those in
the declare class. This is enforced by requiring thatT be of kind
BodyC. Note also that in any object type, the type of its methods
and fields must match their declared signatures, since theMethm,C
kinding rule imposes this form on the type of a methodm in class
C. Abusing notation, we letx range over field and method names,
as well as variables, and writex : T to associate the typeT with the
field or methodx.

The kinding rule for method types also deserves attention for
its contribution to the independence of inheritance and effects in
the analysis. Recalling that the type system of [18] requires that
method overrides in a subclass have the same type signature as the
overridden methods in their superclass, we observe that the kind-
ing rule for types of kindMethm,C imposes this restriction, but only
on the declared class name component of the type. The inferred
effect componentH, on the other hand, is not restricted to relate to
superclass method effects in any way.

The language of constraints is mostly standard, though in addi-
tion to subtyping constraintsT<: T, we include weakersoft subtyp-
ing constraintsTl T, to address downcasting in the type analysis.
The meaning of constraints is defined via interpretation in a regular
tree model, defined and discussed in Sect. 5.2.

5.1.1 Vector Notations
For brevity we extend vector notation to the language of types

and constraints. The typēT is a vectorT1, . . . , Tn, with∅ denoting
the empty vector. We also write¯[T C] to denote a vector of class
types[T1 C1], . . . , [Tn Cn], while x̄ : T̄ denotes a vector of bind-
ingsx1 : T1, . . . , xn : Tn. We abbreviate constraints using vector
notation, writingS̄<: T̄ for S1 <: T1 ∧ · · · ∧ Sn<: Tn. Vector nota-
tion is similarly extended to regular tree syntax, defined in the next
section.

>∅,⊥∅ : k
fv(H) = ∅

H
∅ : Eff

mtype(m, C) = D̄→ D ς = BodȳD,Eff ,BodyD
¯[· D]

·−→ [· D] ς : Methm,C

x̄ distinct |ς| = |x̄| k ∈ ς ⇒ k ∈ {Type,Methm,C}
(x̄ : ·) ς : Type

fields(C) = D̄ f̄ ς = BodȳD,Meth̄m,C

(f̄ : ¯[· D] m̄ : ·)ς : BodyC
[· C]BodyC : Type

Figure 8: Regular tree ranked alphabet kinding rules

ϕ is finite

⊥ 4fin ϕ

ϕ is finite

ϕ 4fin >
JHK ⊆ JH′K
H 4fin H

′

ϕ̄′1 4fin ϕ̄1

ϕ2 4fin ϕ
′
2 H 4 H

′ ϕ1, ϕ
′
1, ϕ2, ϕ

′
2 finite

ϕ̄1
H−→ ϕ2 4fin ϕ̄′1

H−→ ϕ′2

ϕ̄1 4fin ϕ̄′1 ϕ̄1, ϕ̄′1 finite

x̄ : ϕ̄1, ȳ : ϕ̄2 4fin x̄ : ϕ̄′1

ϕ 4fin ϕ
′ ϕ,ϕ′ finite C<: D

[ϕ C] 4fin [ϕ′ D]

ϕ |n 4fin ϕ
′ |n for all n ∈ N
ϕ 4 ϕ′

Figure 9: Primitive subtyping for regular trees

Vector notations are also used to abbreviate the kinding rules in
Fig. 6 and Fig. 8. We writeBodȳC for BodyC1 , . . . ,BodyCn , and
Meth̄m,C for Methm1,C, . . . ,Methmn,C. Also, in kinding judgements,
we write T̄ : BodȳC for a possibly empty sequence of judgements
T1 : BodyC1 , . . . , Tn : BodyCn , with T̄ : Meth̄m,C similarly defined.

5.2 Regular Tree Model and Subtyping
To accommodate recursive constraints, we define subtyping in

FJsec via primitive subtyping in a regular tree model, using tech-
niques adapted from [28]. In our model, function type nodes in
regular trees are labeled with trace effects, and rather than being
constructed from ranked alphabets as in [28] and elsewhere, our
regular trees are constructed from kinded alphabets, imposing well-
formedness of trees. Trace effect labelings of regular trees require
an extension of the primitive subtyping relation to trace effects,
which is based on set containment of effect interpretations.

DEFINITION 2 (REGULAR TREE MODEL). Let thetree con-
structor kindsbe defined as:

k ::= Type | Eff | Methm,C | BodyC

and letsignaturesς range over ordered sequences of kinds, where
∅ denotes the empty sequence andς(n) denotes the 0-indexednth
kind in ς. The alphabetL of tree constructorsis built from the

ρ(h, hs) = ρ(h) h 6∈ hs
ρ(h, hs) = h h ∈ hs

ρ(ev[i], hs) = ev[i]

ρ(chk[i], hs) = chk[i]

ρ(ε, hs) = ε

ρ(H1; H2, hs) = ρ(H1, hs); ρ(H2, hs)

ρ(H1|H2, hs) = ρ(H1, hs)|ρ(H2, hs)

ρ(µh.H, hs) = µh.ρ(H, hs ∪ {h})

ρ([T C]) = [ρ(T) C]

ρ(x : T) = x : ρ(T)

ρ(T̄
H−→ T) = ρ(T̄)

ρ(H,∅)−−−−→ ρ(T)

ρ(T, T̄) = ρ(T), ρ(T̄)

ρ(∅) = ∅

Figure 10: Interpretations extended to types and effects

following grammar:

c ::= > | ⊥ | H | (x̄ : ·) | [· C] | ¯[· C]
·−→ [· C]

where each element of the alphabet is indexed by a signature, writ-
ten cς , and must bewell-kinded according to the rules given in
Fig. 8.

