
Higher-Order Symb Comput (2008) 21: 239–282
DOI 10.1007/s10990-008-9032-6

Types and trace effects for object orientation

Christian Skalka

Published online: 30 September 2008
© Springer Science+Business Media, LLC 2008

Abstract Trace effects are statically generated program abstractions, that can be model
checked for verification of assertions in a temporal program logic. In this paper we develop
a type and effect analysis for obtaining trace effects of Object Oriented programs in Feath-
erweight Java. We observe that the analysis is significantly complicated by the interaction
of trace behavior with inheritance and other Object Oriented features, particularly over-
ridden methods, dynamic dispatch, and downcasting. We propose an expressive type and
effect inference algorithm combining polymorphism and subtyping/subeffecting constraints
to obtain a flexible trace effect analysis in this setting, and show how these techniques are
applicable to Object Oriented features. We also extend the basic language model with excep-
tions and stack-based event contexts, and show how trace effects scale to these extensions
by structural transformations.

Keywords Static type analysis · Programming language-based security · Temporal
program logic · Object oriented programming

1 Introduction

Program type analysis and model checking have a shared goal: to statically enforce proper-
ties of programs. A variety of analyses have been proposed to enforce specific properties,
while certain frameworks provide flexibility to enforce a general class of properties. A num-
ber of authors [23, 27, 38] have observed that these two approaches can play complementary
roles in the verification of general trace-based program properties, which are properties of
program event traces expressible in temporal logic. Type systems can be used to compute
program abstractions, which can in turn be used as inputs to model checking [40]. In other
words, type analysis can serve as a technique for model extraction [22], for the subsequent
verification of a general class of program properties. This paper establishes a foundational
theory of type and trace effects for Object Oriented programs in a language model adapted

C. Skalka (�)
University of Vermont, Burlington, USA
e-mail: skalka@cs.uvm.edu

mailto:skalka@cs.uvm.edu

240 Higher-Order Symb Comput (2008) 21: 239–282

from Featherweight Java [24], defines a type inference system for automatically reconstruct-
ing sound type and trace effects of programs, and shows how trace effect representations can
be manipulated to reflect control flow operations such as exceptions.

Trace-based program properties are properties of event traces, where events are records
of program actions, explicitly inserted into program code either manually (by the program-
mer) or automatically (by the compiler). Events are intended to be sufficiently abstract to
represent a variety of program actions—e.g. opening a file, access control privilege activa-
tion, or entry to or exit from critical regions. Event traces maintain the ordered sequences of
events that occur during program execution. Assertions enforce properties of event traces—
e.g. certain privileges should be activated before a file can be opened. Results in [7, 27, 37]
have demonstrated that static approximations of program event traces can be generated by
type and effect analyses [3, 41], in a form amenable to existing model-checking techniques
for verification. We call these approximations trace effects.

Trace-based analyses have been shown capable of statically enforcing flow-sensitive se-
curity properties such as safe locking behavior [19] and resource usage policies such as file
usage protocols and memory management [23, 27]. In [5], a trace effect analysis is used to
enforce secure service composition. The history-based access control model of [1] can be
implemented with event traces and checks [37], as can the policies realizable in that model,
e.g. sophisticated Chinese Wall policies [1]. Stack-based security policies are also amenable
to this form of analysis, as shown in [37, 38] and this paper. In short, the combination of a
primitive notion of program events with a temporal program logic for asserting properties
of event traces yields a powerful and general tool for enforcing program properties.

The analyses cited above have been developed in functional language settings, but prac-
tical use of these tools require adaptation to realistic languages. In this paper we address
technical considerations for application of trace effects to Object Oriented languages, par-
ticularly Java. As discussed more thoroughly in Sect. 2, inheritance, dynamic dispatch, and
downcasts present significant challenges to trace effect analysis. The effect is that scaling
the analysis to Object Oriented programs is a foundational problem, not simply an engi-
neering one. To study these issues in isolation, we extend Featherweight Java (FJ) [24] with
events, traces, and checks, and a polymorphic type and effect inference analysis for static
enforcement of checks, yielding the language FJtrace. Technical results in this paper extend
and enhance material presented in [35] and [38].

1.1 A flexible type analysis

Type theory provides a variety of useful tools in this setting. As will be discussed in detail
in later sections, a combination of parametric polymorphism and subtyping can be used to
provide the right abstractions and flexibility for addressing issues associated with inheri-
tance and dynamic dispatch, and type constraint representation allows a precise treatment
of object downcasting. We extend an Object Oriented type language with trace effects that
approximate trace behavior of programs. Trace effects are a form of label transition sys-
tem (LTS), which are amenable to model checking. Therefore, the type analysis serves as
a technique for extracting a verifiable abstraction of program trace behavior, with type in-
ference automating the process. We also show that trace effect representations are amenable
to transformations that reflect the impact of control flow modifications on trace behavior,
particularly exceptions.

The metatheory of types also provides an appealing language for characterizing the
analysis and proving its correctness. A type safety result guarantees that programs sat-
isfying the analysis will not have run-time errors, in particular all specified properties of

Higher-Order Symb Comput (2008) 21: 239–282 241

program traces are guaranteed to hold. This result is established via subject reduction and
progress arguments. The type and effect system is shown to be a conservative extension of
the underlying Featherweight Java type system, ensuring backwards compatibility with ex-
isting programs. We show that type inference is sound, and so-called trace approximation
is demonstrated, formalizing the idea that trace effects conservatively approximate program
trace behavior. We also develop an extended language model with exceptions, and show that
a post-processing transformation of inferred trace effects is sufficient to capture the effect of
exceptions on control flow, via another type safety result.

1.2 Outline of the paper

The remainder of the paper is organized as follows. In Sect. 2, the central issues of our type
and effect analysis in relation to Object Oriented programming are described and discussed,
clarifying the contribution of this paper. In Sect. 3, the FJtrace language is formally defined,
which is FJ extended with primitives for a security logic of program traces. In Sect. 4, we
formalize the language and meaning of trace effects. In Sect. 5 a logical type system for
FJtrace is presented, with features and examples discussed in Sect. 5.2.1 and Sect. 5.3.1, and
properties including type safety proved in Sect. 5.4. A type inference algorithm is defined
in Sect. 6, that is shown to be sound with respect to the logical type system in Sect. 6.4,
implying type safety in the implementation. In Sect. 7, we study variations on the basic
language model, including exceptions in Sect. 7.1 and stack based trace contexts in Sect. 7.2.
We conclude with more discussion of related work and a final summary in Sect. 8.

2 Trace effects and object orientation

Subtyping is a common discipline for relating behavior of objects in an inheritance hierar-
chy. However, as we illustrate below, imposing a subsumption relation on the trace behavior
of methods in an inheritance hierarchy is overly restrictive for applications such as access
control. It is possible and useful to extend the definition of subtyping to trace effects, as we
do in Sect. 5, but a realistic analysis requires that we develop some mechanism for allowing
independence of inheritance and effects, and accommodate this independence in the pres-
ence of dynamic dispatch. We propose the use of parametric polymorphism for this purpose
(though we note that the general idea of effect polymorphism is not new, see for example
[42]). We also propose a type constraint representation; along with known benefits of this
approach in application to Object Oriented programming [10, 17], we show how type con-
straints can be used for a novel soft-typing of downcasts. In this section we discuss and
illustrate these issues, before providing formal details in Sect. 5.

2.1 Effects and inheritance

The manner in which inheritance and dynamic dispatch complicates trace effect analysis is
best illustrated by example. Consider the application of event traces to enforce a history-
based access control mechanism, as in [1, 37]. In this model, code is statically signed by its
owner, an entity identified by their signature who lays claim to the code, and a local access
control list A associates owners with their authorizations. As code executes, its owner’s
identity is recorded as an event in an execution trace, and a demand predicate ensures that
the intersection of all authorizations of owners encountered up to the point of the check
contains a specified privilege. Let r denote the specified privilege, and let P range over

242 Higher-Order Symb Comput (2008) 21: 239–282

owners. Thus, given an authorization trace P1; . . . ;Pn, we require that r ∈ A(P1) ∩ · · · ∩
A(Pn) in order for the trace to satisfy demand(r).

In an Object Oriented setting such as Java, static code ownership is usually assigned on
a class basis. In our encoding, class-based ownership is simulated by prepending an event at
the beginning of every method m defined in the class, that will record the owner’s identity
on the execution trace when any such m is invoked. An accurate analysis therefore requires
independence of trace effects of different method versions in the inheritance hierarchy, to
accurately reflect the authorizations associated with these different versions.

Dynamic dispatch complicates the analysis in this respect. Imagine a class Writer
that implements a safewrite method signed with a System authorization event, where
safewrite takes a Formatter and a File as arguments, and requires that the
FileWrite privilege be active before writing the formatter output to the file, via an access
control check demand(FileWrite). Note especially that the specification of the check
requires that FileWrite must be among the authorizations of the x.format method,
since these will affect the flow of control and therefore appear in the safewrite event
trace:

class Writer extends Object {
void safewrite(Formatter x, File f){

System;
String s= x.format()

demand(FileWrite);
write(s,f);

}
}

Thus, we can statically approximate the trace generated by the method safewrite as:

System;H;demand(FileWrite)

where H represents the trace effect approximation of x.format(). The central issue is,
what is H? Note that in a language with dynamic dispatch such as Java, the trace generated
by x.format() could be generated by any version of format among the subclasses of
Formatter, so it is unsound to imagine H as just the approximation of Formatters
version.

In the FJ subtyping system, the type Formatter subsumes its subclass types via the
subtyping relation. So as a first approximation, we can imagine extending subtyping to
trace effects, meaning that H should subsume the effect of the format method in the
Formatter class, as well as the effects of every format method in Formatter sub-
classes. This approach is taken in [21] as part of a related analysis for Java stack inspec-
tion, and a standard definition of effect subtyping [3, 27, 37] approximates the effect of
x.format() as the nondeterministic choice of trace effects of the format method in every
Formatter subclass. For example, suppose that there exist only two such classes, one
which is owned by System, and the other which is owned by an Applet. This would be
implemented by prepending the former’s format method with a System event, and the
latter’s with an Applet event. For simplicity, we assume that these methods are otherwise
event-free. In this case, we would have H = System|Applet, where | is a choice con-
structor. But since it is natural to assume that Applets are not FileWrite authorized,
verification of:

System; (System|Applet);demand(FileWrite)

Higher-Order Symb Comput (2008) 21: 239–282 243

will fail. This means that any invocation of safewrite would be statically rejected, even
if invoked with a System formatter. Further, the scheme requires the entire Formatter
class hierarchy be known in advance for static analysis, since any addition would require re-
computation of its effects. This would disallow modularity, and scalability to large codebases
where a given class may have many subclasses.

We address this problem by using polymorphism, rather than subtyping, to approximate
the effects of method parameters; to wit, the effect H in question is represented by a univer-
sally quantified type variable. This is accomplished via the object type form [TC], where
T contains the inferred type and effects of a given object’s methods, and C is the declared
object class—so that the nominal type language of FJtrace is “superimposed” over the type
language of FJ, as a conservative extension of the latter (as is discussed more extensively
in Sect. 5). Let StringT, and FileT be the types of String, and File objects re-
spectively, the details of which are unimportant to the example. Then, when typing the
safewrite method in the Writer class, the FJtrace type system will assign an abstract
effect h to its x parameter, as in the following type we abbreviate as AbsFormatterT:

AbsFormatterT� [format : () h−→StringT Formatter]
and safewrite may be assigned the type we abbreviate as T:

T� (AbsFormatterT,FileT)
System;h;demand(FileWrite)−−−−−−−−−−−−−−−−−→ void

and the typing Writer : ∀h.[safewrite : T Writer] may be assigned, where the ab-
stract effect h of x.format() is quantified. At specific application points, h can then be
instantiated with the accurate trace effect of the substituant of x. This example is extended
and discussed in Sect. 5.3.1 following formal development of the type system.

2.2 Constraint subtyping and casting

To maintain decidability in the type system, we propose only first-order parametric poly-
morphism. This means that if x is a formal parameter of some method m, any method x.m′
cannot be invoked within m in a polymorphic fashion. To obtain the flexibility necessary
to statically allow application of abstracted methods to objects of multiple types, we pro-
pose a subtyping relation, similar to that discussed above, that can be used where parametric
polymorphism cannot due to first-orderly restrictions.

A number of considerations motivate subtyping in our type and effect system, beyond
the fact that it integrates neatly with FJ subtyping analysis. Firstly, while a top-level effect
weakening rule, as in [37], is sufficient for a flexible type and effect analysis, a subtyping rule
that incorporates weakening of latent effects on function types is more precise and complete,
as observed in [3]. Also, we implement subtyping via a recursive constraint representation,
which has been shown to allow precise typing of common object-oriented idioms, such as
binary methods [10, 17].

