
Electronic Notes in Theoretical Computer Science 75 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume75.html 14 pages

Syntactic Type Soundness for HM(X)

Christian Skalka 1

The University of Vermont

François Pottier 2

INRIA Rocquencourt

Abstract
The HM(X) framework is a constraint-based type framework with built-in let-
polymorphism. This paper establishes purely syntactic type soundness for the frame-
work, treating an extended version of the language containing state and recursive
binding. These results demonstrate that any instance of HM(X), comprising a spe-
cialized constraint system and possibly additional functional constants and their
types, enjoys syntactic type soundness.

1 Introduction
This paper presents a purely syntactic type soundness result for HM(X), in
the style of Wright and Felleisen [7]. A soundness result based on a denota-
tional semantics was originally presented by Odersky et al. [1]. Sulzmann [5]
conjectured that type safety for HM(X) can be established in a syntactic way,
but did not provide a proof. Recently, Pottier [2] used HM(X) as a vehicle to
illustrate a semi-syntactic proof technique, which does not rely on a denota-
tional semantics, yet allows part of the proof to be carried out by induction
on type derivations, suppressing the need for normalization lemmas.

None of the two existing results mentioned above is adequate in the event
that a purely syntactic result is wished for. Such a wish can arise, for in-
stance, out of the desire to build a custom type system on top of an instance
of HM(X) via a type system factory. We call type system factory a construc-
tion which, given any type system that satis�es subject reduction (and perhaps
some additional properties), produces a new type system, dedicated to a spe-
ci�c purpose, together with its correctness proof. For instance, type system
factories which produce type-based security analyses are described in [3,4].
1 Email: skalka@cs.uvm.edu
2 Email: Francois.Pottier@inria.fr

c©2003 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume75.html�
mailto:skalka@cs.uvm.edu�
mailto:Francois.Pottier@inria.fr�

Skalka, Pottier

x, z ∈ ID identi�ers
l ∈ Loc memory locations
c ∈ Const constants
v ::= x | l | �x z.λx.e | ref | := | (:= l) | ! | c values
e ::= v | e e | let x = v in e expressions
E ::= [] | E e | v E evaluation contexts

Fig. 1. Language grammar for HM(X)

This presentation of HM(X) extends previous results by treating a ver-
sion of the core language that contains state and a primitive recursive binding
mechanism. The addition of state increases the expressivity of the program-
ming language. A primitive recursive binding mechanism is a welcome con-
venience; previously, it was necessary to either de�ne a �xpoint combinator,
or introduce one as a constant, entailing additional proof overhead to obtain
type soundness for an instance of the framework.

Our presentation of HM(X) is otherwise identical to that of [1,5]. The main
di�erence resides in our axiomatization of the meaning of constraints, which
is more direct; see section 2.2. Our proof technique is standard, following
Wright and Felleisen [7]. The central results are subject reduction, progress,
and type safety for the HM(X) framework, stated and proved in section 4.

2 De�nitions
In this section we present the HM(X) framework, that is, the programming
language and its type system.

2.1 The Language
The core language is a call-by-value functional calculus, extended with a re-
cursive binding mechanism built into function de�nitions, and mechanisms for
state. We postulate countably in�nite sets of identi�ers, locations, and con-
stants. The language grammar is de�ned in �gure 1. Note that, following [6],
we impose a value restriction on let bindings, precluding unsafe interaction
between imperative features and polymorphism.

The operational semantics is de�ned on con�gurations e/ς, where a store
ς is a partial mapping from locations to values. We write ς[l 7→ v] to denote
the store which maps l to v and otherwise agrees with ς. The empty store
is denoted ∅. The one-step reduction rules for HM(X) are then de�ned in
�gure 2. We write →? to denote the re�exive, transitive closure of →. The

2

Skalka, Pottier

(�x z.λx.e)v/ς → e[v/x][�x z.λx.e/z]/ς (β)

let x = v in e/ς → e[v/x]/ς (let)
ref v/ς → l/ς[l 7→ v] l 6∈ dom(ς) (ref)

:= l v/ς → v/ς[l 7→ v] l ∈ dom(ς) (assign)

! l/ς → ς(l)/ς (deref)
c v/ς → δ(c, v)/ς (δ)

E[e]/ς → E[e′]/ς ′ where e/ς → e′/ς ′ (context)

Fig. 2. Operational semantics for HM(X)

interpretation of constants is given by a (possibly partial) function δ which
maps a pair of a constant and a closed value to a closed value.

2.2 Constraint Systems

Any instance of the HM(X) framework is parameterized by a constraint sys-
tem. This system must at least comprise the following language of types and
constraints, where V is a countably in�nite set of type variables:

α, β ∈ V type variables
τ ::= α | τ → τ | τ ref | . . . types
C ::= true | τ = τ | τ ≤ τ | C ∧ C | ∃α.C | . . . constraints

To interpret constraints, we adopt the model-based approach described in
[2], which is established via a mapping from types into a universe of partially
ordered monotypes T .