A treeϕ is a partial function from finite sequences (paths) π of
natural numbersN? to L such thatdom(ϕ) is prefix-closed. Fur-
thermore, for allπn ∈ dom(ϕ), with cς = ϕ(π), it is the case
that ϕ(πn) : ς(n). Thesubtree atπ ∈ dom(ϕ) is the function
λπ′.ϕ(ππ′), while |π| is the level of that subtree. A tree isregu-
lar iff the set of its subtrees is finite, and we defineT as the set of
regular trees overL.

A partial order overT is then defined via an approximate rela-
tion over finiteϕ ∈ T. First, define alevel-n cutϕ |n for ϕ ∈ T as
the finite tree obtained by replacing all subtrees at leveln ofϕ with
>. Then,4fin is the partial order over finiteϕ ∈ T axiomatized
in Fig. 9, and4 is the partial order overT approximated by4fin

axiomatized in Fig. 9.

The meaning of subtyping constraints is then defined via inter-
pretation in the regular tree model. The principal novelties here are
the extension of subtyping to trace effects, and the interpretation of
the soft subtyping relation.

DEFINITION 3 (INTERPRETATION OFCONSTRAINTS). In–
terpretationsρ are total mappings from type variablesX toT. Inter-
pretations are extended to types and effects as in Fig. 10; the inter-
pretation of effects are parameterized by setshs of effect variables,
to prevent substitution ofµ-bound variables. The relationρ ` C,
pronouncedρ satisfiesor solvesC, is axiomatized as follows:

ρ ` true
ρ(S) 4 ρ(T)

ρ ` S<: T

ρ ` C ρ ` D
ρ ` C ∧D

∀BR.(B<: D ∧ ρ ` [R B]<: S)⇒ ρ ` [R B]<: [T D]

ρ ` Sl [T D]

The relationC D holds iffρ ` C impliesρ ` D for all interpre-
tationsρ. ConstraintsC andD are equivalent, writtenC = D, iff
C D andD C.

5.2.1 Discussion
The above defines a system of object width and depth subtyping,

with method subtyping predicated on subsumption of trace effects.
This extension, defined in Fig. 9, is based on containment of trace
effect interpretations, reflecting a type soundness requirement that
if T subsumesS, it must also subsumeS’s trace effects. Since con-
straints are defined on the basis of interpretations, constraints on
types with abstract components are meaningful; for example, we
could assert:

S<: T ∧ T̄<: S̄ S̄
h−→ S<: T̄

h|(ev[1];ev[2])−−−−−−−−→ T

since any interpretation ofh must be contained in the same inter-
pretationh|(ev[1]; ev[2]).

The soft subtyping relation is useful in application to downcasts,
allowing constraints to be relaxed pursuant to downcasting. For
example, assumingC<: D, we could meaningfully assert:

[R C]<: T ∧ [S D]<: T ∧ Tl [U C] [R C]<: [U C]

but not:

[R C]<: T ∧ [S D]<: T ∧ Tl [U C] [S D]<: [U C]

which formalizes the idea discussed in Sect. 2. This relaxation is
allowable at casting points, since dynamic checks will “pick up the
slack”, preserving type safety as discussed in the next section.

This definition of subtyping may raise concerns about decidabil-
ity of the analysis, since subtyping is predicated on trace effect
containment, but equivalence of trace effects was shown to be un-
decidable in Sect. 4. Indeed, while trace effect containment is un-
decidable in the general case, we show in Sect. 6 that constraints
generated by type inference are in a normal form that is amenable
to algorithmic solution.