A constraint type representation also supports a soft typing analysis of downcasts, which
combines static and dynamic checks to ensure soundness [12]. For example, suppose some
expression e has a type T, where T is constrained to be a supertype of both Triangle and
Polygon objects, where Triangle is a subclass of Polygon, and where R represents
the types of the fields and methods in Triangles and S represents those of Polygons:

[R Triangle]<:T [S Polygon]<:T

244 Higher-Order Symb Comput (2008) 21: 239–282

Fig. 1 FJtrace language syntax

Then, given the cast (Triangle)e, we first observe that an FJ dynamic cast check will
ensure that any run-time scenario in which e evaluates to an object strictly in a superclass
of Triangle will be stuck [24]. Guided by the intuition that constraints represent data
flow paths, we further observe that any constraint representing flow of an object strictly in
a superclass of Triangle to the program point represented by T can be ignored when
analyzing the cast (Triangle)e, without compromising type safety, since this unsafe flow
will be caught at run time by a dynamic cast check. In our type analysis, we implement this
idea by positing a type T′ such that:

(Triangle)e : [T′ Triangle]
with the condition that T be a soft subtype of T′, written:

T� [T′ Triangle]
This means that if some object type [UC] is a subtype of T, then [UC]<: [T′ Triangle]
only if C<: Triangle; see Definition 3 for a formalization of the idea. This implies:

[R Triangle]<: [T′ Triangle]
and not [S Polygon]<: [T′ Triangle]. Note that requiring the latter would yield an in-
consistent constraint set in any case. We believe that a constraint representation yields a
distinctly precise type analysis; it is hard to see how the precision obtainable by selective
pruning of the constraint graph used in our implementation of soft subtyping (Sect. 6) can
be recreated with e.g. a unification-based approach. Subtyping and soft subtyping is further
discussed in Sect. 5.2.1 following formal development of the interpretation of subtyping
constraints.

3 The language FJtrace

In this section we define the syntax and semantics of FJtrace, by extending the syntax of FJ
with primitives for specifying events and local checks, and the semantics of FJ with event
traces as configuration components.

3.1 Syntax

The syntax of FJtrace is defined in Fig. 1. We let A,B,C,D range over class names, f range
over field names, m range over method names, x,y range over both field and method names,

Higher-Order Symb Comput (2008) 21: 239–282 245

Fig. 2 Nominal subtyping for FJ

and d,e range over expressions. Values, denoted v or u, are objects, i.e. expressions of the
form new C(v1, . . . ,vn). A class table CT is a mapping from class names C to definitions
L, and a program is a pair (CT ,e); for brevity in the following, we assume a fixed class table
CT . As in [24] we assume Object values that have no fields or methods; we let () denote
the value new Object(). Since constructor definitions K are hard-coded by the language
grammar, for brevity we do not explicitly include them in example class definitions in this
paper.

The essential distinguishing features of FJtrace are events ev[i] and local checks
chk[i]. Both events and checks are distinguished by labels i assigned automatically or
by the programmer. In this presentation we will sometimes abbreviate events and checks
by their labels, e.g. System and demand(FileWrite) abbreviate ev[System] and
chk[demand(FileWrite)] as in Sect. 2. Events and checks encountered during execu-
tion are accrued in linear order in traces η, with execution blocking if unsuccessful checks
are encountered. Events and checks are therefore side-effecting instructions; the value () is
the direct evaluation result of checks and events, as specified in the next section.

In this presentation we leave the logic of checks abstract, specifying only that checks are
predicates on traces, and write η � chk[i] to denote that η satisfies chk[i]. We could for
example instantiate the language of checks with the linear mu-calculus, as in [37], but in
this presentation we are mainly concerned with typing.

3.1.1 Vector notations

For brevity in numerous instances, we adopt the vector notations of [24]. We write f̄ to
denote the sequence f1, . . . ,fn, similarly for C̄, m̄, x̄, ē, etc., and we write M̄ as shorthand
for M1 · · ·Mn. We write the empty sequence as ∅, and we write |x̄| to denote the length
of x̄. If and only if m is one of the names in m̄, we write m ∈ m̄, similarly for f ∈ f̄.
Given some f̄, we write fi to denote the ith element of f̄. Vector notation is also used
to abbreviate sequences of declarations; we let C̄ f̄ and C̄ f̄; denote C1 f1, . . . ,Cn fn
and C1 f1; . . . ;Cn fn; respectively, and we write C f ∈ C̄ f̄ iff C f is one of the dec-
larations in C̄ f̄. The notation this.f̄ = f̄; abbreviates the sequence of initializations
this.f1 = f1; . . . ;this.fn = fn;. Sequences of names and declarations are assumed to
contain no duplicate names.

3.2 Operational semantics

The operational semantics of FJtrace are defined in Fig. 3. The small-step reduction relation
→ is defined on closed configurations, which are pairs of traces and expressions η,e. As
in [24], we divide the operational rules into computation and congruence rules; the former
(resp. latter) are those whose names are prefixed by R- (resp. RC-). Computation rules spec-
ify how redices reduce, while congruence rules specify how to evaluate within the context of
a larger program. The semantics are defined in terms of a number of auxiliary functions and
a nominal subtyping relation <: taken from [24] and recalled in Figs. 2 and 5; in particular,

246 Higher-Order Symb Comput (2008) 21: 239–282

Fig. 3 FJtrace operational semantics

mtype(m,C) and mbody(m,C) are functions that look up the type and body of a method m in
a given class C, and implement the Java rules of inheritance. We let →� denote the reflexive,
transitive closure of →.

The operational semantics are largely the same as FJ, with the addition of run-time traces
and the treatment of events and checks. The command new C(ē) constructs a new C object
given field parameters ē. Method selection is denoted e.f, and e.m(ē) is an invocation of
method m. Casting is written (C)e. The rules that directly affect the trace include R-EVENT,
which appends an event ev[i] encountered during execution to the end of the trace. The
R-CHECK rule is defined similarly, except the check chk[i] is required to be satisfied
by the current trace, otherwise computation becomes stuck. Each of the congruence rules
propagates changes to the trace effected by the reduction of subterms.

4 Semantics of trace effects

The aim of our analysis is to statically guarantee the satisfaction of run-time checks in pro-
grams. To this end, our analysis infers an approximation of the trace that will be generated
during program execution, by reconstructing the trace effect of programs. In essence, trace
effects H conservatively approximate traces η that may develop during execution, by repre-
senting a set of traces containing at least η. The grammar of trace effects is given in Fig. 6. A
trace effect may be an event ev[i] or check chk[i], or a sequencing of trace effects H1;H2,
a nondeterministic choice of trace effects H1|H2, or a μ-bound trace effect μh.H which fi-
nitely represents the set of traces that may be generated by a recursive function. Noting that
the syntax of traces η is the same as linear, variable-free trace effects, we abuse syntax and
let η also range over linear, variable-free trace effects.

We define a Labeled Transition System (LTS) interpretation of trace effects as sets of ab-
stract traces, which are strings of events and checks that may be delimited by a ↓ symbol to
denote termination. The interpretation is defined via strings denoted θ , characterized by the
following grammar, where ε denotes the empty string in the usual manner and the alphabet

Higher-Order Symb Comput (2008) 21: 239–282 247

Fig. 4 Interpretation of trace effects

consists of events and checks:

a ::= ev[i] | chk[i] | ε
s ::= a | s s

θ ::= s | s↓

The interpretation of an effect H, denoted �H� and specified in Fig. 4, is then taken to be
the prefix-closed, finite approximation of the trace sets that may be generated by H, when
viewed as a program in a transition semantics defined by relations

a−→ on closed effects. Since
programs may not terminate, their traces may be infinite, but this possibility is captured via
finite approximation—all finite prefixes of an infinite trace are contained in the interpreta-
tion. Trace effect equivalence is defined via the interpretation, i.e. H1 = H2 iff �H1� = �H2�.
This relation is in fact undecidable: trace effects are equivalent to BPA’s (basic process al-
gebras) [37], and their trace equivalence is known to be undecidable [11]. Note that prefix
closure does not cause any loss of information in the interpretation, since the postpending
of ↓ to terminating traces allows them to be distinguished from their prefixes. In particular,
it is not necessarily true that �H� ⊆ �H;H′� for arbitrary H and H′.

Trace effects predict the history of both events and checks. In order to ensure that pro-
gram checks will succeed, it is not sufficient for trace effects to approximate run time traces,
but also success of these checks must be guaranteed. We base validity of trace effects on
validity of checks that occur in traces in its interpretation. In particular, for any given check
in a trace, that check must hold for its prefix:

Definition 1 H is valid iff for all (a1 · · ·anchk[i]) ∈ �H� it is the case that a1; . . . ;an �
chk[i] holds.

This definition is logically sufficient to obtain our desired type safety result. It is not algo-
rithmic, but trace effects are equivalent to basic process algebras (BPAs) as observed in [39],
for which known model-checking techniques exist [11], allowing automated verification of
effect validity [37]. In this paper, we focus on type and effect inference, rather than the effect
verification component of our analysis. For details on the latter, the reader is referred to [37,
39].

248 Higher-Order Symb Comput (2008) 21: 239–282

4.1 Properties

Various properties of trace effect equivalence are enumerated as follows. The equivalences
will be exploited for brevity and clarity in examples throughout the text, as well as for later
proofs:

Lemma 1 We note the following properties of trace effect equivalence for closed H, H1, H2,
and H3:

1. H|H= H
2. ε;H= H= H; ε
3. μh.H= H
4. H1|H2 = H2|H1
5. H1; (H2;H3) = (H1;H2);H3
6. H1|(H2|H3) = (H1|H2)|H3
7. H1; (H2|H3) = (H1;H2)|(H1;H3)
8. (H1|H2);H3 = (H1;H3)|(H2;H3)
9. Trace effect equivalence is preserved by all constructors.

We also note some properties related to trace effect interpretation containment; these prop-
erties are important, since our type analyses will allow weakening of trace effects for flex-
ibility. That is, if a trace effect H approximates the traces generated by a program, and
�H� ⊆ �H′�, then H′ is also a sound approximation. Like equality, containment is known to
be undecidable.

Lemma 2 Writing H<:H′ iff �H� ⊆ �H′�, the following properties hold for arbitrary closed
H, H1, and H2:

1. H<:H1 is undecidable.
2. H<:H|H1.
3. For closed μh.H0, we have that H0[μh.H0/h]<:μh.H0.
4. If H<:H1 then H|H2 <:H1|H2 and H2;H<:H2;H1 and H;H2 <:H1;H2.
5. If H1 <:H2 then validity of H2 implies validity of H1.

5 Types for FJtrace

Featherweight Java is equipped with a declarative, nominal type system; the type language
is based on class names, which annotate function return and argument types, casts, and ob-
ject creation points. Method and field types are not explicit in the FJ type of objects, which
are just class names, but rather can be looked up given the object class name and its def-
inition in the class table. The lookup functions mtype and fields are defined in Fig. 5. The
FJ type system is algorithmically checkable, and enjoys a type safety result [24]. Our intent
is to not to redo the type system of FJ, but to “superimpose” a type and effect analysis on
it, thereby subsuming type safety for the FJ subset of FJtrace. This superimposition should
be conservative and transparent to the programmer, both for ease of use, and for backwards
compatibility with Java. Thus, we reuse the declared, nominal type system of FJ, but add
machinery to infer trace effects, for static verification of checks—although our type lan-
guage will explicitly represent the field and method types of objects, rather than implicitly
via lookup functions.

Higher-Order Symb Comput (2008) 21: 239–282 249

Fig. 5 Auxiliary functions

Fig. 6 FJtrace type and constraint syntax

We define our type and effect analysis via subtyping constraints interpreted in a regular
tree model. This representation promotes type reconstruction for common Object Oriented
idioms such as object self-reference and binary methods [10, 17], since it possesses precisely
the expressiveness of recursive types [32]. A constraint type representation also yields an el-
egant definition of the soft subtyping relation for static analysis of casts, discussed in Sect. 2
and formalized below, which supports a simple form of soft typing [12]. Furthermore, as
has been observed frequently in previous related type and effect analyses [23, 27, 37], some
flavor of subeffecting is necessary to conservatively extend underlying type structure, with a
subtyping approach being particularly flexible [3]. A constraint representation is an effective
implementation of subtyping, providing the expressiveness of intersection and union types
[17]. While a recursive constraint representation is not the most human-readable type ab-
straction, our goal here is a transparent program analysis, and automatic extraction of trace
effects for verification.

As discussed in Sect. 2, we also incorporate effect polymorphism [37], in a manner that
allows flexibility and modularity of trace effect analysis in the presence of method override
and dynamic dispatch.

5.1 Type and constraint language

The type and constraint grammar of FJtrace is given in Fig. 6. The type language includes

method types T̄
H−→ T where H is the latent effect of the method. Object types are denoted

250 Higher-Order Symb Comput (2008) 21: 239–282

Fig. 7 Regular tree ranked alphabet kinding rules

[TC], where C is the class name of the object and T is either a type variable t or a vector
of bindings x̄ : T̄ for the field and method types of the object. The language of constraints is
mostly standard, though in addition to subtyping constraints T<:T, we include weaker soft
subtyping constraints T� T, to address downcasting in the type analysis.

The type language specified in the grammar is more liberal than what is actually allowed
in type judgements. Formally, we will define well-formedness of types via interpretation
in a regular tree model, defined and discussed in Sect. 5.2. The model is endowed with a
primitive subtyping relation, which also supplies meaning for constraints via the interpreta-
tion. We will require that constraints and types C,T assigned to expressions have a sensible
(well-kinded and realizable, in our terminology) interpretation in the model. Informally, in
any object type [TC], if T is a vector of type bindings x̄ : T̄, the set of bound names x̄
are restricted to be exactly the field and method names of C, providing an “inlined” width
constraint on the form of the type.