De�nition 2.1 [Model] Let (T,≤) be a partially ordered set, where t ∈ T
is called a monotype. Let → be a function from T × T into T , where t1 →
t2 ≤ t′1 → t′2 implies t′1 ≤ t1 and t2 ≤ t′2. Let ref be a function from T to
T , such that t ref ≤ t′ ref implies t = t′. We require t1 ref ≤ t2 → t3 and
t2 → t3 ≤ t1 ref to be false for any t1, t2, t3 ∈ T .

De�nition 2.2 [Interpretation] An assignment ρ is a total mapping from V
to T . An interpretation of a constraint system consists of an extension of
assignments to arbitrary types, and a constraint satisfaction relation, denoted

3

Skalka, Pottier

ρ ` C. The interpretation is standard i� the following conditions are satis�ed:

ρ(τ1 → τ2) = ρ(τ1) → ρ(τ2)

ρ(τ ref) = ρ(τ) ref

ρ ` true
ρ ` τ1 = τ2 ⇔ ρ(τ1) = ρ(τ2)

ρ ` τ1 ≤ τ2 ⇔ ρ(τ1) ≤ ρ(τ2)

ρ ` C1 ∧ C2 ⇔ (ρ ` C1) ∧ (ρ ` C2)

ρ ` ∃α.C ⇔ ∃t.ρ[α 7→ t] ` C

If ρ ` C holds, we say that ρ satis�es or is a solution of C. We write C ° C ′

i� every solution of C is also a solution of C ′.

We identify constraints modulo logical equivalence, that is, we identify C
and D when C ° D and D ° C hold. A variable α is deemed free in a
constraint C i� C 6= ∃α.C. We write fv(C) for the set of all variables free in
C.

Our presentation di�ers from that of Odersky et al. [1] by viewing con-
straints as formulae interpreted in T , rather than as elements of an abstract
cylindric constraint system. Our presentation is thus perhaps slightly less gen-
eral, but more concise. Also, we abandon Odersky et al.'s notion of constraints
in solved form. Instead, we identify constraints modulo logical equivalence,
which means that we do not care about their syntactic representation. We
believe that the representation of constraints is an important issue when de-
signing a constraint solver, but is irrelevant when proving the type system
correct.

2.3 The Type System

The HM(X) type system is de�ned as a system of deduction rules, given in
�gure 3, whose consequents are judgements of the form C, Γ ` e : σ where C
is a constraint, Γ is a type environment, and σ is a type scheme. These notions
are introduced in the following de�nition:

De�nition 2.3 Type schemes are of the form ∀ᾱ[C].τ . Abusing notation,
we abbreviate a scheme ∀∅[true].τ as τ , and abbreviate ∀ᾱ[true].τ as ∀ᾱ.τ .
We identify type schemes modulo α-equivalence. Type environments Γ are
sequences of bindings of the form x : σ and l : τ .

A type scheme σ is consistent with respect to a constraint C if C guarantees
that σ has at least one instance. This notion, de�ned below, appears as a
technical side-condition in rule Var. This extra side-condition is our only

4

Skalka, Pottier

Var

Γ(x) = σ C ° σ

C, Γ ` x : σ

Loc

Γ(l) = τ

C, Γ ` l : τ ref

Const

C, Γ ` c : ∆(c)

Abs

C, (Γ; x : τ ; z : τ → τ ′) ` e : τ ′

C, Γ ` �x z.λx.e : τ → τ ′

App

C, Γ ` e1 : τ2 → τ C, Γ ` e2 : τ2

C, Γ ` e1 e2 : τ

Ref

C, Γ ` ref : ∀α.α → α ref
Assign

C, Γ ` := : ∀α.α ref → α → α

Deref

C, Γ ` ! : ∀α.α ref → α

Let

C, Γ ` v : σ C, (Γ; x : σ) ` e : τ

C, Γ ` let x = v in e : τ

Sub

C, Γ ` e : τ C ° τ ≤ τ ′

C, Γ ` e : τ ′

∀ Intro

C ∧D, Γ ` v : τ ᾱ ∩ fv(C, Γ) = ∅
C ∧ ∃ᾱ.D, Γ ` v : ∀ᾱ[D].τ

∀ Elim

C, Γ ` v : ∀ᾱ[D].τ C ° [τ̄ /ᾱ]D

C, Γ ` v : [τ̄ /ᾱ]τ

Fig. 3. The system HM(X)

deviation from the rules given in [1,5]. Its e�ect is to allow some theorems to
be stated without a �consistency� requirement on Γ.
De�nition 2.4 We say that a type scheme σ = ∀ᾱ[D].τ is consistent with
respect to a constraint C, and we write C ° σ, i� C ° ∃ᾱ.D. We say that σ
is consistent i� true ° σ.