5.3 Logical Type Judgements and Properties
To define the logical type system, we introduce constrained type

schemes∀X̄[C].T and type environmentsΓ binding class names
and variables to type schemes. IfX̄ ∩ fv(T) = ∅ we abbreviate
∀X̄[true].T as T. We also introduce three forms of type judge-

ments:Γ, C, H ` e : T for expressions,Γ, C ` m, C : T̄
H−→ T for

methodm in classC, andΓ ` C : ∀X̄[C].T for classes. We say that
a constraint, type pairC, T is realizableiff there exists a solution
ρ of C such thatρ(T) is well-kinded, and we impose the follow-
ing sanity conditions on judgements: for any type scheme∀X̄[C].T
appearing in a judgement, we require thatC, T be realizable, and
for any Γ, C, H ` e : T or Γ, C ` m, C : T we require thatC, T
is realizable. Type derivation rules are given in Fig. 11, with some
auxiliary functions defined in Fig. 12. For these rules and later ex-
amples, we posit aUnit type, which is the type of objects in the
Object class, that possess no fields or methods; i.e.:

Unit , [Object]

In these and later rules we also write[x̄ : T̄ C].xi to denoteTi, and if
n = 0, thenH1, . . . , Hn andC1, . . . , Cn meanε andtrue, respec-
tively. We note that∀-intro and -elim are located at class definition
and object construction points, respectively. The soft subtyping re-
lation is used for casts(C)e; due to the interpretation of soft subtyp-
ing defined in the previous section, this rule will only track the flow
of objects to the casting point that are in a subclass ofC. Any other
objects will cause a dynamic cast check exception, and can there-
fore be ignored statically without compromising type safety, as in
[18]. Ignoring “junk” in this manner gives a more precise analysis,
and allows typing of downcasts. We omit the distinction of “stupid

T-VAR

Γ, C, ε ` x : Γ(x)

T-FIELD
Γ, C, H ` e : [S C] C S<: (f : [T D])

Γ, C, H ` e.f : [T D]

T-SEQ

|e| = n Γ, C, Hi ` ei : Ti for all ei ∈ ē

Γ, C, H1; . . . ; Hn ` ē : T̄

T-INVK
Γ, C, H1 ` e : [T C]

Γ, C, H2 ` ē : ¯[R B] C T<: (m : ¯[R B]
H3−→ [S D])

Γ, C, H1; H2; H3 ` e.m(ē) : [S D]

T-NEW
Γ(C) = ∀X̄[D].[T C]

C D[S̄/X̄] fieldsig [T C] = T̄ Γ, C, H ` ē : T̄[S̄/X̄]

Γ, C, H ` new C(ē) : [T[S̄/X̄] C]

T-EVENT

Γ, C, ev[i] ` ev[i] : Unit
T-CHECK

Γ, C, chk[i] ` chk[i] : Unit

T-CAST
Γ, C, H ` e : T C Tl [S D]

Γ, C, H ` (D)e : [S D]

T-METH
Γ; x̄ : T̄, C, H ` e : S

C S<: T Γ(this).m = T̄
H−→ T mbody(m, C) = x̄.e

Γ, C ` m, C : T̄
H−→ T

T-CLASS
Γ; C : [T C]; this : [T C], C ` mi, C : Ti for all mi ∈ meths(C)

Γ ` C : ∀X̄[C].[T C]

Figure 11: FJsec logical typing rules

casts” entailing “stupid warnings” as in [18], noting that we essen-
tially follow their approach, and can easily adopt this distinction.
We make the following definitions:

DEFINITION 4. The judgementΓ, C, H ` e : T is valid iff it is
derivable and there exists a solutionρ ofC such thatρ(H) is valid.
An environmentΓ is well-formediff Γ ` C : ∀X[C].T is derivable
for all (C : ∀X[C].T) ∈ Γ.

It is demonstrable that for closed, event- and check-free expres-
sionse, there exists a derivable typing fore in FJsec iff e is well-
typed in the type system of [18]. Inspection of the rules reveals that
our type system is defined by layering our type features over theirs,
so the result is not surprising. For example, observe that sanity
conditions on type judgements require thatD f ∈ fields(C) in the
T-FIELD rule.

This means that our system absorbs properties of theirs, includ-
ing type safety for the FJ subset of FJsec, implying that the only case
we really need to consider, to extend type safety to FJsec, is progress
for trace checks. That is, we must show that checks can be stati-
cally enforced by our type analysis. We establish this by a subject
reduction argument, showing that trace effect approximations are

{m1, . . . , mn} = {m | mbody(m, C) is defined}
meths(C) = m1, . . . , mn

fields(C) = D1 f1, . . . , Dn fn
f1 : T1 ∈ T, . . . , fn : Tn ∈ T

fieldsig [T C] = T1, . . . , Tn
¯[t C]

h−→ [t C] is abstract

fields(C) = f̄ C̄ meths(C) = m̄ T̄ is abstract

[f̄ : ¯[t C] m̄ : T̄ C] is abstract

Figure 12: Auxiliary functions

preserved by computation. Note that the statement of subject re-
duction must apply to configurations; the proof, omitted here for
brevity, follows by induction on derivations:

LEMMA 1 (SUBJECTREDUCTION). If Γ, C, H ` e : [T C] is
derivable for closede and well-formedΓ, andη, e → η′, e′, then
Γ, C, H′ ` e′ : [T C] is derivable withC η′; H′<: η; H.

A corollary of this result formalizes the intuition that trace effects
approximate event traces, insofar as any event trace generated dur-
ing evaluation of an expression must be contained in the trace effect
assigned to that expression by the type analysis:

COROLLARY 1. If Γ, C, H ` e : [T C] is derivable for closede
and well-formedΓ, andε, e→ η, e′, thenC η <: H.