5.1.1 Vector notations

For brevity we extend vector notation to the language of types and constraints. The type
T̄ is a vector T1, . . . ,Tn, with ∅ denoting the empty vector. We also write ¯[TC] to denote
a vector of class types [T1 C1], . . . , [TnCn], while x̄ : T̄ denotes a vector of bindings x1 :
T1 · · ·xn : Tn. We abbreviate constraints using vector notation, writing S̄<: T̄ for S1 <:T1 ∧
· · · ∧ Sn <:Tn.

Looking ahead to the next section, vector notations are also used to abbreviate the
kinding rules in Figs. 7 and 8. We write BodyC̄ for BodyC1

, . . . ,BodyCn
, and Methm̄,C for

Methm1,C, . . . ,Methmn,C. We write ϕ̄ �fin ϕ̄ ′ to denote ϕ1 �fin ϕ′
1, . . . , ϕn �fin ϕ′

n.

5.2 Regular tree model and subtyping

To accommodate recursive constraints, we define subtyping in FJtrace via primitive subtyp-
ing in a regular tree model, using techniques adapted from [44]. In our model, function type
nodes in regular trees are labeled with trace effects, and rather than being constructed from
ranked alphabets as in [44] and elsewhere, our regular trees are constructed from kinded
alphabets, imposing well-formedness of trees. Trace effect labelings of regular trees require

Higher-Order Symb Comput (2008) 21: 239–282 251

Fig. 8 Primitive subtyping for regular trees

an extension of the primitive subtyping relation to trace effects, which is based on set con-
tainment of effect interpretations. Otherwise, the interpretation is essentially standard.

Definition 2 (Regular Tree Model) Let the tree constructor kinds be defined as:

k ::= Type | Eff | Methm,C | BodyC

and let signatures ς range over ordered sequences of kinds, where ∅ denotes the empty
sequence and ς(n) denotes the 0-indexed nth kind in ς . The alphabet L of tree constructors
is built from the following grammar:

c ::= � | ⊥ | H | (x̄ : ·) | [·C] | ¯[·C] ·−→ [·C]

where each element of the alphabet is indexed by a signature, written cς , and must be well-
kinded according to the rules given in Fig. 7.

A tree ϕ is a partial function from finite sequences (paths) π of natural numbers N
� to L

such that dom(ϕ) is prefix-closed. Furthermore, for all πn ∈ dom(ϕ), with cς = ϕ(π), it is
the case that ϕ(πn) : ς(n). Trees of the form (x̄ : ϕ̄) are equated up to reordering of labels.
The subtree at π ∈ dom(ϕ) is the function λπ ′.ϕ(ππ ′), while |π | is the level of that subtree.
A tree is regular iff the set of its subtrees is finite, and we define T as the set of regular trees
over L.

A partial order over T is then defined via an approximate relation over finite ϕ ∈ T. First,
define a level-n cut ϕ |n for ϕ ∈ T as the finite tree obtained by replacing all subtrees at level
n of ϕ with �. Then, �fin is the partial order over finite ϕ ∈ T axiomatized in Fig. 8, and �
is the partial order over T approximated by �fin axiomatized in Fig. 8.

The meaning of subtyping constraints is then defined via interpretation in the regular tree
model. The principal novelties here are the extension of subtyping to trace effects, and the
interpretation of the soft subtyping relation.

Definition 3 (Interpretation of Constraints) Interpretations ρ are total mappings from type
variables X to T. Interpretations are extended to types in Fig. 9, and also to effects by an

252 Higher-Order Symb Comput (2008) 21: 239–282

Fig. 9 Interpretations extended to types and effects

abuse of notation allowing parameterization by sets hs of effect variables, to prevent sub-
stitution of μ-bound variables. The relation ρ � C, pronounced ρ satisfies or solves C, is
axiomatized as follows:

ρ � true
ρ(S) � ρ(T)

ρ � S<:T
ρ � C ρ � D

ρ � C ∧ D

∀BR.(B<:D∧ ρ � [RB]<:S) ⇒ ρ � [RB]<: [TD]
ρ � S� [TD]

The relation C � D holds iff ρ � C implies ρ � D for all interpretations ρ. Constraints C

and D are equivalent, written C = D, iff C � D and D � C.

We immediately observe that transitivity of primitive subtyping is reflected in the type
and constraint representation.

Lemma 3 (Transitivity of Entailment and Subtyping) C � D and D � E implies C � E,
and C � R<:S∧ S<:T implies C � R<:T.

We also note the relevance of soft subtyping for the type analysis, that a soft subtyping
relation entails an analogous subtyping relation just in case the latter could be sound.

Lemma 4 If C � [TC] � [SD], then C � [TC]<: [SD] iff C<:D.

5.2.1 Discussion

The kinding rules in the interpretation of types impose certain well-formedness qualities on
types, in particular the class name component C of a type [TC] fixes any fields and methods
appearing in the type to be exactly those that are listed in the class definition. This is because

Higher-Order Symb Comput (2008) 21: 239–282 253

the underlying FJ type system allows any object to be treated as an object in its statically
known class– thus, types for all known fields and methods for that class must be available,
and no others. For example, imagining a class Foo with two fields a and b of Object type:

class Foo extends Object { Object a; Object b; }

The type of Foo objects are labeled with the class name, and types for each of the fields:

[(a : [Object];b : [Object]) Foo]

While the type system will allow any Foo object to be viewed as an Object by subsump-
tion, any object type term labeled Foo with anything other than both a and b fields has no
interpretation due to the kinding rules. For example, the following type term has no inter-
pretation:

[(a : [Object]) Foo]
The kinding rule for method typings also deserves attention for its contribution to the

independence of inheritance and effects in the analysis. Recalling that the type system of
[24] requires that method overrides in a subclass have the same type signature as the over-
ridden methods in their superclass, we observe that the kinding rule for constructors of kind
Methm,C imposes this restriction, but only on the declared class name component of the type.
The inferred effect component H, on the other hand, is not restricted to relate to superclass
method effects in any way. This issue is revisited with examples in Sect. 5.3.1.

The interpretation of type constraints defines a system of object width and depth sub-
typing, with method subtyping predicated on subsumption of trace effects. This extension,
defined in Fig. 8, is based on containment of trace effect interpretations, reflecting a type
soundness requirement that if T subsumes S, it must also subsume the trace effects of S.
Since constraints are defined on the basis of interpretations, constraints on types with ab-
stract components are meaningful; for example, we could assert:

S<:T∧ T̄<: S̄ � S̄
h−→ S<: T̄ h|(ev[1];ev[2])−−−−−−−−→ T

since any interpretation of h must be contained in the same interpretation h|(ev[1];ev[2]).
The soft subtyping relation is useful in application to downcasts, allowing constraints to

be relaxed for downcasting. For example, assuming C<:D, we could meaningfully assert:

[RC]<:T∧ [SD]<:T∧ T� [UC] � [RC]<: [UC]

but not:

[RC]<:T∧ [SD]<:T∧ T� [UC] � [SD]<: [UC]
which formalizes the idea discussed in Sect. 2. This relaxation is allowable at casting points,
since dynamic checks will “pick up the slack”, preserving type safety as discussed in the
next section.

This definition of subtyping may raise questions about the decidability of typing, since
subtyping is predicated on trace effect containment, but equivalence of trace effects was
shown to be undecidable in Sect. 4. However, while trace effect containment is undecidable
in the general case, we show in Sect. 6 that constraints generated by type inference are in a
normal form that is amenable to algorithmic solution.

254 Higher-Order Symb Comput (2008) 21: 239–282

Fig. 10 FJtrace logical typing rules

5.3 Logical type judgements and properties

To define the logical type system, we introduce constrained type schemes ∀X̄[C].T and type
environments Γ binding class names and variables to type schemes. If X̄ ∩ fv(T) = ∅ we
abbreviate ∀X̄[true].T as T. We also introduce three forms of type judgements: Γ,C,H �
e : T for expressions, Γ,C � m,C : T̄ H−→ T for method m in class C, and Γ � C : ∀X̄[C].T
for classes. Sensibility of types and constraints in judgements is imposed by realizability
conditions, as follows.

Definition 4 (Realizability of Types) We say that a constraint, type pair C,T or type scheme
∀X̄[C].T is realizable iff there exists a solution ρ of C such that ρ(T) is well-kinded, and
we impose the following sanity conditions on judgements: for any Γ,C,H � e : T or Γ,C �
m,C : T we require that C,T is realizable, and every type scheme in Γ must be realizable,
in which case we say that Γ is realizable.

Higher-Order Symb Comput (2008) 21: 239–282 255

Fig. 11 Auxiliary functions

Type derivation rules are given in Fig. 10, with some auxiliary functions defined in
Fig. 11. For these rules and later examples, we posit a Unit type, which is the type of
objects in the Object class, that possess no fields or methods; i.e.:

Unit� [Object]
In these and later rules we also write [x̄ : T̄C].xi to denote Ti . We note that ∀-intro and -elim
are located at class definition and object construction points, respectively. Subeffecting of
top level effects is allowable at any point in a derivation via T-WEAKEN. The soft subtyp-
ing relation is used for casts (C)e; due to the interpretation of soft subtyping defined in the
previous section, this rule will only track the flow of objects to the casting point that are
in a subclass of C. Any other objects will cause a dynamic cast check exception, and can
therefore be ignored statically without compromising type safety, as in [24]. Ignoring “junk”
in this manner gives a more precise analysis, and allows typing of downcasts. We omit the
distinction of “stupid casts” entailing “stupid warnings” as in [24], noting that we essen-
tially follow their approach, and can easily adopt this distinction. We make the following
definitions:

Definition 5 The judgement Γ,C,H � e : T is valid iff it is derivable and there exists a so-
lution ρ of C such that ρ(H) is valid. An environment Γ is well-formed iff Γ � C : ∀X[C].T
is derivable for all (C : ∀X[C].T) ∈ Γ .

It is demonstrable that for closed, event- and check-free expressions e, there exists a
derivable typing for e in FJtrace iff e is well-typed in the type system of [24], as we show in
Sect. 5.4, Lemma 10. This means that our system absorbs properties of FJ, including type
safety for the FJ subset of FJtrace, implying that the only case we really need to consider, to
extend type safety to FJtrace, is progress for trace checks. That is, we must show that checks
can be statically enforced by our type analysis. We establish this by a subject reduction
argument, showing that trace effect approximations are preserved by computation. Note that
the statement of subject reduction must apply to configurations; the proof, given in Sect. 5.4,
follows by induction on derivations:

Lemma 5 (Subject Reduction) If Γ,C,H � e : [TC] is derivable for closed e and well
formed Γ , and η,e→ η′,e′, then Γ,C,H′ � e′ : [T′ C′] is derivable with C � [T′ C′]<: [TC]
and C � η′;H′ <:η;H.

A corollary of this result formalizes the intuition that trace effects approximate event
traces, insofar as any event trace generated during evaluation of an expression must be con-
tained in the trace effect assigned to that expression by the type analysis:

256 Higher-Order Symb Comput (2008) 21: 239–282

Corollary 1 If Γ,C,H � e : [TC] is derivable for closed e and well-formed Γ , and ε,e→
η,e′, then C � η<:H.

To state our type safety result, we must define what we mean by “run-time checks”. In
short, these are checks in the hole of an evaluation context encountered during execution:

Definition 6 Evaluation contexts are defined as follows:

E ::= [] | E.f | E.m(ē)| v.m(v̄,E, ē) | new C(v̄,E, ē) | (C)E

We can then formally assert that run-time checks in well-typed programs are guaranteed
to succeed:

Lemma 6 (Static Enforcement of Checks) Given closed e and well-formed Γ , if the judge-
ment Γ,C,H � e : T is valid , and ε,e→� η,E[chk[x]], then η � chk[x].

Proofs are demonstrated in Sect. 5.4.

5.3.1 Discussion

In this section we discuss some examples that illustrate properties of the type system. We
assume the definitions and types given in Sect. 2. We also assume the trivial extension of
the language with a sequencing construct e;e and a lexically scoped name-to-value binding
construct C x= new C(). To provide intuitions more easily, we present types and effects in a
unified form. We posit the definition of a class PasswdTmpl, which is owned by System;
in class PasswdTmpl the format method is overridden, defined to format a password file
template string:

class PasswdTmpl extends Formatter {
String format() { System; . . .}

}
Assuming that the body of this version of format is effect free other than the initial
System event, the type of PasswdTmpl can be given as follows, where StringT is
the type of a String object, the details of which are unimportant to the example:

PTmplT � [format : () System−−−→ StringT PasswdTmpl]
We also posit the definition of a class Backdoor, devised as an untrusted Applet ex-
tending PasswdTmpl, that formats a password file template containing a uname/passwd
combination known to the attacker:

class Backdoor extends PasswdTmpl {
String format() { Applet; . . .}

}
Assuming that the body of this version of format is also effect free other than the initial
Applet event, the type of Backdoor can be given as follows, which we abbreviate as
BdoorT:

BdoorT � [format : () Applet−−−→ StringT Backdoor]

Higher-Order Symb Comput (2008) 21: 239–282 257

Notice that the effects assigned to the Backdoor and PasswdTmpl versions of format
are incomparable, despite their inheritance relation.