Let ∆ be a �xed total mapping from the constants to closed, consistent
type schemes. ∆ is looked up in rule Const to associate a type scheme with a
constant.
De�nition 2.5 A judgement C, Γ ` e : σ is valid (or holds) i� it is derivable
according to the rules of �gure 3 and C is satis�able. Then, e is well-typed.

It is straightforward to check that, if C, Γ ` e : σ is derivable, then C ° σ
holds. This explains why the well-typedness of e can be determined by check-
ing whether C alone is satis�able; there is no need to inspect σ in addition.

For the type system to be safe, the semantics of constants, given by δ,
must be correctly approximated by their types, given by ∆.
De�nition 2.6 [δ-Typability] Let C be satis�able. We require that, for every

5

Skalka, Pottier

constant c and closed value v, if C, Γ ` c : τ1 → τ2 and C, Γ ` v : τ1 hold, then
δ(c, v) is de�ned and C, Γ ` δ(c, v) : τ2 holds. We also require C, Γ ` c : τ ref
to not hold.

The following de�nition sums up the requirements that bear on every in-
stance of the parameterized type system HM(X).
De�nition 2.7 An instance of HM(X) is de�ned by
• an extension of the type and constraint language, together with a standard
interpretation, as speci�ed in de�nitions 2.1 and 2.2;

• a particular choice of the set of constants Const , together with functions δ
and ∆, meeting the δ-typability requirement of de�nition 2.6.

As will be proven in section 4, any such instance of HM(X) enjoys syntactic
type safety.

3 Preliminary results
3.1 Type substitutions

Sulzmann [5] gives two equivalent versions of the HM(X) type rules. In the one
shown here, rule ∀ Elim allows the universally quanti�ed type variables to be
instantiated using an arbitrary substitution. In the other version, not shown
in this paper, rule ∀ Elim requires these variables to be instantiated with the
identity substitution, but a new rule appears (∃-Intro) which allows arbitrary
substitutions to be encoded within a constraint. The two presentations are
equivalent, that is, they give rise to the same valid judgements. As a result,
it is enough to prove one of them correct.

Here, we adopt the substitution-based version. Accordingly, we must now
demonstrate a series of results related to substitutions.
De�nition 3.1 A substitution ϕ is a �nite mapping from type variables to
types. A renaming % is a bijective mapping from a �nite set of type variables
to itself. Substitutions and renamings are extended to total mappings from
types to types, from constraints to constraints, and from type schemes to type
schemes, in the natural, capture-avoiding manner.
Lemma 3.2 If C ° D then ϕ(C) ° ϕ(D). If C ° σ, then ϕ(C) ° ϕ(σ).
Lemma 3.3 If ϕ1 is idempotent and dom(ϕ2) and fv(rng(ϕ1))∪dom(ϕ1) are
disjoint then ϕ1 ◦ ϕ2 ◦ ϕ1 = ϕ1 ◦ ϕ2.
Lemma 3.4 (Type Instantiation) If there exists a derivation of C, Γ ` e :
σ, then there exists a derivation of ϕ(C), ϕ(Γ) ` e : ϕ(σ) with the same
structure.

Proof. By induction on the input derivation. We give only the key cases and
follow the notations of �gure 3. Note that the structure of the derivation is

6

Skalka, Pottier

preserved by construction in the proof.
Cases Var, Sub. By induction hypothesis and by lemma 3.2.
Case ∀ Intro. Without loss of generality, we may require ᾱ∩ fv(rng(ϕ)) =

ᾱ ∩ dom(ϕ) = ∅. Indeed, if such were not the case, one could apply the
induction hypothesis to the premise and to a renaming which maps ᾱ to fresh
variables and does not a�ect any other variable free in the premise. Because
the variables ᾱ do not appear free in the conclusion, the latter would remain
unchanged.

Now, let us apply the induction hypothesis to the premise and ϕ. This
yields ϕ(C) ∧ ϕ(D), ϕ(Γ) ` e : ϕ(τ). From ᾱ ∩ fv(C, Γ) = ∅ and the above
requirement, we deduce ᾱ∩ fv(ϕ(C), ϕ(Γ)) = ∅. Thus, we may apply ∀ Intro,
which yields ϕ(C)∧∃ᾱ.ϕ(D), ϕ(Γ) ` e : ∀ᾱ[ϕ(D)].ϕ(τ). Again, thanks to the
above requirement, this is ϕ(C ∧ ∃ᾱ.D), ϕ(Γ) ` e : ϕ(∀ᾱ[D].τ).

Case ∀ Elim. Every substitution is the composition of an idempotent sub-
stitution and a renaming. Thus, we consider two sub-cases.