To state our type safety result, we must formally define what we
mean by “run-time checks”. In short, these are checks in the hole
of an evaluation context encountered during execution:

DEFINITION 5. Evaluation contextsare defined as follows:

E ::= [] | E.f | E.m(ē) | v.m(v̄, E, ē) | new C(v̄, E, ē) | (C)E

We then prove one auxiliary lemma followed by our main type
safety result, demonstrating that run-time checks in well-typed pro-
grams are guaranteed to succeed:

LEMMA 2. If Γ, C, H ` E[chk[x]] : T thenC chk[x]; H′<: H.

LEMMA 3 (STATIC ENFORCEMENT OFCHECKS). Given
closede and well-formedΓ, if the judgementΓ, C, H ` e : T is
valid , andε, e→? η, E[chk[x]], thenη ` chk[x].

PROOF. By Lemma 1 and Lemma 2,Γ, C, H′ ` E[chk[x]] : T is
derivable withC chk[x]; H′′<: H′ andC η; H′<: H. Now, by
assumption there exists a solutionρ ofC such thatρ(H) is valid; but
sinceJρ(chk[x]; H′′)K ⊆ Jρ(H′)K andJρ(η; H′)K ⊆ Jρ(H)K by previ-
ous facts and Definition 3, thereforeJρ(η; chk[x]; H′′)K ⊆ Jρ(H)K.
It follows thatρ(η; chk[x]; H′) is valid, thusη ` chk[x] by Defini-
tion 1. ut

5.3.1 Discussion
In this section we discuss some examples that illustrate proper-

ties of the type system. We assume the definitions and types given
in Sect. 2. We also assume the trivial extension of the language
with a sequencing constructe; e and a lexically scoped name-to-
value binding constructC x = new C(). To provide intuitions more
easily, we present types and effects in a unified form. We posit
the definition of a classPasswdTmpl, which is owned bySystem;
in classPasswdTmpl theformat method is overridden, defined to
format a password file template string:

class PasswdTmpl extends Formatter {
String format() { System; . . .}

}

Assuming that the body of this version offormat is effect free
other than the initialSystem event, the type ofPasswdTmpl can be
given as follows, whereStringT is the type of aString object,
the details of which are unimportant to the example:

PTmplT , [format : ()
System−−−−−→ StringT PasswdTmpl]

We also posit the definition of a classBackdoor, devised as an
untrustedApplet extendingPasswdTmpl, that formats a password
file template containing a uname/passwd combination known to the
attacker:

class Backdoor extends PasswdTmpl {
String format() { Applet; . . .}

}

Assuming that the body of this version offormat is also effect free
other than the initialApplet event, the type ofBackdoor can be
given as follows, which we abbreviate asBdoorT:

BdoorT , [format : ()
Applet−−−−→ StringT Backdoor]

Notice that the effects assigned to theBackdoor andPasswdTmpl
versions offormat are incomparable, despite their inheritance re-
lation.

For the purposes of the example, we further imagine that there
exists an openPasswdFile object in the current namespace. Now,
sinceWriter.safewrite can be assigned a type which is poly-
morphic in the effects of its arguments, the code:

Writer w = new Writer();
PasswdTmpl p = new PasswdTmpl();
w.safewrite(p, PasswdFile);

could be assigned the effect:

System; System; demand(FileWrite);

which we assume is verifiable, whereas the following application
of safewrite could be treated independently:

Writer w = new Writer();
Backdoor b = new Backdoor();
w.safewrite(b, PasswdFile);

and assigned the following effect, which we assume is not verifi-
able:

System; Applet; demand(FileWrite)

Since polymorphism is restricted to be first orderly, method pa-
rameters themselves cannot be polymorphic. This means that in
code such as the following, the domain effects of functionally ab-
stracted objects will be merged by subtyping:

class C extends Object {
void m(Writer w, File f){

Backdoor b = new Backdoor();
PasswdTmpl p = new PasswdTmpl();
w.safewrite(b, f);
w.safewrite(p, f);

}
}

This implies that the effects at each calling site ofw.safewrite
generated by the following code cannot be distinguished:

Writer w = new Writer();
C c = new C();
c.m(w, PasswdFile);

so that the following effect would be assigned:

System;)(System|Applet); demand(FileWrite);

System; (System|Applet); demand(FileWrite)

Soft subtyping can be used at downcasts to ignore unsound flow
that will be caught by dynamic cast checks. Suppose that type
analysis predicts that some expressione may evaluate to either a
PasswdTmpl object or aBackdoor object; i.e.Γ, C, H ` e : T

with:

C PTmplT<: T ∧ BdoorT<: T

wherePTmplT andBdoorT are defined as above. By the T-CAST

typing rule and properties of soft subtyping discussed above, we
therefore may assert (as a somewhat contrived example; aBackdoor

cast is not likely to occur in practice):

Γ, C, ε ` (Backdoor)e : BdoorT

meaning that the following:

Writer w = new Writer();
w.safewrite((Backdoor)e, f);

may be assigned the following effect:

H; System; Applet; demand(FileWrite)

6. TYPE INFERENCE FOR FJsec

We now give an implementation of the FJsec type analysis. This
includes a type inference algorithm and constraint closure rules for
checking satisfiability of typing judgements. Inference and clo-
sure serve as preliminary phases for statically verifying trace based
program assertions, which can finally be accomplished by model
checking trace effects, as in [24]. Model checking is applicable,
since we endow trace effects with an LTS semantics (Sect. 4), for
which a variety of model checking techniques exist [9]. However,
standard techniques expect term, rather than constraint, represen-
tation of LTSs. Therefore, it is necessary to define a means of ex-
tracting a unified trace effect representation from inferred typing
judgements. For this purpose we define thehextract algorithm,
which obtains a unified representation of trace effects from the in-
ferred constraint representation.

Type inference rules are given in Fig. 13; theW subscripting
the relation`W distinguishes type inference from logical typing
judgements, and is meant to evoke the prototypical polymorphic
type reconstruction algorithmW [13]. Note that all formal method
parameters are assigned abstract effects when typing the method
body, via the definition of “is abstract” given in Fig. 12. The type
inference rules are deterministic except for the choice of type vari-
ables; we callcanonicalthose derivations that always choose fresh
type variables, and hereafter restrict our consideration to canonical
derivations without loss of generality. In our formal characteriza-
tion, we will assume that programs are typed in class typing envi-
ronmentsΓ that have been generated by previous inference, as in
the following definition:

DEFINITION 6. Let:

Γ = C1 : ∀X̄1[C1].T1; . . . ; Cn : ∀X̄n[Cn].Tn

ThenΓ is inferableiff for all 0 < i ≤ n it is the case that:

C1 : ∀X̄1[C1].T1; . . . ; Ci− 1 : ∀X̄i− 1[Ci−1].Ti− 1 `W Ci : Γ(Ci)

T-VAR

Γ, true, ε `W x : Γ(x)

T-FIELD
Γ, C, H `W e : [T C] D f ∈ fields(C)

Γ, C ∧ T<: (f : [X D]), H `W e.f : [X D]

T-SEQ

|e| = n Γ, Ci, Hi `W ei : Ti for all ei ∈ ē

Γ, C1 ∧ · · · ∧ Cn, H1; . . . ; Hn `W ē : T̄

T-INVK
Γ, C, H `W e : [T C]

Γ, D, H′ `W ē : ¯[S B] mtype(m, C) = D̄→ D B̄<: D̄

Γ, C ∧D ∧ T<: (m : ¯[S B]
h−→ [t D]), H; H′; h `W e.m(ē) : [t D]

T-NEW
Γ(C) = ∀X̄[D].[T C]

fieldsig [T C] = T̄ Γ, C, H `W ē : S̄

Γ, C ∧D[X̄′/X̄] ∧ S̄<: T̄[X̄′/X̄], H `W new C(ē) : [T[X̄′/X̄] C]

T-EVENT

Γ, true, ev[i] `W ev[i] : Unit

T-CHECK

Γ, true, chk[i] `W chk[i] : Unit

T-CAST
Γ, C, H `W e : T

Γ, C ∧ Tl [t D], H `W (D)e : [t D]

T-METH
Γ; x̄ : T̄, C, H `W e : S

Γ(this).m = T̄
h−→ T mbody(m, C) = x̄.e

Γ, C ∧ S<: T ∧ H<: h `W m, C : T̄
h−→ S

T-CLASS
T = [f̄ : R̄ m̄ : S̄ C] is abstract and well-kinded

Γ; C : T; this : T, Ci `W mi, C : Ti for all mi ∈ m̄ |m| = n

Γ `W C : ∀X̄[C1 ∧ · · · ∧ Cn].[f̄ : R̄ m̄ : T̄ C]

Figure 13: FJsec type inference rules

Note that for simplicity in this presentation we disallow mutu-
ally recursive class definitions, though this restriction can be eas-
ily lifted by modifying the above definition. We obtain soundness
for type inference via the following result for expression inference;
generalization to method and class inference are obtained on this
basis. The result follows by induction on inference derivations.
The Lemma states that inference derivations can be reconstructed
as logical derivations of less general typings; this formulation is
necessary to allow the induction to go through, since logical judge-
ments are given complete constraints a priori, whereas they are re-
constructed from the leaves towards the nodes in inference deriva-
tions:

LEMMA 4 (SOUNDNESS OFINFERENCE). If Γ, C, H `W e :
T is derivable withC ∧D, T realizable, thenΓ, C ∧D, H ` e : T
is derivable.