For the purposes of the example, we further imagine that there exists an open
PasswdFile object in the current namespace. Now, since Writer.safewrite can
be assigned a type which is polymorphic in the effects of its arguments, the code:

Writer w= new Writer();
PasswdTmpl p= new PasswdTmpl();
w.safewrite(p,PasswdFile);

could be assigned the effect:

System;System;demand(FileWrite);
which we assume is verifiable, whereas the following application of safewrite could be
treated independently:

Writer w= new Writer();
Backdoor b= new Backdoor();
w.safewrite(b,PasswdFile);

and assigned the following effect, which we assume is not verifiable:

System;Applet;demand(FileWrite)

Since polymorphism is restricted to be first orderly, method parameters themselves can-
not be polymorphic. This means that in code such as the following, the domain effects of
functionally abstracted objects will be merged by subtyping:

class C extends Object {
void m(Writer w, File f){

Backdoor b= new Backdoor();
PasswdTmpl p= new PasswdTmpl();
w.safewrite(b,f);
w.safewrite(p,f);

}
}

This implies that the effects at each calling site of w.safewrite generated by the following
code cannot be distinguished:

Writer w= new Writer();
C c= new C();
c.m(w,PasswdFile);

so that the following effect would be assigned:

System; (System|Applet);demand(FileWrite);
System; (System|Applet);demand(FileWrite)

Soft subtyping can be used at downcasts to ignore possibly unsound flow that will
definitely be caught by dynamic cast checks. Suppose that type analysis predicts that
some expression e may evaluate to either an Object object or a PasswdTmpl object;
i.e. Γ,C,H � e : T with:

C � PTmplT<:T∧ Unit<:T

258 Higher-Order Symb Comput (2008) 21: 239–282

where Unit and PTmplT are defined as above. By the T-CAST typing rule and properties
of soft subtyping discussed above, we may assert:

Γ,C, ε � (PTmplT)e : PTmplT
meaning that the following is also a valid typing, regardless of the precise nature of e:

Γ,C,System � ((PTmplT)e).format() : StringT
Note that if e turns out to be a PTmplT object at run-time, the invocation of format is
safe, whereas if e turns out to be an Object, this will be caught by a dynamic cast check,
so safety is guaranteed in any case.

5.4 Properties

In this section we demonstrate our main type safety result, based on a subject reduction
argument. We also show that FJtrace typings conserve FJ typings, i.e. any program that is
typable in the FJ type system is also typable in the FJtrace type system. In the course of
proving these results, we demonstrate a standard suite of results (weakening, substitution,
canonical forms, etc.) for the FJtrace type system.

We begin by demonstrating conservation of FJ typing in FJtrace. FJ typing is nominal, and
object types are represented “implicitly” via the mtype and fields functions. In FJtrace, types
are represented “explicitly” via type terms and constraints. Thus, we define a translation,
or “expansion”, from types of the former to the latter. The translation expands every class
name C into a representation [TC], where T is a listing of field and method types. Each
method is assigned an ε effect, since FJ is effect free. Expansion of any class name C is
only one level deep—that is, class names D in C’s field and method types are not recursively
expanded, but assigned a special type variable that is constrained to be the lower bounds
of the expansion of D. This ensures termination of expansion in the presence of recursive
types. Since constraints can be recursive, a corollary of this definition is the representability
of recursive class types in the expansion—i.e., the constraint is solvable.

Definition 7 Assume given a fixed type variable tC for each C ∈ dom(CT). Then the ex-
pansion of method types, class names, and vectors of class names is defined as follows:

mtype(m,C) = (D1, . . . ,Dn) → D ¯[SD] = [tD1 D1], . . . , [tDnDn]
expand(m,C) = ¯[SD] ε−→ [tD D]

fields(C) = D̄ f̄ D̄= D1, . . . ,Dn
¯[SD] = [tD1 D1], . . . , [tDnDn]

meths(C) = m1, . . . ,mm T̄= expand(m1,C), . . . , expand(mm,C)

expand(C) = [f̄ : [S̄D]m̄ : T̄C]

expand(C̄) = expand(C1), . . . , expand(Cn)

We also construct a possibly recursive system of lower bounds on type variables tC, as
follows. Given CT such that dom(CT) = C1, . . . ,Cn. Then:

CCT � expand(C1)<: [tC1 C1] ∧ · · · ∧ expand(Cn)<: [tCn Cn]

Higher-Order Symb Comput (2008) 21: 239–282 259

Lemma 7 CCT , expand(C) is realizable for all C ∈ dom(CT).

We observe that expansion preserves subtyping, as desired:

Lemma 8 If C<:D then CCT � expand(C)<: expand(D).

Now, we show that the expansion allows a simulation of FJ field and method typing.

Lemma 9 Given expand(D) = [TD]. Then the following properties hold:

1. CCT � T<: (m : expand(B̄)
ε−→ expand(B)) if mtype(m,D) = B̄→ B.

2. CCT � T<: (f : expand(B)) if B f ∈ fields(D).

Now we can prove the conservativity result by induction on FJ type derivations. To prop-
erly frame the result, we need to extend expansion to environments, both to correctly state
the induction, and to gather class type representations into the FJtrace type environment in
the appropriate manner.

Lemma 10 (Conservation of FJ Typing) Define:

expand(Γ) = Γ ′ expand(C) = T

expand(Γ ;x : C) = Γ ′;x : T

dom(()CT) = C1, . . . ,Cn

expand(∅) = C1 : ∀∅[CCT].expand(C1); . . . ;Cn : ∀∅[CCT].expand(Cn)

If Γ � e : C is derivable, then so is expand(Γ),CCT , ε � e : expand(C).

Proof The result follows by induction on Γ � e : C and case analysis on the last step in the
derivation. Here, we give only the T-INVK case, wherein e= e0.m(ē), and by inversion of
the rule we have:

Γ � e0 : C0 mtype(m,C0) = D̄→ C Γ � ē : C̄ C̄<: D̄
Hence by the induction hypothesis the judgements:

expand(Γ),CCT , ε � e0 : expand(C0) expand(Γ),CCT , ε � ē : expand(C̄)

are derivable. Let expand(C0) = [TC0]. Then by Lemmas 8 and 9, the following are valid:

CCT � T<: (m : expand(D̄)
ε−→ expand(C)) CCT � expand(C̄)<: expand(D̄)

But then by Definition 3 and Lemma 3:

CCT � T<: (m : expand(C̄)
ε−→ expand(C))

so the judgement:

expand(Γ),CCT , ε; ε; ε � e : expand(C)

is derivable by T-INVK in FJtrace, hence this case follows by T-WEAKEN. �

260 Higher-Order Symb Comput (2008) 21: 239–282

Next, we turn to subject reduction and type soundness. We start by showing that valid
typing judgements can always be specialized, either by weakening the top-level constraint
in the judgement, instantiating type variables, or by adding extraneous bindings to the type
environment. Each of these results follows by a straightforward induction on type deriva-
tions. The instantiation lemma also follows because instantiation preserves subtyping, as we
show in Lemma 12, a result that follows immediately by Definition 3.

Lemma 11 (Constraint Weakening) If Γ,C,H � e : T and D � C for solvable D then
Γ,D,H � e : T.

Lemma 12 If C � S<:T then C[T̄/X̄] � S[T̄/X̄]<:T[T̄/X̄].

Lemma 13 (Instantiation) If Γ,C,H � e : T is derivable, then so is the judgement
Γ [T̄/X̄],C[T̄/X̄],H[T̄/X̄] � e : T[T̄/X̄].

Lemma 14 (Environment Weakening) If Γ,C,H � e : T is derivable and Γ (C) = Γ ′(C) for
all C ∈ dom(()CT) and Γ (x) = Γ ′(x) for all x ∈ fv(e), then Γ ′,C,H � e : T is derivable.

Since the T-WEAKEN rule is not syntax directed, it introduces non-determinism in
derivations. The following result allows us to treat specified normal forms of derivations
in proofs, without loss of generality.

Lemma 15 (Normalization) If the judgement Γ,C,H � e : T is derivable, then the judge-
ment follows by one instance of T-WEAKEN preceded by an instance of a syntax-directed
rule corresponding to the form of e.

We also show that substitution preserves typings, to underpin the method invocation case
of subject reduction. After that, we give a canonical forms lemma, specifying the form of
values inhabiting particular types. We also observe that values can always be assigned top-
level ε effects– since values do not reduce, they can have no trace history.

Lemma 16 (Substitution) If Γ ;x : S,C,H � e : T and Γ,C, ε � v : S′ with C � S′ <:S,
then Γ,C,H′ � [v/x]e : T′ for some T′ and H′ with C � T′ <:T∧ H′ <:H.

Lemma 17 (Canonical Forms) If Γ,C,H � v : [TC] is derivable for closed v and well
formed Γ , then v= new C(v̄) for some v̄.

Lemma 18 If Γ,C,H � v : [TC] is derivable, then C � ε <:H and Γ,C, ε � v : [TC] is
also derivable.

The next two utility results allow the typings of method bodies to be retrieved by inver-
sion of method invocation typings. Like Lemma 16, they will be instrumental for the method
invocation case of subject reduction.

Lemma 19 Given Γ (C) = ∀X̄[C].[T C] and mbody(m,C) = x̄.e for well formed Γ . Then

there exists (m : S̄ H−→ S) ∈ T, R̄ and R such that the following are valid:

C � R<:S∧ S̄<: R̄ Γ ;this : [T C]; x̄ : R̄,C,H � e : R

Higher-Order Symb Comput (2008) 21: 239–282 261

Proof By inversion of the T-CLASS and T-METH rules, and Lemma 14. �

Lemma 20 Given well formed Γ and:

Γ,C,H0 � new C(v̄) : [TC] mbody(m,C) = x̄.e C � T<: (m : S̄ H1−→ S)

Then:

Γ ;this : [TC]; x̄ : R̄,C,H2 � e : R
is derivable, where:

C � R<:S∧ S̄<: R̄∧ H2 <:H1

Proof By Lemma 15 and inversion of the T-NEW rule, we have that [TC] = [T0 C][S̄′
/X̄]

where Γ (C) = ∀X̄[D].[T0 C] and C � D[S̄′
/X̄]. Then by Lemma 19, there exists (m : R̄0

H→
R0) ∈ T0, S̄0 and S0 such that:

C � S0 <: R0 ∧ R̄0 <: S̄0 Γ ;this : [T0C]; x̄ : S̄0,D,H � e :S0

are both valid. Letting:

R̄ � S̄0[S̄′
/X̄] R � S0[S̄′

/X̄] H2 � H[S̄′
/X̄]

Then by Lemma 12:

C � R<:R0[S̄′
/X̄] ∧ R̄0[S̄′

/X̄] <: R̄
so by Definition 3 and Lemma 3:

C � R<:S∧ S̄<: R̄∧ H2 <:H1
and by Lemmas 11 and 13:

Γ ;this : [TC]; x̄ : R̄,C,H2 � e : R

which was to be demonstrated. �

We can now prove subject reduction. Note that the statement of the proof allows for an
increase in precision of type and effect in reduced terms.

Lemma 5 (Subject Reduction) If Γ,C,H � e : [TC] is derivable for closed e and
well formed Γ , and η,e → η′,e′, then Γ,C,H′ � e′ : [T′ C′] is derivable with C �
[T′ C′]<: [TC] and C � η′;H′ <:η;H.

Proof By induction on Γ,C,H � e : [TC], case analysis on the last step in the deriva-
tion, and associated subcase analysis defined by possible last steps in the derivation of and
η,e→ η′,e′, given the form of e as required by the case. We consider the most interesting
and crucial cases, treating method invocation, casting and soft subtyping, events, and effect
weakening.

262 Higher-Order Symb Comput (2008) 21: 239–282

Case T-INVK. In this case, by inversion of the rule we have:

e= e0.m(ē) H= H1;H2;H3 Γ,C,H1 � e0 : [SD] Γ,C,H2 � ē : T̄

C � S<: (m : T̄ H3−→ [TC])
A subcase analysis for the form of e in this case comprises R-INVK, RC-INVK-RECV, and
RC-INVK-ARG, as follows.

Subcase R-INVK. In this subcase by rule R-INVK and Lemma 17 we have:

e0 = new D(v̄) ē= ū e′ = [ū/x̄,new D(v̄)/this]e1 mbody(m,D) = x̄.e1

η′ = η

Thus by Lemma 20:

Γ ;this : [SD]; x̄ : S̄,C,H4 � e1 : [T1 C1]
is derivable, where:

C � [T1 C1]<: [T C] ∧ T̄<: S̄∧ H4 <:H3
Therefore by Lemma 18 and Lemma 16 the judgement:

Γ,C,H′
4 � [ū/x̄,new D(v̄)/this]e1 : [T′

1C
′
1]

is derivable, where C � [T′
1 C

′
1]<: [T1 C1] and C � H′

4 <:H4. Thus C � [T′
1 C

′
1]<: [TC]

and C � H′
4 <:H3 by Lemma 3, so it only remains to be shown that C � η;H′

4 <:η;H3. But
C � ε <:H1 and C � ε <:H2 by Lemma 18, hence C � H3 <:H1;H2;H3 by Lemma 2, so
the result follows by Lemmas 2 and 3.