First, let us assume that ϕ is idempotent. By the induction hypothesis,
we have ϕ(C), ϕ(Γ) ` e : ϕ(∀ᾱ[D].τ). Without loss of generality, we may
assume that ᾱ ∩ fv(rng(ϕ)) = ∅ and ᾱ ∩ dom(ϕ) = ∅. (This follows from
the fact that we identify type schemes modulo α-equivalence.) This yields
ϕ(C), ϕ(Γ) ` e : ∀ᾱ[ϕ(D)].ϕ(τ) and (by lemma 3.3) ϕ ◦ [τ̄ /ᾱ] ◦ ϕ = ϕ ◦ [τ̄ /ᾱ].
Now, lemma 3.2 yields ϕ(C) ° ϕ([τ̄ /ᾱ]D), that is, ϕ(C) ° ϕ ◦ [τ̄ /ᾱ](ϕ(D)).
Therefore, by ∀ Elim, we obtain ϕ(C), ϕ(Γ) ` e : ϕ ◦ [τ̄ /ᾱ](ϕ(τ)), that is,
ϕ(C), ϕ(Γ) ` e : ϕ([τ̄ /ᾱ]τ).

Second, let us assume that ϕ is a renaming %. By applying the induction
hypothesis to the premise, we obtain %C, %Γ ` e : %(∀ᾱ[D].τ), which can be
written %C, %Γ ` e : ∀(%ᾱ)[%D].%τ . Furthermore, lemma 3.2 yields %C °
%[τ̄ /ᾱ]D, that is, %C ° [%τ̄/%ᾱ]%D. Then, ∀ Elim, applied to the substitution
[%τ̄/%ᾱ], yields %C, %Γ ` e : [%τ̄/%ᾱ]%τ , that is, %C, %Γ ` e : %[τ̄ /ᾱ]τ . 2

3.2 Normalization
In this section we de�ne a normalized form for HM(X) type derivations. This
normalization provides for a much easier analysis of type derivations in the
subject reduction proof.
Lemma 3.5 If dom(ϕ) ⊆ ᾱ then ϕ(C) ° ∃ᾱ.C.
Lemma 3.6 Any two consecutive instances of ∀ Intro and ∀ Elim may be
suppressed.

Proof. Suppose the following sequence appears in a derivation:

C ∧D, Γ ` e : τ ᾱ ∩ fv(C, Γ) = ∅
C ∧ ∃ᾱ.D, Γ ` e : ∀ᾱ[D].τ

(∀ Intro)

C ∧ ∃ᾱ.D ° [τ̄ /ᾱ]D

C ∧ ∃ᾱ.D, Γ ` e : [τ̄ /ᾱ]τ
(∀ Elim)

7

Skalka, Pottier

From C ∧∃ᾱ.D ° [τ̄ /ᾱ]D, we may deduce C ∧∃ᾱ.D ° C ∧ [τ̄ /ᾱ]D. However,
by lemma 3.5, we have [τ̄ /ᾱ]D ° ∃ᾱ.D, so C ∧ ∃ᾱ.D and C ∧ [τ̄ /ᾱ]D are
equivalent. Furthermore, considering ᾱ ∩ fv(C) = ∅, we have C ∧ [τ̄ /ᾱ]D =
[τ̄ /ᾱ](C ∧D). Similarly, ᾱ ∩ fv(Γ) = ∅ implies [τ̄ /ᾱ]Γ = Γ. Now, lemma 3.4,
applied to the upper left judgement, yields [τ̄ /ᾱ](C ∧D), [τ̄ /ᾱ]Γ ` e : [τ̄ /ᾱ]τ ,
which, according to the above arguments, is C ∧ ∃ᾱ.D, Γ ` e : [τ̄ /ᾱ]τ . The
derivation of this judgement has the same structure as that of the upper left
judgement, so these instances of ∀ Intro and ∀ Elim have e�ectively been
suppressed. 2

Lemma 3.7 (Normalization) If C, Γ ` e : τ holds, then it must follow by
Sub from a judgement J such that
(i) if e is let x = v in e′ then J follows by Let;
(ii) if e is �x z.λx.e′ then J follows by Abs;
(iii) if e is e1 e2 then J follows by App;
(iv) if e is l then J follows by Loc;
(v) if e is x then J follows by Var and ∀ Elim;
(vi) if e is c then J follows by Const and ∀ Elim;
(vii) if e is ref then J follows by Ref and ∀ Elim;
(viii) if e is ! then J follows by Deref and ∀ Elim;
(ix) if e is := then J follows by Assign and ∀ Elim.

Proof. The judgement C, Γ ` e : τ must be the consequence of a syntax-
directed rule, possibly followed by a sequence of instances of Sub, ∀ Elim and
∀ Intro.