In addition to type inference rules, the type implementation com-
prises a constraint closure algorithm and consistency check. We

C-FN

(T̄
H−→ T<: S̄

H′−→ S) ;close (S̄<: T̄ ∧ T<: S ∧ H<: H′)

C-TRANS

(R<: S ∧ S<: T) ;close R<: T

C-STRANS

(R<: S ∧ Sl T) ;close Rl T
C-OBJ

[T C]<: [S D] ;close T<: S

C-ROW

(x̄ : R̄, ȳ : S̄)<: (x̄ : T̄) ;close R̄<: T̄

C-CAST
C<: D

[T C]l [S D] ;close [T C]<: [S D]

C-CONTEXT
C′ ⊆ C C′ ;close D D 6⊆ C

C →close C ∧D

Figure 14: Constraint closure rules

` true : ok
` C : ok ` D : ok

` C ∧D : ok
` H<: H′ : ok

C<: D

` [T C]<: [S D] : ok
` [T C]l [S D] : ok

` (T̄
H−→ T<: S̄

H′−→ S) : ok ` (x̄ : R̄, ȳ : S̄)<: (x̄ : T̄) : ok

Figure 15: Constraint consistency rules

say that a constraintC is consistentiff ` C : ok is derivable given
the deterministic rules in Fig. 15. For brevity in the definition of
closure, we introduce the following notation:

DEFINITION 7. Let Ĉ range overatomicconstraints, i.e.:

Ĉ ::= true | T<: T | Tl T

and letC , Ĉ1 ∧ · · · ∧ Ĉj andD , D̂1 ∧ · · · ∧ D̂k. Then define:

Ĉ ∈ C ⇐⇒ Ĉ ∈
j⋃
i=1

{
Ĉi
}

D ⊆ C ⇐⇒
k⋃
i=1

{
D̂i
}
⊆

j⋃
i=1

{
Ĉi
}

Constraint closure is then defined via the rewrite rules given in
Fig. 14 and Definition 8. The closure rules are mostly standard,
except for those that treat soft subtyping constraints, C-CAST and
C-STRANS. These rules implement selective pruning of the con-
straint graph described previously; note that they effectively discard
unsound flow along soft subtyping edges.

DEFINITION 8 (CONSTRAINT CLOSURE). The rewrite rela-
tions;close and→close are defined in Fig. 14.C is closediff there
does not existD such thatC →close D. The relation→?

close is
the reflexive, transitive closure of→close . We defineclose(C) as a
closed constraint such thatC →?

close close(C).

The purpose of closure and consistency checks is twofold. Firstly,
these processes algorithmically ensure satisfiability of inferred type
constraint, established as follows:

LEMMA 5. If Γ, C, H `W e : T is derivable, thenC, T is real-
izable iffclose(C) is consistent.

Secondly, closure generates a constraint that is amenable to de-
cidable trace effect extraction. It is essential to observe that the
trace effect constraints in a constraint generated by inference and
closure define a system of concrete lower bounds on trace effect
variables:

DEFINITION 9. Let C be closed and consistent. ThenH′ is a
component ofH in C iff H′ is a subterm ofH, or there exists a sub-
termh of H such thatH′′<: h ∈ C andH′ is a component ofH′′ in
C. Theabstract components ofH in C are the variable components
h of H that have no lower bound inC.

LEMMA 6. Let Γ, C, H `W e : T be derivable for closede.
ThenH1 <: H2 ∈ close(C) implies thatH2 is a variableh, andH
has no abstract components inC.

This form of effect constraint implies that, givenΓ, C, H `W e : T,
a solution forH can be obtained, more or less, by recursively joining
the lower bounds of type variable components ofH in close(C).
Formally, the trace effect extraction algorithm is defined in Fig. 16,
with associated abbreviations as follows:

DEFINITION 10. Thehextract algorithm in Fig. 16 is defined
with respect to a given constraintC. At the “top-level”, we write
hextract(H, C) to denotehextract(H,∅) givenC.

Extraction returns a closed trace effect that is a “best” unified rep-
resentation of the top-level effect of a given closed expression, in
the following sense:

LEMMA 7 (EXTRACTION CORRECTNESS). If Γ, C, H `W e :
T is derivable for closede andH′ = hextract(H, close(C)), then
H′ is closed andC H′<: H.

Soundness of the analysis is then obtained immediately by Lemma 4,
Lemma 5, and Lemma 7.

THEOREM 1 (SOUNDNESS OFANALYSIS). If Γ, C, H `W e :
T is derivable for closede andhextract(H, close(C)) is valid, then
ε, e→? η, E[chk[x]] impliesη ` chk[x].

7. CONCLUSION
In this section we conclude with a discussion of related work and

some final remarks.

7.1 Related Work
The idea of using some form of abstract program interpretation

as input to model checking [26] for verification of specified pro-
gram properties has been explored previously, e.g. in [4, 11, 6]. In
these particular works, the specifications are temporal logics, reg-
ular languages, or finite automata, and the abstract control flow is
extracted as an LTS in the form of a finite automaton, grammar, or
PDA. However, none of these works defines a rigorous process for
extracting an LTS from higher-order or Object Oriented programs.