Subcase RC-INVK-RECV. In this subcase e′ = e1.m(ē) for some e1 such that η,e1 →
η′,e1. But then by the induction hypothesis we have Γ,C,H′

1 � e1 : [S′ D′] with C �
η′;H′

1 <:η;H1 ∧ [S′ D′]<: [SD]. These facts, Definition 3, and Lemma 3 imply C �
S′ <: (m : ¯[RB] H3−→ [TC]), hence Γ,C,H′

1;H2;H3 � e1.m(ē) : [TC] is derivable by an in-
stance of T-INVK, with C � η′;H′

1;H2;H3 <:η;H1;H2;H3 by Lemma 2, so this case holds.
Subcase RC-INVK-ARG follows in a similar manner.

Case T-CAST. In this case, by inversion of the rule we have:

e= (C)e0 Γ,C,H � e0 : [SD] C � [SD] � [TC]
A subcase analysis for the form of e in this case comprises R-CAST and RC-CAST, as
follows.

Subcase R-CAST. In this subcase we have:

e0 = new D(v̄) D<:C e′ = e0 η = η′

by inversion of R-CAST and Lemma 17. But then C � [SD]<: [TC] by Lemma 4; the result
follows. Subcase RC-CAST follows in a manner similar to the RC-INVK-RECV subcase of
the T-INVK case above.

Case T-EVENT. In this case by inversion of the rule we have:

e= ev[i] H= ev[i] [TC] = Unit

Higher-Order Symb Comput (2008) 21: 239–282 263

The only reduction rule that applies to the form of e in this case is R-EVENT, inversion of
which obtains:

e′ = () η′ = η;ev[i]
But Γ,C, ε � () : Unit by assumption and Lemma 18, so this case holds.

Case T-WEAKEN. In this case we have Γ,C,H′ � e : [TC] with C � H′ <:H by inversion
of rule T-WEAKEN. But then Γ,C,H′′ � e′ : [T′ C′] with C � η′;H′′ <:η;H′ ∧[T′ C′]<: [TC]
by the induction hypothesis, and C � η′;H′′ <:η;H Lemmas 2 and 3, so this case holds. �

We then prove one auxiliary lemma followed by our main type safety result, demonstrat-
ing that run-time checks in well-typed programs are guaranteed to succeed:

Lemma 21 If Γ,C,H � E[chk[x]] : T then C � chk[x];H′ <:H.

Lemma 6 (Static Enforcement of Checks) Given closed e and well-formed Γ , if the judge-
ment Γ,C,H � e : T is valid, and ε,e→� η,E[chk[x]], then η � chk[x].
Proof By Lemmas 5 and 21, Γ,C,H′ � E[chk[x]] : T is derivable with C � chk[x];
H′′ <:H′ and C � η;H′ <:H. Now, by assumption there exists a solution ρ of C such that
ρ(H) is valid; but since �ρ(chk[x];H′′)� ⊆ �ρ(H′)� and �ρ(η;H′)� ⊆ �ρ(H)� by previous
facts and Definition 3, therefore �ρ(η;chk[x];H′′)� ⊆ �ρ(H)�. By Lemma 2 it follows that
the effect ρ(η;chk[x];H′) is valid, thus η � chk[x] by Definition 1. �

6 Type inference for FJtrace

We now develop an implementation of the FJtrace type system. This includes a type inference
algorithm for reconstructing type judgements. In addition, it is necessary to check satisfia-
bility of constraints, to ensure that these judgements are coherent. For this purpose we adapt
standard closure techniques for subtyping constraints [31], extended to accommodate ef-
fect constraints. Closure distills inferred constraints into their basic component elements,
upon which a simple structural consistency check can be used to ensure satisfiability. Infer-
ence and closure serve as preliminary phases for statically verifying trace-based program
assertions, which can finally be accomplished by model checking trace effects, as in [37].
Model checking is applicable, since we endow trace effects with an LTS semantics (Sect. 4),
for which a variety of model checking techniques exist [11]. However, standard techniques
expect term, rather than constraint, representation of LTSs. Therefore, it is also necessary
to define a means of extracting a unified trace effect representation from inferred typing
judgements. For this purpose we define an algorithm, called hextract, to obtain a unified
representation of trace effects from the inferred constraint representation. The composition
of type inference, closure, and hextraction obtains an algorithmic technique for enforcing
type safety, as observed in Theorem 1.

6.1 The Type Language

The type and constraint language used by inference is the same as that presented in Sect. 5,
albeit specialized to integrate neatly with closure. There are two forms of object types used
by inference, a form [tC] that we call abstract, and an hexpanded form defined in Fig. 12.
This form is similar to the expanded form of object types defined in Sect. 5.4, where field

264 Higher-Order Symb Comput (2008) 21: 239–282

Fig. 12 hexpand type construction

and method types of a given class are explicitly listed, except method types are assigned
abstract effects, and canonical hexpansion will always choose fresh variables with which to
construct the type.

Inference always assigns hexpanded type forms to expressions (see Lemma 27 for a pre-
cise statement of this), which invariant provides a uniform representation for proofs. More
importantly, the invariant preserves soundness when imposing constraints due to method or
field selection. That is, the selection of a method or field x from an object of type [TC] will
impose a constraint of the form T<: (x : S). If [TC] is in hexpanded form, a lower bound
constraint on the width of T is hard-coded by the form of T, whereas if T was a type vari-
able t, a lower bound width constraint on t would have to be explicitly imposed to ensure
soundness.

Since hexpanded types do have abstract forms as subterms, the latter occur in types and
constraints in inference judgements, but only serve as conduits for transitive flow during
closure. Furthermore, type variables t never appear “bare” during inference, but only within
an abstract object type form [tC], so that object type variables always have an implicit width
constraint associated with C.

6.2 Type inference judgements

Type inference rules are given in Fig. 13; the W subscripting the relation �W distinguishes
type inference from logical typing judgements, and is named after the polymorphic type
reconstruction algorithm W [15]. The type inference rules are deterministic except for the
choice of type variables; we call canonical those derivations that always choose fresh type
variables, and hereafter restrict our consideration to canonical derivations without loss of
generality.

Type inference rules are mostly analogous to their logical counterparts. The T-CLASS

rule is slightly different, and the T-CONSTRAINT rule interposed, to deal with mutually
recursive class definitions. If C̄ are all mutually recursive, then the T-CLASS rule allows
typings to be assigned to them “in parallel”, as a group—a group of one, in case a given class
is not mutually recursive with any others. We specify a normal form for environments in
inference derivations, and also we define the inference analog of well formed environments,
which formalizes the notion of complete typing for a full class table.

Definition 8 Any Γ is in inference form iff hexpand(C) = T for all C : ∀X̄[C].T ∈ Γ , and
for all x : S ∈ Γ there exists D such that hexpand(D) = S.

Higher-Order Symb Comput (2008) 21: 239–282 265

Fig. 13 FJtrace type inference rules

Hereafter, we restrict inference judgements to the use of environments in inference form,
and observe that derivations preserve this property.

We obtain soundness for type inference via the following result for expression inference;
generalization to method and class inference are obtained on this basis. The result follows
by induction on inference derivations. The Lemma states that inference derivations can be
reconstructed as logical derivations of less general typings; this formulation is necessary to
allow the induction to go through, since logical judgements are given complete constraints a
priori, whereas they are reconstructed from the leaves towards the root in inference deriva-
tions. The proof is given in Sect. 6.4.

Lemma 22 (Soundness of Inference) If Γ,C,H �W e : T is derivable with Γ and C ∧ D,T
realizable, then Γ,C ∧ D,H � e : T is derivable.

6.3 Closure and extraction of effects

To automatically check satisfiability of constraints, hence realizability of types, the type
implementation comprises a constraint closure algorithm and consistency check. We say

266 Higher-Order Symb Comput (2008) 21: 239–282

Fig. 14 Constraint closure rules

Fig. 15 Constraint consistency rules

that a constraint C is consistent iff � C : ok is derivable given the deterministic rules in
Fig. 15. For brevity in the definition of closure, we introduce the following notation:

Definition 9 Let Ĉ range over atomic constraints, i.e.:

Ĉ ::= true | T<:T | T� T

and for all C = Ĉ1 ∧ · · · ∧ Ĉn, let set(C) = {C1, . . . ,Cn}. Then define:

Ĉ ∈ C ⇐⇒ Ĉ ∈ set(C) D ⊆ C ⇐⇒ set(D) ⊆ set(C)

Constraint closure is then defined via the rewrite rules given in Fig. 14 and Definition 10.
The closure rules are mostly standard, except for those that treat soft subtyping constraints,
C-CAST and C-STRANS. These rules implement selective pruning of the constraint graph
described previously; note that they effectively discard unsound flow along soft subtyping
edges.

Definition 10 (Closure) The rewrite relations �close and →close are defined in Fig. 14. C is
closed iff there does not exist D such that C →close D. The relation →�

close is the reflexive,
transitive closure of →close. We define close(C) as a closed constraint such that C →�

close
close(C).

Correctness of closure for inferred types and constraints is stated as follows. While our
interpretation has slight modifications for specialized object type forms, our approach to type

Higher-Order Symb Comput (2008) 21: 239–282 267

Fig. 16 hextract and bounds functions

constraint closure is fundamentally standard, and correctness of standard closure techniques
has been thoroughly treated in previous work, notably [31]. Solvability of closed, consis-
tent effect constraints is established constructively in Lemma 24, and solutions of type and
effect constraints can be composed to obtain a solution for whole constraints generated by
inference. This argument is developed in more detail in [39].

Lemma 23 If Γ,C,H �W e : T is derivable, then C is satisfiable iff close(C) is consistent.

A key property of effect constraints that ensures their satisfiability, is that they define
a system of lower bounds on effect variables. That is, if Γ,C,H �W e : T is derivable and
H<:H′ ∈ close(C), then H’ is an effect variable h. It is easy to demonstrate this property by
observing that it is established by inference, and preserved by closure. This form of effect
constraint implies that, given Γ,C,H �W e : T, a solution for H can be obtained, more or
less, by recursively joining the lower bounds of type variable components of H in close(C).
The algorithm for extracting term representation of effects from a constraint representation,
called hextract, is defined in Fig. 16. Since extraction does not alter the given constraint in
any way, the fixed parameter C is written as a subscript. Extraction returns a closed trace
effect that is a sound term representation of the top-level effect of given closed expressions,
in the following sense. The result constructively proves satisfiability of closed, consistent
effect constraints.

Lemma 24 (Extraction Correctness) If Γ,C,H �W e : T is derivable for closed e and
close(C) is consistent, then hextractclose(C)(H) is defined and there exists a solution ρ of
C such that hextractclose(C)(H) = ρ(H).

Correctness of the hextract algorithm is rigorously established in [39] by a fixpoint con-
struction argument. Since the form of constraints treated in that result is the same as that
generated by inference in this paper, the result is entirely applicable.

To make the final connection to logical typing judgements, we must define the analogue
of well-formed environments, wherein all type schemes bindings are realizable and logically
derivable. In the inference system, this requires that environments contain bindings that are
logically inferable, and whose constraint closures are consistent.

Definition 11 Letting σ range over constrained type schemes, and given:

Γ = C1 : σ1; . . . ;Cn : σn

268 Higher-Order Symb Comput (2008) 21: 239–282

Then Γ is inferable iff for all 0 < i ≤ n there exists 0 < k ≤ i such that:

C1 : σ1; . . . ;Ck−1 : σk−1 �W Ck : σk, . . . ,Ci : σi

and for all ∀X̄[C].T ∈ Γ , close(C) is consistent.

Putting the pieces together, a complete analysis is obtained by composition of inference,
closure, consistency, and hextraction. Validity of effects can be implemented by techniques
described in [37].

Theorem 1 (Soundness of Analysis) Suppose Γ,C,H �W e : T is derivable for inferable
Γ and closed e, close(C) is consistent, and hextractclose(C)(H) is valid. Then ε,e →�

η,E[chk[x]] implies η � chk[x].

The proof is given in Sect. 6.4, following by soundness of inference as established by
Lemmas 22, 23, 24, and type safety as established by Lemma 6.

6.4 Properties

We now investigate formal properties of type inference in more depth. First, we observe a
fairly obvious characteristic of constraints, that any solution of a compound constraint is
also a solution of its parts.

Lemma 25 C ∧ D � D.

Now, we characterize the essential property allowing the innards of an hexpanded object
type to be unwrapped, while still retaining a width constraint associated with the object
class. This is essential for ensuring soundness of inference. The result is a straightforward
consequence of the definition of hexpand.

Lemma 26 Let hexpand(C) = [TC]. Then if ρ(T) is well kinded, so is ρ([TC]).

We also observe the invariant that all top-level types in inference are in hexpanded form,
which are well-formed with respect to any inferred top-level constraint. The result follows
by induction on type derivations.

Lemma 27 If Γ,C,H �W e : T is derivable for well formed Γ , then T= hexpand(C), and
satisfiability of C implies realizability of C,T.