By construction, ∀ Intro cannot be followed by itself or by Sub. Lemma 3.6
shows that ∀ Intro need never be followed by ∀ Elim. Lastly, given the form
of the judgement at hand, ∀ Intro cannot be the last rule in the derivation.
It follows that ∀ Intro need not appear at all in the sequence.

By construction, ∀ Elim cannot follow itself or Sub, so the sequence must
consist of at most one instance of ∀ Elim, followed by a number of instances of
Sub. By re�exivity and transitivity of entailment, the latter may be expanded
or reduced to a single instance of Sub.

To conclude, notice that ∀ Elim cannot follow Loc, Let, Abs or App. 2

3.3 Value Substitution

In this section, we establish a classic substitution lemma, which will be at the
heart of the β- and let-reduction cases in the subject reduction proof. We
begin with a weakening lemma, which shows that a valid judgement remains
valid under a stronger constraint.

Lemma 3.8 (Weakening) C, Γ ` e : σ and C ′ ° C imply C ′, Γ ` e : σ.
8

Skalka, Pottier

Proof. By induction on the input derivation. We give only the key cases and
follow the notations of �gure 3.

Cases Var, Sub and ∀ Elim follow by transitivity of entailment.
Case ∀ Intro. We have a deduction of the form

C ∧D, Γ ` e : τ ᾱ ∩ fv(C, Γ) = ∅
C ∧ ∃ᾱ.D, Γ ` e : ∀ᾱ[D].τ

Without loss of generality, we may assume ᾱ ∩ fv(C ′) = ∅; if this were not
the case, we could apply lemma 3.4 to the �rst premise to make it so. Now,
clearly C ′∧C ∧D ° C ∧D, so the induction hypothesis yields C ′∧C ∧D, Γ `
e : τ . Furthermore, we have ᾱ ∩ fv(C ′ ∧ C, Γ) = ∅, therefore ∀ Intro yields
C ′∧C∧∃ᾱ.D, Γ ` e : ∀ᾱ[D].τ . Lastly, by assumption, we have C ′ ° C∧∃ᾱ.D,
so C ′ = C ′ ∧ C ∧ ∃ᾱ.D, therefore C ′, Γ ` e : ∀ᾱ[D].τ holds. 2

Lemma 3.9 (Substitution) If C, Γ; x : σ′ ` e : σ and C, Γ ` v : σ′ then
C, Γ ` e[v/x] : σ.
Proof. By induction on the derivation of C, Γ; x : σ′ ` e : σ. We give only
the key cases.

Case ∀ Intro. In this case σ = ∀ᾱ[D].τ , C = C ′ ∧ ∃ᾱ.D and we have a
deduction of the form:

C ′ ∧D, Γ; x : σ′ ` e : τ ᾱ ∩ fv(C ′, Γ; x : σ′) = ∅
C ′ ∧ ∃ᾱ.D, Γ; x : σ′ ` e : ∀ᾱ[D].τ

By assumption we have that C ′ ∧∃ᾱ.D, Γ ` v : σ′ holds, and clearly C ′ ∧D °
C ′ ∧ ∃ᾱ.D, therefore by lemma 3.8 we have C ′ ∧ D, Γ ` v : σ′. Then, by
the induction hypothesis, C ′ ∧D, Γ ` e[v/x] : τ holds. The result follows by
∀ Intro.

Case Var. Suppose that e = x′ 6= x. Then e[v/x] = e and Γ(x′) = (Γ; x :
σ′)(x′), so the lemma holds by Var. Suppose on the other hand that e = x;
then e[v/x] = v, so the lemma holds by assumption.

Case Let. In this case e = let x′ = v′ in e′, σ = τ and we have a deduction
of the following form:

C, Γ; x : σ′ ` v′ : σ′′ C, Γ; x : σ′; x′ : σ′′ ` e′ : τ

C, Γ; x : σ′ ` let x′ = v′ in e′ : τ

By the induction hypothesis we have C, Γ ` v′[v/x] : σ′′; and supposing that
x 6= x′ it is the case that Γ; x : σ′; x′ : σ′′ = Γ; x′ : σ′′; x : σ′, hence we have
also C, Γ; x′ : σ′′ ` e′[v/x] : τ by the induction hypothesis, so that C, Γ `
let x′ = v′[v/x] in e′[v/x] : τ by Let, hence C, Γ ` (letx′ = v′ in e′)[v/x] : τ by
de�nition. On the other hand, if x = x′ then Γ; x : σ′; x′ : σ′′ = Γ; x′ : σ′′,
so that C, Γ; x′ : σ′′ ` e′ : τ by assumption, and since C, Γ ` v′[v/x] : σ′′

by the preceding, the judgement C, Γ ` let x′ = v′[v/x] in e′ : τ holds by Let,
therefore C, Γ ` (letx′ = v′ in e′)[v/x] : τ by de�nition.