Security automata [23] use finite automata for the specification
and run-time enforcement of language safety properties, loosely
understood as specifying well-formed event sequences. Systems
have also been developed for statically verifying correctness of se-
curity automata using dependent types [29], and in a more general

hextract(ε, hs) = ε

hextract(ev[i], hs) = ev[i]

hextract(chk[i], hs) = chk[i]

hextract(h, hs) = h h ∈ hs
hextract(h, hs) = µh.hextract(bounds(h), hs ∪ {h}) h 6∈ hs

hextract(H1; H2, hs) = (hextract(H1, hs));(hextract(H2, hs))

hextract(H1|H2, hs) = (hextract(H1, hs))|(hextract(H2, hs))

bounds(h) = H1| · · · |Hn where{H1, . . . , Hn} = {H | H<: h ∈ C}

Figure 16: hextract and bounds functions

form as refinement types [22]. These systems do not extract any ab-
stract interpretations, and so are in a somewhat different category
than the aforementioned (and our) work.

Perhaps the most closely related work is [20], which proposes
a similar type and effect system and type inference algorithm, but
their “resource usage” abstraction is of a markedly different char-
acter, based on grammars rather than LTSs. Their system lacks
parametric polymorphism, which restricts expressiveness in prac-
tice, and verifies global, rather than local, assertions. The system
in [5] is also closely related, but verifies so-called local policies,
where regions of code are required to satisfy specified invariants.

Their usagesU are similar to our trace effectsH, but the usages
have a much more complex grammar, and appear to have no real
gain in expressiveness. Our trace effects can easily be seen to form
an LTS for which model-checking is decidable; their usages are
significantly more complex, so it is unclear if model-checking will
be possible.

The systems in [12, 7, 19, 6] use LTSs extracted from control-
flow graph abstractions to model-check program security properties
expressed in temporal logic. Their approach is close in several re-
spects, but we are primarily focused on the programming language
as opposed to the model-checking side of the problem. Their anal-
yses assume the pre-existence of a control-flow graph abstraction,
which is in the format for a first-order program analysis only. Our
type-based approach is defined directly at the language level, and
type inference provides an explicit, scalable mechanism for extract-
ing an abstract program interpretation, which is applicable to Ob-
ject Oriented features. Furthermore, polymorphic effects are infer-
able, which we believe is critical for application to Object Oriented
settings.

Some recent work [21, 2] has focused on analyzing patterns of
method invocations for model checking safety properties of Object
Oriented programs, although traces in these works are represented
as regular expressions, not LTSs. While there are some similarities
in their approaches and applications, we believe that our system is
the first to consider the extension of trace effectsper seto Object
Oriented programs, as a technique for statically verifying assertions
in a general event trace program logic.

7.2 Summary
We have defined the language FJsec, a version of Featherweight

Java (FJ) extended with event traces and checks, which are local as-
sertions imposing well-formedness properties on traces. This pro-
vides a foundation for a general logic of trace based program prop-
erties in Object Oriented languages such as Java. We have defined
a static type and effect analysis that automatically generates con-
servative approximations of FJsec program trace behavior, called

trace effects. Trace effects are endowed with a label transition sys-
tem semantics, and are therefore amenable to model checking for
static verification of asserted trace based properties. The analysis is
sound, in that static verification of program trace effects guarantees
success of dynamic checks.

The Object Oriented paradigm presents several challenges to trace
effect analysis, including complications due to inheritance, method
override, and dynamic dispatch. In particular, we have observed
that different versions of methods in a given class hierarchy should
not be required to agree in their trace effects, since this require-
ment would be overly restrictive. We have proposed a particular
application of parametric polymorphism to promote flexibility in
the presence of dynamic dispatch. We have also shown that a novel
definition of subtyping constraints in a regular tree model can be
used for flexibility in application to Object Oriented program fea-
tures, including dynamically checked downcasts.

Acknowledgements
Thanks to Scott Smith and David Van Horn for comments and sug-
gestions on drafts of this paper.

8. REFERENCES
[1] Martín Abadi and Cédric Fournet. Access control based on

execution history. InProceedings of the 10th Annual
Network and Distributed System Security Symposium
(NDSS’03), feb 2003.

[2] Rajeev Alur, Pavol Cerny, P. Madhusudan, and Wonhong
Nam. Synthesis of interface specifications for java classes. In
POPL ’05: Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of
programming languages, pages 98–109. ACM Press, 2005.

[3] T. Amtoft, F. Nielson, and H. R. Nielson.Type and Effect
Systems. Imperial College Press, 1999.

[4] Thomas Ball and Sriram K. Rajamani. Bebop: A symbolic
model checker for boolean programs. InSPIN, pages
113–130, 2000.

[5] Massimo Bartoletti, Pierpaolo Degano, and Gian Luigi
Ferrari. Policy framings for access control. InWITS ’05:
Proceedings of the 2005 workshop on Issues in the theory of
security, pages 5–11. ACM Press, 2005.

[6] F. Besson, T. Jensen, D. Le Métayer, and T. Thorn. Model
checking security properties of control flow graphs.J.
Computer Security, 9:217–250, 2001.

[7] Frédéric Besson, Thomas de Grenier de Latour, and Thomas
Jensen. Secure calling contexts for stack inspection. In
Proceedings of the Fourth ACM SIGPLAN Conference on

Principles and Practice of Declarative Programming
(PPDP’02), pages 76–87. ACM Press, 2002.

[8] Kim B. Bruce, Luca Cardelli, Giuseppe Castagna, Jonathan
Eifrig, Scott F. Smith, Valery Trifonov, Gary T. Leavens, and
Benjamin C. Pierce. On binary methods.Theory and
Practice of Object Systems, 1(3):221–242, 1995.

[9] O. Burkart, D. Caucal, F. Moller, , and B. Steffen.
Verification on infinite structures. In S. Smolka J. Bergstra,
A. Pons, editor,Handbook on Process Algebra.
North-Holland, 2001.

[10] Robert Cartwright and Mike Fagan. Soft typing. In
Proceedings of the ACM SIGPLAN 1991 conference on
Programming language design and implementation, pages
278–292. ACM Press, 1991.

[11] Hao Chen and David Wagner. MOPS: an infrastructure for
examining security properties of software. InProceedings of
the 9th ACM Conference on Computer and Communications
Security, pages 235–244, Washington, DC,
November 18–22, 2002.

[12] Thomas Colcombet and Pascal Fradet. Enforcing trace
properties by program transformation. In27th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 54–66, 2000.

[13] Luis Damas and Robin Milner. Principal type-schemes for
functional programs. InACM Symposium on Principles of
Programming Languages (POPL), pages 207–212, 1982.

[14] Jonathan Eifrig, Scott Smith, and Valery Trifonov. Type
inference for recursively constrained types and its
application to OOP. InMathematical Foundations of
Programming Semantics, volume 1 ofElectronic Notes in
Theoretical Computer Science. Elsevier Science, 1995.

[15] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken.
Flow-Sensitive Type Qualifiers. InProceedings of the 2002
ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 1–12, Berlin, Germany,
June 2002.

[16] Gerard J. Holzmann and Margaret H. Smith. Software model
checking: extracting verification models from source code.
Software Testing, Verification & Reliability, 11(2):65–79,
2001.

[17] Atsushi Igarashi and Naoki Kobayashi. Resource usage
analysis. InConference Record of POPL’02: The 29th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 331–342, Portland, Oregon,
January 2002.

[18] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler.
Featherweight Java: a minimal core calculus for Java and GJ.
ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001.

[19] T. Jensen, D. Le Métayer, and T. Thorn. Verification of
control flow based security properties. InProceedings of the
1999 IEEE Symposium on Security and Privacy, 1999.

[20] P. J. Stuckey K. Marriott and M. Sulzmann. Resource usage
verification. InProc. of First Asian Programming Languages
Symposium, APLAS 2003, 2003.

[21] Francesco Logozzo. Separate compositional analysis of
class-based object-oriented languages. InProceedings of the
10th International Conference on Algebraic Methodology
And Software Technology (AMAST’2004), volume 3116 of
Lectures Notes in Computer Science, pages 332–346.
Springer-Verlag, July 2004.

[22] Yitzhak Mandelbaum, David Walker, and Robert Harper. An
effective theory of type refinements. InProceedings of the
the Eighth ACM SIGPLAN International Conference on
Functional Programming (ICFP’03), Uppsala, Sweden,
August 2003.

[23] Fred B. Schneider. Enforceable security policies.
Information and System Security, 3(1):30–50, 2000.

[24] Christian Skalka and Scott Smith. History effects and
verification. InAsian Programming Languages Symposium,
number 3302 in Lecture Notes in Computer Science.
Springer, November 2004.

[25] Christian Skalka, Scott Smith, and David Van Horn. A type
and effect system for flexible abstract interpretation of Java.
In Proceedings of the ACM Workshop on Abstract
Interpretation of Object Oriented Languages, Electronic
Notes in Theoretical Computer Science, January 2005.

[26] B. Steffen and O. Burkart. Model checking for context-free
processes. InCONCUR’92, Stony Brook (NY), volume 630
of Lecture Notes in Computer Science (LNCS), pages
123–137, Heidelberg, Germany, 1992. Springer-Verlag.

[27] Jean-Pierre Talpin and Pierre Jouvelot. The type and effect
discipline. InSeventh Annual IEEE Symposium on Logic in
Computer Science, Santa Cruz, California, pages 162–173,
Los Alamitos, California, 1992. IEEE Computer Society
Press.

[28] Valery Trifonov and Scott Smith. Subtyping constrained
types. InProceedings of the Third International Static
Analysis Symposium, volume 1145, pages 349–365. Springer
Verlag, 1996.

[29] David Walker. A type system for expressive security policies.
In Conference Record of POPL’00: The 27th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 254–267, Boston,
Massachusetts, January 2000.