Soundness of inference follows by induction on inference derivations. In essence, sound-
ness is proved by transforming an inference derivation into a logical derivation, by allowing
the root constraint to be pushed towards the leaves in the induction, via appropriate state-
ment of the result (i.e. the logical derivation permits weakening of the top level constraint
with some constraint D).

Lemma 22 (Soundness of Inference) If Γ,C,H �W e : T is derivable with Γ and C ∧ D,T
realizable, then Γ,C ∧ D,H � e : T is derivable.

Proof By induction on the derivation of Γ,C,H �W e : [TC] and case analysis on the last
step.

Higher-Order Symb Comput (2008) 21: 239–282 269

Cases T-VAR, T-SEQNIL, T-EVENT, and T-CHECK are immediate.
Case T-FIELD. In this case, by inversion of the rule we have:

e= e0.f hexpand(C) = [TC] C = C0 ∧ S<: (f : [TC]) Γ,C0,H �W e : [SD]
C f ∈ fields(D)

Since by assumption C has a solution ρ, therefore ρ(S) is well kinded, so C, [SD] is re-
alizable by Lemmas 27 and 26. Hence Γ,C,H � e : [SD] is derivable by the induction
hypothesis, and C � S<: (f : [TC]) by Lemma 25, so the result follows by an instance of
T-FIELD.

Case T-INVK. By inversion of the rule in this case we have:

C = C1 ∧ C2 ∧ S<: (m : ¯[SB] h−→ [TC]) e= e0.m(ē) H= H1;H2;h
Γ,C1,H1 �W e0 : [SD] Γ,C2,H2 �W ē : ¯[SB] mtype(m,D) = C̄→ C

hexpand(C) = [TC]
Since C has a solution ρ by assumption, therefore ρ(S) and ρ(¯[SB]) are well kinded, so
C, ¯[SB] is realizable, and C, [SD] is realizable by Lemmas 27 and 26. Thus, Γ,C,H1 � e0 :
[SD] and Γ,C,H2 � ē : ¯[SB] by the induction hypothesis, and C � S<: (m : ¯[SB] h−→ [TC])
by Lemma 25, so the result follows by an instance of T-INVK.

Case T-NEW. In this case, by inversion of the rule we have:

e= new C(ē) T= [S[X̄′
/X̄]C] C = C0 ∧ D0[X̄′

/X̄] ∧ S̄<: T̄[X̄′
/X̄]

Γ (C) = ∀X̄[D0].[SC] fieldsig [SC] = T̄ Γ,C0,H �W ē : S̄
But C ∧ D is satisfiable by assumption, so C ∧ D, S̄ is realizable, therefore Γ,C ∧ D,H �
ē : S̄ is derivable by the induction hypothesis. And by Lemma 25:

C ∧ D � D0[X̄′
/X̄] C ∧ D � S̄<: T̄[X̄′

/X̄]
so the result follows in this case by an instance of T-NEW. The T-CAST and T-SEQ cases
follow in a straightforward manner by the induction hypothesis. �

A final technical hurdle is to show that inferable environments are well-formed. The re-
sult shows how to obtain logical class typing judgements from inferred ones with consistent
closures.

Lemma 28 If Γ is inferable, then it is well-formed.

Proof Assume that the following judgement is derivable in the inference system, with
close(D) consistent:

Γ �W C1 : ∀X̄1[D].Ti , . . . ,Cn : ∀X̄n[D].Tn

Then it suffices to show that for any i ∈ [1..n] the judgement:

Γ ;C1 : ∀X̄1[D].T1; . . . ;Cn : ∀X̄n[D].Tn � D : ∀X̄i[D].Ti

270 Higher-Order Symb Comput (2008) 21: 239–282

is derivable in the logical system. Inverting the T-CLASS rule we can reconstruct:

Γ ; C̄ : hexpand(C̄) �W Ci : Di,Ti and fv(D,Ti) = X̄i for all i ∈ 1..n

D = D1 ∧ · · · ∧ Dn

Γ �W C1 : ∀X̄1[D].T1, . . . ,Cn : ∀X̄n[D].Tn

where for each i ∈ 1..n, the constraint Di is of the form C1 ∧ · · · ∧ Cj , and for each mk ∈
meths(Ci) a judgement:

Γ ; C̄ : hexpand(C̄);this : Γ (C),Ck �W mk,Ci : Tk

is derivable, by inversion of the T-CLASSCONSTRAINT rule. Let:

Γ ′ � (Γ ; C̄ : hexpand(C̄);this : Γ (C))

Then by inversion of the T-METH rule we have that Tk is of the form ¯[TD] h−→ T, and Ck is
of the form:

C ∧ S<:T∧ ¯[TD]<: S̄∧ H<:h
and we can reconstruct:

Γ ′; x̄ : S̄,C,H �W e : S
hexpand(D̄) = S̄ Γ ′(this).mk = ¯[TD] h−→ T mbody(mk,Ci) = x̄.e

Γ ′,C ∧ S<:T∧ ¯[TD]<: S̄∧ H<:h �W mk,Ci : ¯[TD] h−→ T

Since close(D) is consistent by assumption, therefore D has a solution by Lemma 23.
And since S occurs in D, therefore D,S is realizable, hence by Lemma 22 the judge-
ment Γ ′; x̄ : S̄,D,H � e : S is derivable in the logical system, from which can be derived
Γ ′; x̄ : S̄,D,h � e : S by Lemma 25 and an instance of T-WEAKEN. But then the form of
Ck as noted above, Lemma 25, and an instance of T-METH in the logical system allows us

to derive Γ ′,D � mk,Ci : ¯[TD] h−→ T. But since [TD] and h and T all occur in D, therefore

D, ¯[TD] h−→ T is realizable. The result follows by an instance of T-CLASS in the logical
system. �

Now we can demonstrate our main result, showing how the different components of
inference can be combined to generate a sound automated type analysis. The result follows
by soundness of inference and closure, correctness of hextraction, and type safety.

Theorem 1 (Soundness of Analysis) Suppose Γ,C,H �W e : T is derivable for infer-
able Γ and closed e, close(C) is consistent, and hextractclose(C)(H) is valid. Then ε,e→�

η,E[chk[x]] implies η � chk[x].

Proof If Γ is inferable, then it is well-formed by Lemma 28. If close(C) is consistent, then
C has a solution by Lemma 23. Therefore C,T is realizable by Lemma 27, and Γ,C,H �
e : T is derivable in the logical system by Lemma 22. By Lemma 24, there exists a solution
ρ of C such that hextractclose(C)(H) = ρ(H), the validity of which establishes validity of
Γ,C,H � e : T. The result follows by Lemma 6. �

Higher-Order Symb Comput (2008) 21: 239–282 271

Fig. 17 Semantics of exceptions

7 Control flow and effect transformations

In this section we show that a benefit of our approach is that trace effect representations
are amenable to transformational techniques, for flexibility of analysis. These transforma-
tions can be used to post-process inferred effects, without requiring any reworking of the
inference component of analysis. This means that certain extensions of the language can be
treated statically in a modular fashion, including extensions that have a fundamental effect
on program semantics and control flow.

We consider exnization and stackification transformations. Exnization implements the
impact of exceptions on effect representations. Stackification is useful in a stack-based
safety context– that is, where events associated with function activations are “forgotten”
when that activation returns, as in e.g. Java stack inspection. Thus, security contexts are
established by the current calling context.

7.1 A Transformation for exceptions

Exceptions exist in Java, so a realistic application of our approach must account for them.
In this section we consider a first approximation of the full exception feature set, where we
assume there exists only one anonymous exception in the language. The FJtrace language of
expressions is extended to include the form throw for throwing this anonymous exception,
and to include the form try{e1}catch{e2} for handling thrown exceptions, yielding the
language FJexn. The semantics of FJexn are the semantics of FJtrace extended with the rules in
Fig. 17, where evaluation contexts E are as specified in Definition 6.

7.1.1 Logical type system

To treat these new language forms in type analysis, we introduce two new forms to the
language of effects: throw to identify control flow points where an exception is thrown,
and H1 � H2 to represent the effect of handlers, where H1 represents the effect of the try
clause, and H2 represents the effect of the catch clause. We endow these forms with an
LTS semantics appropriate to the behavior of exceptions, as follows:

throw;H ε−→ throw throw � H ε−→ H ε � H ε−→ ε

H1 � H2
a−→ H′

1 � H2 if H1
a−→ H′

1

The transition rules ensure that for any sequence of events H1;H2, if H1 encounters a throw,
then none of the events in H2 are reached. Also, if H1 in the effect H1 � H2 of some handler

272 Higher-Order Symb Comput (2008) 21: 239–282

Fig. 18 Logical typing rules for exceptions

encounters a throw event, then the transition rules ensure that the effect H2 of the handling
clause is encountered. Otherwise, if H1 transitions safely to ε without encountering a throw
then the events in H2 are never encountered.

We also redefine the interpretation of trace effects as follows, to account for the fact that
effect computation may be terminated by an uncaught exception:

�H�exn =
{a1 · · ·an | H a1−→ · · · an−→ H′}

∪
{a1 · · ·an↓ | H a1−→ · · · an−→ H′ where H′ ∈ {ε,throw}}

We refer to this interpretation as the exn interpretation of effects, as opposed to the previ-
ous exn-free interpretation of effects. The definition of primitive subtyping is modified to
accommodate this interpretation of effects:

�H�exn ⊆ �H′�exn

H�fin H
′

Finally, we extend the logical type system to account for exceptions and handlers, as in
Fig. 18.

While the exn interpretation of effects is a sufficient and appealing approach to obtaining
type safety, it has the drawback that throw and H1 � H2 forms are non-standard and not
treated by existing model-checking techniques. Our solution to this is to soundly transform
FJexn effects into FJtrace effects. In particular, we are interested in a class of functions we
call exn transformers, that take an effect H and return a pair of sets s, t of exn-free trace
effects, where s generates the safe traces in �H� that are not terminated by a raised exception,
and t generates the remaining throw traces in �H�. To manipulate these sets in subsequent
development, we define the following notation:

s1; s2 = {H1;H2 | H1 ∈ s1 and H2 ∈ s2} s[H/h] = {H′[H/h] | H′ ∈ s}
join({H}) = H

join({H} ∪ s) = H|join(s)

We equate sets of effects up to their join interpretation, i.e. s = t iff join(s) = join(t). For-
mally, we define exn transformers as follows:

Definition 12 An exn transformer is a total function f on trace effects such that for all H,
f (H) is a pair of trace effect sets (s, t) such that �H�exn ⊆ �join(s ∪ t)�.

We precisely characterize the behavior of exn transformers via the combinator XZ defined
in Fig. 19, clearly illustrating the relation between input and output of transformation of

Higher-Order Symb Comput (2008) 21: 239–282 273

Fig. 19 The XZ combinator

Fig. 20 Type inference rules for exceptions

closed effects. For example, all the throw paths of H1 are prefixes of the safe and throw
paths of H2 in the transform interpretation of H1 � H1, reflecting its exn interpretation. An
important consequence of the definition of XZ and the exn interpretation of effects is:

Lemma 29 Any fixpoint of XZ is an exn transformer.

It would be possible to show that XZ is monotonic, guaranteeing the existence of an exn
transformer. However, we will instead define an algorithm that is shown to be a fixpoint of
XZ, providing a technique for applying standard model checking techniques to FJexn type
safety enforcement.

7.1.2 Type inference system

To obtain type inference for FJexn, we extend the FJtrace type inference system with the rules
specified in Fig. 20 for language forms related to exceptions. Also necessary is an extension
of hextract to accommodate new effect forms:

hextract(throw, hs) = throw

hextract(H1 � H2, hs) = hextract(H1,hs) � hextract(H2,hs)

This completes the logical specification of the system, for which we can demonstrate
a subject reduction result as in Lemma 31 below. But to apply standard model checking
techniques to FJexn as discussed above, we now define an exn transformer. The core of it

274 Higher-Order Symb Comput (2008) 21: 239–282

Fig. 21 The exception transformation function exnize

is a function called exnize, defined in Fig. 21. Since termination in the algorithm precludes
unrolling of μ-bound effects, it must deal with free variables. Thus, in addition to returning
safe and throw paths, exnize returns a set of effects called precursors. Precursors are safe
paths that end in a variable (tail recursive paths); they may be “pruned back” from other
paths (safe, throw, or recursive), since if a recursive call causes a throw, everything after
the call will be short-circuited until the first enclosing handler. The idea is that precursors
should be joined with throw paths within a μ-binding, since any number of recursive calls
can be made before a throw is encountered; this yields μ-bound throw paths. For example,
given:

H� μh.ev[1]|(ev[2];h;ev[3])|(ev[4];throw;ev[5])
we yield the following safe and throw paths obtained from H:

safe: μh.ev[1]|(ev[2];h;ev[3]) throw: μh.ev[4]|(ev[2];h)

An added complication is that recursive calls h may precede other tail recursions or throws
in recursive or throw paths; the analysis replaces these “inner” recursions with the safe
recursive call paths of h, to obtain safe preceding ground paths.

In more detail, the algorithm exnize, defined in Fig. 21, returns a triple s, t, r , where s are
the safe paths, t are the throw paths, and r are the precursors, each represented as history
effect sets. The exception transformation is defined via some auxiliary functions, including
map and filter defined as usual (where the latter accepts only values that match the given
predicate). We also adapt a pattern-matching syntax, so that functions (λ(H;h) . . .) match
effect arguments of the form H;h; we observe that precursors are guaranteed to be of the
this form, by definition of exnize and type inference.

At the top-level, the ultimate transformation is the join of the deduced safe and throw
paths; note also that at the top-level, the set of precursors should be empty. Thus, the excep-

Higher-Order Symb Comput (2008) 21: 239–282 275

tion transformation of an effect H is implemented as:

let s, t,∅ = exnize(H) in join(s ∪ t)

For brevity, we have excluded a special subcase of exnize(μh.H), where the recursive call
exnize(H) returns s, t, r such that s = ∅. However, this is the case where every program
control path through a function throws an exception, which we believe will be rare, and can
be easily dealt with by modifying the case where s is not empty.

7.1.3 Properties

We now establish relevant results for the theory developed in this section, in particular we
demonstrate type soundness, and show that the exnize transformation obtains a sound ap-
proximation of the exn interpretation in the exn-free interpretation of effects.

Type soundness is proved by extending Lemma 5, in light of the definitions above. In
order to prove the R-THROW case, we observe that the effect of an expression E[throw]
will reflect that throw is the “first thing that happens”.

Lemma 30 If Γ,C,H � E[throw] : T then C � throw;H′ <:H.

This lemma is proved in the identical manner as Lemma 21, since evaluation context
forms are conserved. Now, we can easily prove subject reduction for FJexn.

Lemma 31 (FJexn Subject Reduction) If Γ,C,H � e : [TC] is derivable for closed e

and well-formed Γ , and η,e → η′,e′, then Γ,C,H′ � e′ : [TC] is derivable with C �
η′;H′ <:η;H.

Proof Since the semantics of FJexn are conservative with respect to the semantics of FJtrace,
Lemma 5 implies the result for the exn-free subset of FJexn. What remains is to prove the
RC-TRY, R-TRY, and R-CATCH, and R-THROW cases. The first three follow in a straight-
forward manner by definition of logical typing for exception handlers, the interpretation
of effects H1 � H2, and the induction hypothesis. The interesting case is R-THROW, which
goes as follows. We have e = E[throw], e′ = throw, and η = η′, and by Lemma 30 it
is the case that C � throw;H′′ <:H for some H′′. But Γ,C,throw � throw : [TC] by
T-THROW, and it is easy to show that C � throw<:throw;H′′, given the LTS semantics
of throw, therefore C � η;throw<:η;throw;H′′ by Lemma 1. �

Finally, we establish that exnize provides an exn transformer, via the following lemma.

Lemma 32 (λx.let s, t,∅ = exnize(x) in s, t) is an exn transformer.

We just need to show that the function is a fixpoint of XZ. Clearly, the main issue is
to prove that exnize deals with variables and the μh.H case correctly. This is essentially
established by the next auxiliary lemma.

Lemma 33 Let all identifiers be as defined in the μh.H case of exnize, and define
s�, r�, t� = exnize(H [μh.H/h]). Then:

1. s� = s[Hs/h]

276 Higher-Order Symb Comput (2008) 21: 239–282

2. r� = r ′ − rh
3. t� = (map (λH.H[Hs/h]) t) ∪ (

⋃
(map (λ(H;h).{H}; t ′) rh))

4. join(s�) = Hs

5. join(t�) = join(t ′)

Proof (Sketch) Each property follows by a straightforward induction on H, and (intuitively)
since the computation of exnize(H[μh.H/h]) will encounter μh.H in recursive calls, rather
than h, hence the latter will be replaced with appropriate parts of exnize(μh.H) in the trans-
formation. In essence, property (1) follows since the safe paths of exnize(H[μh.H/h]) will
be the same as the safe paths of exnize(H), except with every instance of h replaced with the
safe paths of exnize(μh.H)—that is, Hs . Property (2) follows since the only precursors in r ′
not also returned by exnize(H[μh.H/h]) will be those terminated by h—that is, rh—since
h is no longer free in H[μh.H/h]. Property (3) follows by definition of the H1;H2 case of
exnize, and since exnize(H[μh.H/h]) will encounter the same throw terminated paths as
exnize(H), except with the safe paths of exnize(μh.H) substituted for internal occurrences of
h, since free h encountered by exnize(H) will instead be occurrences of μh.H. For the same
reason, the h-terminated precursors of exnize(H) will be treated as safe prefixes of throw
paths of exnize(μh.H) in exnize(H[μh.H/h]). Properties (4) and (5) follow immediately by
(1) and (3) and properties of effect equivalence as described in Lemma 1. �

Now we can establish the precondition of the main result for exnize.

Lemma 34 (λx.let s, t,∅ = exnize(x) in s, t) is a fixpoint of XZ.

Proof All cases are trivial except the μh.H case, where it remains to be shown that
exnize(μh.H) = exnize(H[μh.H]) by definition of XZ—but this case follows immediately
by Lemma 33 (2), (4) and (5). �

7.2 A transformation for stack-based policies

Rather than consistently accruing events in a trace, a stack-based model can be defined
where events generated by method activations are associated with the activation call-stack
frame; when the activation is popped, so are the associated events. This allows security deci-
sions to be made with respect to events in the current calling context. The Java stack inspec-
tion [20] access control mechanism, for example, is based on sequences of events on the call
stack. A stack-based access control model has additionally been combined with a history-
based security mechanism in [1], and a static analysis for enforcing general stack-based
properties via temporal logic is presented in [8]. Direct type inference for a stack-based se-
curity model has been studied previously, e.g. in [36]; however, since security mechanisms
such as that proposed in [1] require both a history- and stack-based perspective, we believe
that our uniform approach is simpler than e.g. combining direct stack- and history-based
inference in such a context.

In this section, we observe that a stack-based security model can be statically enforced,
not by redefining the inference system discussed in Sect. 6, but by an effect post-processing
technique called stackification. Stackification takes as input an effect that predicts the trace
generated by a program, and returns the stack contexts generated by a program. The stack
contexts generated by a program are formalized by refiguring the FJtrace operational seman-
tics with regard to stacks, rather than histories, yielding the language model we call FJstack.

Higher-Order Symb Comput (2008) 21: 239–282 277

Fig. 22 The stack-based semantics of FJstack

Fig. 23 The stackify algorithm

Stack contexts maintain a notion of ordering; hence stacks, which we denote ς , are LIFO
sequences of histories, and are either nil or constructed with a cons operator (::):

ς ::= nil | ς :: η trace stacks

The FJstack source language is identical to FJtrace, except that so-called framed expressions
·e· are included, to delimit regions of code associated with a stack frame. Stack frames are
associated with activations in keeping with the standard stack-based model. We also extend
evaluation contexts (Definition 6) with the form ·E·. Thus, in the operational semantics
defined in Fig. 22, the rule governing method invocation, R-INVK, will push a new frame
on the stack, and delimit the code region associated with the activation. Frames are popped,
as in R-POP, when activations return the result of evaluation. Events are accrued in order
within an activation frame, as in R-EVENT.

Given this model, a static analysis in FJstack will approximate the stack contexts that
can be generated during program execution. As mentioned above, we accomplish this by a
stackify transformation, which takes as input trace effects output by FJtrace type inference,
which is also applicable to FJstack source programs (framed expressions are only generated
at run-time). A phenomenon exploited by our transformation is that the scope of inferred
method effects is always delimited by a μ-binding. This is because the hextract algorithm
will resolve any trace effect variable h as a μ-bound effect, and every method is assigned
a variable h as its effect during inference. In other words, stack “pushes” and “pops” are
implicitly recorded during inference as the beginning and end of μ-scope.

This means that stackify, defined in Fig. 23, can use the syntax of effects to recognize
corresponding pushes and pops. Note that in the transformation of μ-bound effects, any
effects H2 following a μ-bound effect H1 will be considered as part of a different stack
context, since H1 is associated with an activation that will be pushed and popped before any
events predicted by H2 can occur.

278 Higher-Order Symb Comput (2008) 21: 239–282

The stackify algorithm generally exploits a normal form representation of effects as a
sequence H1;H2. The last three clauses use trace effect equalities to massage trace effects
into this normal form. Observe that the range of stackify consists of trace effects that are all
tail-recursive; stacks are therefore finite-state transition systems and more efficient model-
checking algorithms are possible for stacks than for general histories [18].

Example 1 With a, b and c representing arbitrary events, and results of stackification sim-
plified via effect equivalences to increase readability:

stackify(a;b) = a;b stackify(a; (μh.b)) = a;b stackify((μh.a);b) = a|b
stackify(μh.a|(b;h)) = (μh.a|(b;h))|ε stackify(μh.a|(h;b)) = (μh.a|b|h)|ε

In the second example, since μh.a precedes b, but μh.a denotes the effect of a function
call, stackification specifies that no events precede b since a will be popped before encoun-
tering b. In the last example, since b is preceded by h, which represents recursive μ-scope
and hence a recursive call, any events preceding b will be popped before b is encountered,
hence stackification specifies that no events precede b. The ε in the last two examples is
an artifact of the transformation, that could be cleaned up with some minor alterations to
stackify.

The astute reader may notice that the form of stackification presented here exhibits the
unappealing property of not necessarily preserving equivalence of interpretations, for ex-
ample stackify(μh.ev[1]) �= stackify(ev[1]). However, this form of stackification is an ab-
breviation that suppresses details of a full encoding presented in [39]. In the full encoding,
explicit “push” and “pop” events delimit function scope, and stackification does preserve
equivalence of interpretations. In the abbreviation presented here, push and pop events are
implicitly represented by function scope at the term level, and μ-scope at the type level.

8 Conclusion

In this section we conclude with a discussion of related work and some final remarks.

8.1 Related work

Previous work relevant to the application of trace-based security models has been noted
in Sect. 1. A number of different systems have been developed to enforce trace-based, or
temporal, properties of program execution. Perhaps the principal division between them is
run-time [1, 34] vs. compile-time [4, 8, 13, 33] verification. The focus of this paper is on
the latter, which have in common the idea of extracting an abstract interpretation of some
form from a program and verifying properties of that abstraction. The MOPS system [13]
compiles C programs to Push-down Automata (PDAs) reflecting the program control flow,
where transitions are program transitions and the automaton stack abstracts the program call
stack. [8, 26] assume that some (undefined) algorithm has already converted a program to a
control flow graph, expressed as a form of PDA.

These aforementioned abstractions work well for procedural programs, but are not pow-
erful enough to fully address advanced language features such as higher order functions
and objects. Our type and effect [3, 41] approach, on the other hand, allows abstract inter-
pretation of higher order [37] and Object Oriented programs. Trace effects yielded by the

Higher-Order Symb Comput (2008) 21: 239–282 279

analysis provide a conservative approximation of trace behavior via an LTS (Labelled Tran-
sition System) interpretation. This allows the expression of program assertions as temporal
logical formulae and the automated verification of assertions via model-checking techniques
[40]. The flavor of polymorphism we use is essentially ML-style let-polymorphism extended
with effects, where polymorphic recursion is disallowed. Other type and effect systems with
similar flavors of polymorphism have been sufficiently expressive to allow polymorphic re-
cursion, including systems for safe region-based memory management [42, 43]. Another
approach to region based memory management uses static union types for flexibility in the
presence of dynamic type checking [30], and is similar to our treatment of downcasting in
the presence of dynamic cast checks.

Some of the aforecited systems also automatically verify assertions at compile-time via
model-checking, including [4, 8, 13], though none of these define a rigorous process for
extracting an LTS from higher order or Object Oriented programs. In these works, the spec-
ifications are temporal logics, regular languages, or finite automata, and the abstract control
flow is extracted as an LTS in the form of a finite automaton, grammar, or PDA. These par-
ticular formats are chosen because these combinations of logics and abstract interpretations
can be automatically model-checked.

Security automata [34] use finite automata for the specification and run-time enforcement
of language safety properties. Systems have also been developed for statically verifying
correctness of security automata using dependent types [45] and in a more general form as
refinement types [29]. These systems do not extract any abstract interpretations, so they are
in a somewhat different category than the aforementioned (and our) work.

Logical assertions can be local, concerning a particular program point, or global, defining
the whole behavior required. However, access control systems [1, 16, 46], use local checks.
Since we are interested in the static enforcement of access control mechanisms, the focus in
this paper is on local, compile-time checkable assertions, though in principle the verification
of global properties is possible in our system. Related work has also modified our basic
approach to enforce “policy framings” that support so-called local liveness properties [6].

Perhaps the most closely related work is [27], which proposes a similar type and effect
system and type inference algorithm, but their “resource usage” abstraction is of a markedly
different character, based on grammars rather than LTSs. Their system lacks parametric
polymorphism, which restricts expressiveness in practice, and verifies global, rather than lo-
cal, assertions. Furthermore, their system analyzes only history-based properties, not stack-
based properties as in our system. The system of [23] is based on linear types, not effect
types. Their usages U are similar to our history effects H , but the usages have a much more
complex grammar, and assert legal patterns of resource access, which resources can be gen-
erated dynamically, unlike our events which are statically declared. This analysis has more
recently been extended to a language model with exceptions [25]. Their specification logic
is left abstract, thus they provide no automated mechanism for expressing or deciding asser-
tions. Also, the systems in both of these cited works are developed in functional, not Object
Oriented, language models.

The systems in [8, 9, 14, 26] use LTSs extracted from control-flow graph abstractions
to model-check program security properties expressed in temporal logic. Their approach is
close in several respects, but we are primarily focused on the programming language as op-
posed to the model-checking side of the problem. Their analyses assume the pre-existence
of a control-flow graph abstraction, which is in the format for a first-order program analysis
only. Our type-based approach is defined directly at the language level, and type inference
provides an explicit, scalable mechanism for extracting an abstract program interpretation,
which is applicable to Object Oriented features. Furthermore, polymorphic effects are in-
ferable in our system and events may be parameterized by constants so partial dataflow

280 Higher-Order Symb Comput (2008) 21: 239–282

information can be included. We believe our results are critical to bringing this general ap-
proach to practical fruition for production programming languages such as ML and Java [35,
38].

Another important related work is [21], where a type system for static enforcement of
stack inspection is developed for Java bytecode. In particular, they address issues related
to dynamic dispatch and linking that are similar to those discussed in Sect. 2, although
our system treats a more general class of program properties than stack inspection. Also,
their system essentially relies on the “join of all effects” approach discussed in Sect. 2 for
dynamically dispatched method typings, whereas we develop a more accurate solution based
on parametric polymorphism.

Some recent work [2, 28] has focused on analyzing patterns of method invocations for
model checking safety properties of Object Oriented programs, although traces in these
works are represented as regular expressions, not LTSs. While there are some similarities
in their approaches and applications, we believe that our system is the first to consider the
extension of trace effects per se to Object Oriented programs, as a technique for statically
verifying assertions in a general event trace program logic.

8.2 Summary

We have defined the language FJtrace, a version of Featherweight Java (FJ) extended with
event traces and checks, which are local assertions imposing well-formedness properties on
traces. This provides a foundation for a general logic of trace-based program properties in
Object Oriented languages such as Java. We have defined a static type and effect analysis
that automatically generates conservative approximations of FJtrace program trace behavior,
called trace effects. Trace effects are endowed with a label transition system semantics, and
are therefore amenable to model checking for static verification of asserted trace-based prop-
erties. The analysis is sound, in that static verification of program trace effects guarantees
success of dynamic checks.

The Object Oriented paradigm presents several challenges to trace effect analysis, includ-
ing complications due to inheritance, method override, and dynamic dispatch. In particular,
we have observed that different versions of methods in a given class hierarchy should not be
required to agree in their trace effects, since this requirement would be overly restrictive. We
have proposed a particular application of parametric polymorphism to promote flexibility in
the presence of dynamic dispatch. We have also shown that a novel definition of subtyp-
ing constraints in a regular tree model can be used for flexibility in application to Object
Oriented program features, including dynamically checked downcasts.

In addition to a basic Object Oriented model based on FJ, we have considered exten-
sions including exceptions and stack-based security contexts. Transformations of inferred
trace effects were defined, that were demonstrated to faithfully reflect the behavior of these
extensions. This provides additional evidence that trace effects are scalable static represen-
tations of program trace behavior, well suited to a general purpose Object Oriented model.
Interesting topics for future work, that would extend our analysis to a realistic (vs. ideal-
ized) Object Oriented language model, include mutation and state, dynamic linking, and
bytecode-level type systems.

Acknowledgements The author would like to thank David Van Horn, Scott Smith, and anonymous referees
for their helpful comments on drafts of this paper. This research was supported by AFOSR grant number
USAF 9550-06-1-0313.

Higher-Order Symb Comput (2008) 21: 239–282 281

References

1. Abadi, M., Fournet, C.: Access control based on execution history. In: Proceedings of the 10th Annual
Network and Distributed System Security Symposium (NDSS’03) (2003)

2. Alur, R., Cerny, P., Madhusudan, P., Nam, W.: Synthesis of interface specifications for java classes. In:
POPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pp. 98–109. ACM Press (2005)

3. Amtoft, T., Nielson, F., Nielson, H.R.: Type and Effect Systems. Imperial College Press (1999)
4. Ball, T., Rajamani, S.K.: Bebop: A symbolic model checker for boolean programs. In: SPIN, pp. 113–

130 (2000)
5. Bartoletti, M., Degano, P., Ferrari, G.L.: Enforcing secure service composition. In: CSFW, pp. 211–223.

IEEE Computer Society (2005)
6. Bartoletti, M., Degano, P., Ferrari, G.L.: History-based access control with local policies. In: Sassone, V.

(ed.) FoSSaCS. Lecture Notes in Computer Science, vol. 3441, pp. 316–332. Springer, Berlin (2005)
7. Bartoletti, M., Degano, P., Ferrari, G.L.: Policy framings for access control. In: WITS ’05: Proceedings

of the 2005 Workshop on Issues in the Theory of Security, pp. 5–11. ACM Press (2005)
8. Besson, F., Jensen, T., Le Métayer, D., Thorn, T.: Model checking security properties of control flow

graphs. J. Comput. Secur. 9, 217–250 (2001)
9. Besson, F., de Grenier de Latour, T., Jensen, T.: Secure calling contexts for stack inspection. In: Proceed-

ings of the Fourth ACM SIGPLAN Conference on Principles and Practice of Declarative Programming
(PPDP’02), pp. 76–87. ACM Press (2002)

10. Bruce, K.B., Cardelli, L., Castagna, G., Eifrig, J., Smith, S.F., Trifonov, V., Leavens, G.T., Pierce, B.C.:
On binary methods. Theory Pract. Object Syst. 1(3), 221–242 (1995)

11. Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification on infinite structures. In: Smolka, S.,
Bergstra, J., Pons, A. (eds.) Handbook on Process Algebra. North-Holland, Amsterdam (2001)

12. Cartwright, R., Fagan, M.: Soft typing. In: Proceedings of the ACM SIGPLAN 1991 Conference on
Programming Language Design and Implementation, pp. 278–292. ACM Press (1991)

13. Chen, H., Wagner, D.: MOPS: an infrastructure for examining security properties of software. In: Pro-
ceedings of the 9th ACM Conference on Computer and Communications Security, pp. 235–244, Wash-
ington, DC, November 18–22, 2002

14. Colcombet, T., Fradet, P.: Enforcing trace properties by program transformation. In: 27th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 54–66 (2000)

15. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: ACM Symposium on Princi-
ples of Programming Languages (POPL), pp. 207–212 (1982)

16. Edjlali, G., Acharya, A., Chaudhary, V.: History-based access control for mobile code. In: ACM Confer-
ence on Computer and Communications Security, pp. 38–48 (1998)

17. Eifrig, J., Smith, S., Trifonov, V.: Type inference for recursively constrained types and its application to
OOP. In: Mathematical Foundations of Programming Semantics. Electronic Notes in Theoretical Com-
puter Science, vol. 1. Elsevier Science, Amsterdam (1995)

18. Esparza, J., Kucera, A., Schwoon, S.: Model-checking LTL with regular valuations for pushdown sys-
tems. In: TACS: 4th International Conference on Theoretical Aspects of Computer Software (2001)

19. Foster, J.S., Terauchi, T., Aiken, A.: Flow-sensitive type qualifiers. In: Proceedings of the 2002 ACM
SIGPLAN Conference on Programming Language Design and Implementation, pp. 1–12, Berlin, Ger-
many, June 2002

20. Gong, L., Mueller, M., Prafullchandra, H., Schemers, R.: Going beyond the sandbox: An overview of
the new security architecture in the Java Development Kit 1.2. In: USENIX Symposium on Internet
Technologies and Systems, pp. 103–112, Monterey, CA, December 1997

21. Higuchi, T., Ohori, A.: A static type system for JVM access control. ACM Trans. Program. Lang. Syst.
29(1) (2007)

22. Holzmann, G.J., Smith, M.H.: Software model checking: extracting verification models from source
code. Softw. Test. Verif. Reliab. 11(2), 65–79 (2001)

23. Igarashi, A., Kobayashi, N.: Resource usage analysis. In: Conference Record of POPL’02: The 29th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 331–342, Port-
land, Oregon, January 2002

24. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus for Java and GJ. ACM
Trans. Program. Lang. Syst. 23(3), 396–450 (2001)

25. Iwama, F., Igarashi, A., Kobayashi, N.: Resource usage analysis for a functional language with excep-
tions. In: PEPM ’06: Proceedings of the 2006 ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, pp. 38–47. ACM Press, New York (2006)

26. Jensen, T., Le Métayer, D., Thorn, T.: Verification of control flow based security properties. In: Proceed-
ings of the 1999 IEEE Symposium on Security and Privacy (1999)

282 Higher-Order Symb Comput (2008) 21: 239–282

27. Stuckey, P.J., Marriott, K., Sulzmann, M.: Resource usage verification. In: Proc. of First Asian Program-
ming Languages Symposium, APLAS 2003 (2003)

28. Logozzo, F.: Separate compositional analysis of class-based object-oriented languages. In: Proceed-
ings of the 10th International Conference on Algebraic Methodology and Software Technology
(AMAST’2004). Lectures Notes in Computer Science, vol. 3116, pp. 332–346. Springer, Berlin (2004)

29. Mandelbaum, Y., Walker, D., Harper, R.: An effective theory of type refinements. In: Proceedings of
the Eighth ACM SIGPLAN International Conference on Functional Programming (ICFP’03), Uppsala,
Sweden, August 2003

30. Nagata, A., Kobayashi, N., Yonezawa, A.: Region-based memory management for a dynamically-typed
language. In: Asian Programming Languages Symposium. Lecture Notes in Computer Science. Springer,
Berlin (2004)

31. Palsberg, J., O’Keefe, P.: A type system equivalent to flow analysis. In: POPL ’95: Proceedings of the
22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 367–378.
ACM Press, New York (1995)

32. Palsberg, J., Smith, S.: Constrained types and their expressiveness. ACM Trans. Program. Lang. Syst.
18(5), 519–527 (1996)

33. Schmidt, D.A.: Trace-based abstract interpretation of operational semantics. Lisp Symb. Comput. 10(3),
237–271 (1998)

34. Schneider, F.B.: Enforceable security policies. Inf. Syst. Secur. 3(1), 30–50 (2000)
35. Skalka, C.: Trace effects and object orientation. In: PPDP ’05: Proceedings of the 7th ACM SIGPLAN

International Conference on Principles and Practice of Declarative Programming, pp. 139–150. ACM
Press, New York (2005)

36. Skalka, C., Smith, S.: Static enforcement of security with types. In: Proceedings of the Fifth ACM SIG-
PLAN International Conference on Functional Programming (ICFP’00), pp. 34–45, Montréal, Canada,
September 2000

37. Skalka, C., Smith, S.: History effects and verification. In: Asian Programming Languages Symposium.
Lecture Notes in Computer Science, vol. 3302. Springer, Berlin (2004)

38. Skalka, C., Smith, S., Van Horn, D.: A type and effect system for flexible abstract interpretation of
Java. In: Proceedings of the ACM Workshop on Abstract Interpretation of Object Oriented Languages.
Electronic Notes in Theoretical Computer Science, January 2005

39. Skalka, C., Smith, S., Van Horn, D.: Types and trace effects of higher order programs. J. Funct. Program.
18(2), 179–249 (2008)

40. Steffen, B., Burkart, O.: Model checking for context-free processes. In: CONCUR’92, Stony Brook
(NY). Lecture Notes in Computer Science, vol. 630, pp. 123–137. Springer, Heidelberg (1992)

41. Talpin, J.-P., Jouvelot, P.: The type and effect discipline. In: Seventh Annual IEEE Symposium on Logic
in Computer Science, Santa Cruz, California, pp. 162–173. IEEE Computer Society Press, Los Alamitos
(1992)

42. Tofte, M., Talpin, J.-P.: Region-based memory management. Inf. Comput. 132(2), 109–176 (1997)
43. Tofte, M., Birkedal, L., Elsman, M., Hallenberg, N.: A retrospective on region-based memory manage-

ment. High. Order Symb. Comput. 17(3), 245–265 (2004)
44. Trifonov, V., Smith, S.: Subtyping constrained types. In: Proceedings of the Third International Static

Analysis Symposium, vol. 1145, pp. 349–365. Springer, Berlin (1996)
45. Walker, D.: A type system for expressive security policies. In: Conference Record of POPL’00: The 27th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 254–267, Boston,
Massachusetts, January 2000

46. Wallach, D.S., Felten, E.: Understanding Java stack inspection. In: Proceedings of the 1998 IEEE Sym-
posium on Security and Privacy, May 1998

	Types and trace effects for object orientation
	Abstract
	Introduction
	A flexible type analysis
	Outline of the paper

	Trace effects and object orientation
	Effects and inheritance
	Constraint subtyping and casting

	The language FJtrace
	Syntax
	Vector notations

	Operational semantics

	Semantics of trace effects
	Properties

	Types for FJtrace
	Type and constraint language
	Vector notations

	Regular tree model and subtyping
	Discussion

	Logical type judgements and properties
	Discussion

	Properties

	Type inference for FJtrace
	The Type Language
	Type inference judgements
	Closure and extraction of effects
	Properties

	Control flow and effect transformations
	A Transformation for exceptions
	Logical type system
	Type inference system
	Properties

	A transformation for stack-based policies

	Conclusion
	Related work
	Summary

	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