9

Skalka, Pottier

Case Abs. In this case e = �x z.λx′.e′, σ = τ1 → τ2 and we have a deduction
of the following form:

C, Γ; x : σ′; x′ : τ1; z : τ1 → τ2 ` e′ : τ2

C, Γ; x : σ′ ` �x z.λx′.e′ : τ1 → τ2

Supposing that x 6= x′ and x 6= z it is the case that

Γ; x : σ′; x′ : τ1; z : τ1 → τ2 = Γ; x′ : τ1; z : τ1 → τ2; x : σ′

hence we have C, Γ; x′ : τ1; z : τ1 → τ2 ` e′[v/x] : τ2 by the induction hy-
pothesis, so C, Γ ` �x z.λx′.(e′[v/x]) : τ1 → τ2 by Abs, therefore C, Γ `
(�x z.λx′.e′)[v/x] : τ1 → τ2 by de�nition. On the other hand, supposing that
x = x′ it is the case that

Γ; x : σ′; x′ : τ1; z : τ1 → τ2 = Γ; x′ : τ1; z : τ1 → τ2

and since C, (Γ; x : σ′; x′ : τ1; z : τ1 → τ2) ` e′ : τ2 by assumption therefore
C, (Γ; x′ : τ1; z : τ1 → τ2) ` e′ : τ2, so C, Γ ` �x z.λx′.e′ : τ1 → τ2 by Abs,
thus C, Γ ` (�x z.λx′.e′)[v/x] : τ1 → τ2 by de�nition. The case in which x = z
follows similarly. 2

Lemma 3.10 (Substitution for functions) Let Γ′ = (Γ; x : τ ′; z : τ ′ →
τ). If C, Γ′ ` e : τ and C, Γ ` v : τ ′, then C, Γ ` e[v/x][�x z.λx.e/z] : τ .

Proof. By Abs and two consecutive applications of lemma 3.9. 2

4 Central Results
In this section we demonstrate the type soundness results for HM(X), specif-
ically subject reduction, progress and type safety.
De�nition 4.1 In order to properly state subject reduction, type judgements
are extended to con�gurations:

Config
C, Γ ` e : τ

∀l ∈ dom(Γ) C, Γ ` ς(l) : Γ(l)

C, Γ ` e/ς : τ

A con�guration e/ς is well-typed if there exists a judgement C, Γ ` e/ς : τ
deducible by Config, with C satis�able; such a judgement is valid.
Theorem 4.2 (Subject Reduction) Let C be satis�able. If C, Γ ` e1/ς1 : τ
is derivable and e1/ς1 → e2/ς2, then, for some Γ′ which extends Γ with bindings
for new memory locations, C, Γ′ ` e2/ς2 : τ is derivable.

Proof. By induction on the de�nition of the reduction relation (see �gure 2).
10

Skalka, Pottier

According to lemma 3.7, the derivation of C, Γ ` e1 : τ ends with an
instance of Sub, which we will disregard, without loss of generality. (Indeed,
we then have C, Γ ` e1 : τ ′ and C ° τ ′ ≤ τ ; once we have proven C, Γ ` e2 : τ ′,
applying Sub again shall yield C, Γ ` e2 : τ , as desired.)

For reduction cases which do not a�ect the store, it is su�cient to prove
that C, Γ ` e2 : τ is derivable to demonstrate the result.

Case (δ). Then, e1 is c v and e2 is δ(c, v). By lemma 3.7 we have a
sub-derivation of the following form:

C, Γ ` c : τ1 → τ C, Γ ` v : τ1

C, Γ ` c v : τ

Then, according to de�nition 2.6, C, Γ ` δ(c, v) : τ holds.
Case (β). Then, e1 is (�x z.λx.e) v and e2 is e[v/x][�x z.λx.e/z]. By

lemma 3.7 we have a sub-derivation of the following form:

C, Γ; x : τ ′1; z : τ ′1 → τ ′ ` e : τ ′

C, Γ ` �x z.λx.e : τ ′1 → τ ′ C ° τ ′1 → τ ′ ≤ τ1 → τ

C, Γ ` �x z.λx.e : τ1 → τ C, Γ ` v : τ1

C, Γ ` (�x z.λx.e) v : τ

Now, C ° τ ′1 → τ ′ ≤ τ1 → τ implies C ° τ1 ≤ τ ′1 and C ° τ ′ ≤ τ . Therefore
C, Γ ` v : τ ′1 by assumption and Sub; and since C, (Γ; x : τ ′1; z : τ ′1 → τ ′) ` e : τ ′

by assumption, therefore C, Γ ` e[v/x][�x z.λx.e/z] : τ ′ by lemma 3.10. By
Sub, C, Γ ` e[v/x][�x z.λx.e/z] : τ follows.

Case (let). Then, e1 is letx = v in e and e2 is e[v/x]. By lemma 3.7 we
have a sub-derivation of the following form:

C, Γ; x : σ ` e : τ C, Γ ` v : σ

C, Γ ` let x = v in e : τ

By lemma 3.9, we obtain C, Γ ` e[v/x] : τ .
Case (deref). Then, e1 is ! l and e2 is ς1(l). By lemma 3.7, we have a

sub-derivation of the following form:

C, Γ ` ! : τ ′ ref → τ ′

C ° τ ′ ref → τ ′ ≤ τ1 ref → τ

C, Γ ` ! : τ1 ref → τ

Γ(l) = τ ′′

C, Γ ` l : τ ′′ ref C ° τ ′′ ref ≤ τ1 ref

C, Γ ` l : τ1 ref

C, Γ ` ! l : τ

By Config, C, Γ ` ς(l) : τ ′′ is derivable. and by properties of ≤ we have
C ° τ1 ≤ τ and C ° τ ′′ ≤ τ1. Thus, by transitivity of ≤ we have C ° τ ′′ ≤ τ ,
so C, Γ ` ς(l) : τ can be derived by Sub.

11

Skalka, Pottier

Case (ref). The reduction is ref v/ς1 → l/ς1[l 7→ v], where l 6∈ dom(ς1).
By lemma 3.7 we have a sub-derivation of the following form:

C, Γ ` ref : τ ′ → τ ′ ref C ° τ ′ → τ ′ ref ≤ τ2 → τ

C, Γ ` ref : τ2 → τ C, Γ ` v : τ2

C, Γ ` ref v : τ

These imply C ° τ2 ≤ τ ′ and C ° τ ′ ref ≤ τ . De�ne Γ′ as (Γ; l : τ ′). By
Loc and Sub, C, Γ′ ` l : τ holds. Furthermore, since C, Γ ` v : τ2 holds and
since v is ς2(l), Sub yields C, Γ ` ς2(l) : τ ′. Because l is fresh, this implies
C, Γ′ ` ς2(l) : τ ′. Lastly, l's freshness and Config yield C, Γ′ ` l/ς2 : τ .

Case (assign). The reduction is := l v/ς1 → v/ς1[l 7→ v], where l ∈ dom(ς1).
By lemma 3.7, we have a sub-derivation of the following form:

C, Γ ` := : τ ′ ref → τ ′ → τ ′

C ° τ ′ ref → τ ′ → τ ′ ≤ τ1 → τ2 → τ3

C, Γ ` := : τ1 → τ2 → τ3

Γ(l) = τ ′′

C, Γ ` l : τ ′′ ref
C ° τ ′′ ref ≤ τ1

C, Γ ` l : τ1

C, Γ ` := l : τ2 → τ3

C ° τ2 → τ3 ≤ τ ′2 → τ

C, Γ ` := l : τ ′2 → τ C, Γ ` v : τ ′2
C, Γ ` := l v : τ

From these, we deduce C ° τ ′2 ≤ τ2 and C ° τ2 ≤ τ ′. Furthermore, we �nd
C ° τ ′′ ref ≤ τ1 ≤ τ ′ ref, which implies C ° τ ′ ≤ τ ′′. As a result, by Sub,
C, Γ ` v : τ ′′ holds, i.e. C, Γ ` ς2(l) : τ ′′ in this case is derivable. Furthermore,
we �nd C ° τ ′ ≤ τ3 and C ° τ3 ≤ τ , hence C, Γ ` v : τ is derivable by Sub.
The result follows by Config.

Case E[e1]/ς1 → E[e2]/ς2, where e1/ς1 → e2/ς2. This case follows by
the induction hypothesis and a simple �replacement� lemma, analogous to
that found in [7], except newly created memory locations must be taken into
account. 2

To demonstrate progress, rather than de�ning a class of faulty expres-
sions that approximates the class of stuck expressions, and proving a uniform
evaluation result as in e.g. [7], we adopt the more direct method of [2] and
demonstrate the following:

Lemma 4.3 (Progress) If a closed con�guration e/ς is well-typed and irre-
ducible, then e is a value.

Proof. Suppose on the contrary that e/ς is well-typed and irreducible, but e
is not a value. Then e is of the form E[f], with f also well-typed as a precedent
of a valid instance of Config, where one of the following cases holds:

12

Skalka, Pottier

(i) f is of the form c v and δ(c, v) is unde�ned. Now, if c v is well-typed,
then by lemma 3.7 there exists a judgement that follows by App with valid
precedents C, Γ ` c : τ1 → τ2 and C, Γ ` v : τ1. But then by de�nition
2.6 it must be the case that δ(c, v) is de�ned, which is a contradiction.

(ii) f is of the form l v. By lemma 3.7 there exists a judgement that follows
by App with valid precedent C, Γ ` l : τ1 → τ2. By lemma 3.7, this
judgement must follow from Loc and Sub, so we have C ° τ ′ ref ≤ τ1 →
τ2, which is a contradiction.

(iii) f is of the form := v or ! v where v is not a memory location. In either
case, by applications of lemma 3.7, we have C, Γ ` v : τ ref. According
to de�nition 2.6, v cannot be a constant. One checks that all other value
forms must have functional type, that is, we must have C ° τ1 → τ2 ≤
τ ref, again a contradiction.

(iv) f is of the form := l v or := l and l 6∈ dom(ς). f is well-typed, so l ∈
dom(Γ); then, Config requires ς(l) to be de�ned, a contradiction.

2

We may now state and prove progress and type safety. In order to do so,
we make the usual de�nitions:

De�nition 4.4 If e/∅→? e′/ς ′, where e′/ς ′ is irreducible but e′ is not a value,
then e is said to go wrong.

Theorem 4.5 (Type Safety) If e is closed and well-typed, then e does not
go wrong.

Proof. Suppose that e/∅ reduces to e′/ς ′ and the latter is irreducible. Since
e is well-typed, there exists a derivable judgement C, Γ ` e/∅ : τ with C
satis�able. Then, by repeated application of theorem 4.2, we have C, Γ′ `
e′/ς ′ : τ , for some Γ′. Then, by lemma 4.3, e′ is a value. 2

5 Conclusion
In this paper we have provided syntactic type soundness results for HM(X),
including subject reduction, progress, and type safety. We have treated a
version of the core language that contains features for manipulation of state,
and a recursive binding mechanism. We have clearly speci�ed the requirements
that an instance of HM(X) must meet.

References

[1] Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inference with
constrained types. Theory and Practice of Object Systems, 5(1):35�55, 1999.
URL: http://www.cs.mu.oz.au/~sulzmann/publications/tapos.ps.

13

http://www.cs.mu.oz.au/~sulzmann/publications/tapos.ps�

Skalka, Pottier

[2] François Pottier. A semi-syntactic soundness proof for HM(X). Research Report
4150, INRIA, March 2001. URL: ftp://ftp.inria.fr/INRIA/publication/RR/
RR-4150.ps.gz.

[3] François Pottier and Sylvain Conchon. Information �ow inference for free.
In Proceedings of the the 5th ACM SIGPLAN International Conference
on Functional Programming (ICFP'00), pages 46�57, Montréal, Canada,
September 2000. ACM Press. URL: http://pauillac.inria.fr/~fpottier/
publis/fpottier-conchon-icfp00.ps.gz.

[4] François Pottier, Christian Skalka, and Scott Smith. A systematic approach
to static access control. In David Sands, editor, Proceedings of the 10th
European Symposium on Programming (ESOP'01), volume 2028 of Lecture Notes
in Computer Science, pages 30�45. Springer Verlag, April 2001. URL: http:
//pauillac.inria.fr/~fpottier/publis/fpottier-skalka-smith-esop01.ps.gz.

[5] Martin Sulzmann. A general framework for Hindley/Milner type systems with
constraints. PhD thesis, Yale University, Department of Computer Science, May
2000. URL: http://www.cs.mu.oz.au/~sulzmann/publications/diss.ps.gz.

[6] Andrew K. Wright. Simple imperative polymorphism. Lisp and Symbolic
Computation, 8(4):343�356, December 1995. URL: http://www.cs.rice.edu/CS/
PLT/Publications/lasc95-w.ps.gz.

[7] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type
soundness. Information and Computation, 115(1):38�94, November 1994. URL:
http://www.cs.rice.edu/CS/PLT/Publications/ic94-wf.ps.gz.

14

ftp://ftp.inria.fr/INRIA/publication/RR/RR-4150.ps.gz�
ftp://ftp.inria.fr/INRIA/publication/RR/RR-4150.ps.gz�
http://pauillac.inria.fr/~fpottier/publis/ fpottier-conchon-icfp00.ps.gz�
http://pauillac.inria.fr/~fpottier/publis/ fpottier-conchon-icfp00.ps.gz�
http://pauillac.inria.fr/~fpottier/publis/ fpottier-skalka-smith-esop01.ps.gz�
http://pauillac.inria.fr/~fpottier/publis/ fpottier-skalka-smith-esop01.ps.gz�
http://www.cs.mu.oz.au/~sulzmann/publications/diss.ps.gz�
http://www.cs.rice.edu/CS/PLT/Publications/lasc95-w.ps.gz�
http://www.cs.rice.edu/CS/PLT/Publications/lasc95-w.ps.gz�
http://www.cs.rice.edu/CS/PLT/Publications/ic94-wf.ps.gz�

