
Types and Trace E�ects for Object Orientation

Christian Skalka
The University of Vermont

Abstract. Trace e�ects are statically generated program abstractions, that can
be model checked for veri�cation of assertions in a temporal program logic. In this
paper we develop a type and e�ect analysis for obtaining trace e�ects of Object
Oriented programs in Featherweight Java. We observe that the analysis is signi�-
cantly complicated by the interaction of trace behavior with inheritance and other
Object Oriented features, particularly overridden methods, dynamic dispatch, and
downcasting. We propose an expressive type and e�ect inference algorithm com-
bining polymorphism and subtyping/sube�ecting constraints to obtain a �exible
trace e�ect analysis in this setting, and show how these techniques are applicable to
Object Oriented features. We also extend the basic language model with exceptions
and stack-based event contexts, and show how trace e�ects scale to these extensions
by structural transformations.

Keywords: Object Oriented Languages, type and e�ect theory, temporal program
logics.

1. Introduction

Program type analysis and model checking have a shared goal: to sta-
tically enforce properties of programs. A variety of analyses have been
proposed to enforce speci�c properties, while certain frameworks pro-
vide �exibility to enforce a general class of properties. A number of
authors (Skalka et al., 2005; K. Marriott and Sulzmann, 2003; Igarashi
and Kobayashi, 2002) have observed that these two approaches can play
complementary roles in the veri�cation of general trace based program
properties, which are properties of program event traces expressible in
temporal logic. Type systems can be used to compute program ab-
stractions, which can in turn be used as inputs to model checking
(Ste�en and Burkart, 1992). In other words, type analysis can serve
as a technique for model extraction (Holzmann and Smith, 2001), for
the subsequent veri�cation of a general class of program properties.
This paper establishes a foundational theory of type and trace e�ects
for Object Oriented programs in a language model adapted from Feath-
erweight Java (Igarashi et al., 2001), de�nes a type inference system for
automatically reconstructing sound type and trace e�ects of programs,
and shows how trace e�ect representations can be manipulated to re�ect
control �ow operations such as exceptions.

c© 2006 Kluwer Academic Publishers. Printed in the Netherlands.

main.tex; 1/11/2006; 10:39; p.1

2 Christian Skalka

Trace based program properties are properties of event traces, where
events are records of program actions, explicitly inserted into program
code either manually (by the programmer) or automatically (by the
compiler). Events are intended to be su�ciently abstract to represent a
variety of program actions�e.g. opening a �le, access control privilege
activation, or entry to or exit from critical regions. Event traces main-
tain the ordered sequences of events that occur during program execu-
tion. Assertions enforce properties of event traces�e.g. certain privileges
should be activated before a �le can be opened. Results in (Skalka and
Smith, 2004; K. Marriott and Sulzmann, 2003; Bartoletti et al., 2005c)
have demonstrated that static approximations of program event traces
can be generated by type and and e�ect analyses (Talpin and Jouvelot,
1992; Amtoft et al., 1999), in a form amenable to existing model-
checking techniques for veri�cation. We call these approximations trace
e�ects.

Trace based analyses have been shown capable of statically enforcing
�ow-sensitive security properties such as safe locking behavior (Foster
et al., 2002) and resource usage policies such as �le usage protocols and
memory management (K. Marriott and Sulzmann, 2003; Igarashi and
Kobayashi, 2002). In (Bartoletti et al., 2005a), a trace e�ect analysis
is used to enforce secure service composition. The history-based access
control model of (Abadi and Fournet, 2003) can be implemented with
event traces and checks (Skalka and Smith, 2004), as can be the policies
realizable in that model, e.g. sophisticated Chinese Wall policies (Abadi
and Fournet, 2003). Stack-based security policies are also amenable to
this form of analysis, as shown in (Skalka and Smith, 2004; Skalka et al.,
2005) and this paper. In short, the combination of a primitive notion of
program events with a temporal program logic for asserting properties
of event traces yields a powerful and general tool for enforcing program
properties.

The analyses cited above have been developed in functional language
settings, but practical use of these tools require adaptation to realistic
languages. In this paper we address technical considerations for applica-
tion of trace e�ects to Object Oriented languages, particularly Java. As
discussed more thoroughly in Sect. 2, inheritance, dynamic dispatch,
and downcasts present signi�cant challenges to trace e�ect analysis.
The e�ect is that scaling the analysis to Object Oriented programs is
a foundational problem, not simply an engineering one. To study these
issues in isolation, we extend Featherweight Java (FJ) (Igarashi et al.,
2001) with events, traces, and checks, and a polymorphic type and
e�ect inference analysis for static enforcement of checks, yielding the
language FJtrace. Technical results in this paper extend and enhance
material presented in (Skalka, 2005) and (Skalka et al., 2005).

main.tex; 1/11/2006; 10:39; p.2

Types and Trace E�ects for Object Orientation 3

1.1. A Flexible Type Analysis

Type theory provides a variety of useful tools in this setting. As will
be discussed in detail in later sections, a combination of parametric
polymorphism and subtyping can be used to provide the right abstrac-
tions and �exibility for addressing issues associated with inheritance
and dynamic dispatch, and type constraint representation allows a pre-
cise treatment of object downcasting. We extend an Object Oriented
type language with trace e�ects that approximate trace behavior of
programs. Trace e�ects are a form of label transition system (LTS),
which are amenable to model checking. Therefore, the type analysis
serves as a technique for extracting a veri�able abstraction of program
trace behavior, with type inference automating the process. We also
show that trace e�ect representations are amenable to transformations
that re�ect the impact of control �ow modi�cations on trace behavior,
particularly exceptions.

The metatheory of types also provides an appealing language for
characterizing the analysis and proving its correctness. A type safety
result guarantees that programs satisfying the analysis will not have
run-time errors, in particular all speci�ed properties of program traces
are guaranteed to hold. This result is established via subject reduction
and progress arguments. The type and e�ect system is shown to be
a conservative extension of the underlying Featherweight Java type
system, ensuring backwards compatibility with existing programs. We
show that type inference is sound, and so-called trace approximation
is demonstrated, formalizing the idea that trace e�ects conservatively
approximate program trace behavior. We also develop an extended
language model with exceptions, and show that a post-processing trans-
formation of inferred trace e�ects is su�cient to capture the e�ect of
exceptions on control �ow, via another type safety result.

1.2. Outline of the Paper

The remainder of the paper is organized as follows. In Sect. 2, the central
issues of our type and e�ect analysis in relation to Object Oriented
programming are described and discussed, clarifying the contribution
of this paper. In Sect. 3, the FJtrace language is formally de�ned, which
is FJ extended with primitives for a security logic of program traces.
In Sect. 4, we formalize the language and meaning of trace e�ects.
In Sect. 5 a logical type system for FJtrace is presented, with features
and examples discussed in Sect. 5.2.1 and Sect. 5.3.1, and properties
including type safety proved in Sect. 5.4. A type inference algorithm is
de�ned in Sect. 6, that is shown to be sound with respect to the logical
type system in Sect. 6.4, implying type safety in the implementation.

main.tex; 1/11/2006; 10:39; p.3

4 Christian Skalka

In Sect. 7, we study variations on the basic language model, including
exceptions in Sect. 7.1 and stack based trace contexts in Sect. 7.2. We
conclude with more discussion of related work and a �nal summary in
Sect. 8.

2. Trace E�ects and Object

Orientation

Subtyping is a common discipline for relating behavior of objects in
an inheritance hierarchy. However, as we illustrate below, imposing a
subsumption relation on the trace behavior of methods in an inheritance
hierarchy is overly restrictive for applications such as access control. It is
possible and useful to extend the de�nition of subtyping to trace e�ects,
as we do in Sect. 5, but a realistic analysis requires that we develop some
mechanism for allowing independence of inheritance and e�ects, and
accommodate this independence in the presence of dynamic dispatch.
We propose the use of parametric polymorphism for this purpose. We
also propose a type constraint representation; along with known bene�ts
of this approach in application to Object Oriented programming (Eifrig
et al., 1995; Bruce et al., 1995), we show how type constraints can be
used for a novel soft-typing of downcasts. In this section we discuss and
illustrate these issues, before providing formal details in Sect. 5.

2.1. Effects and Inheritance

The manner in which inheritance and dynamic dispatch complicates
trace e�ect analysis is best illustrated by example. Consider the applica-
tion of event traces to enforce a history-based access control mechanism,
as in (Skalka and Smith, 2004; Abadi and Fournet, 2003), where code is
statically signed by its owner (an authorization event), and a local ac-
cess control listA associates owners with their authorizations. A demand
predicate ensures that the intersection of all authorizations encountered
up to the point of the check contains a speci�ed privilege. Let r denote
the speci�ed privilege, and let P range over owners. Thus, given an
authorization trace P1; . . . ; Pn, we require that r ∈ A(P1) ∩ · · · ∩ A(Pn)
in order for the trace to satisfy demand(r). Note that standard practice
allows class owners to extend classes owned by others, i.e. ownership
need not be consistent throughout an inheritance hierarchy. In our en-
coding, distinct ownership implies method override, at least with regard
to authorization events; an accurate analysis therefore requires inde-
pendence of trace e�ects of di�erent method versions in the inheritance
hierarchy.

main.tex; 1/11/2006; 10:39; p.4

Types and Trace E�ects for Object Orientation 5

The issue is complicated further by dynamic dispatch. Imagine a
class Writer that implements a safewritemethod signed with a System
authorization event, where safewrite takes a Formatter and a File
as arguments, and requires that the FileWrite privilege be active
before writing the formatter output to the �le, via an access control
check demand(FileWrite). Note especially that the speci�cation of the
check requires that FileWrite must be among the authorizations of
the x.format method, since these will a�ect the �ow of control and
therefore appear in the safewrite event trace:

class Writer extends Object {
void safewrite(Formatter x, File f){

System;
String s = x.format()
demand(FileWrite);
write(s, f);

}
}

Thus, we can statically approximate the trace generated by the method
safewrite as:

System; H; demand(FileWrite)

where H represents the trace e�ect approximation of x.format(). The
central issue is, what is H? Note that in a language with dynamic
dispatch such as Java, the trace generated by x.format() could be
generated by any version of format among the subclasses of Formatter,
so it is unsound to imagine H as just the approximation of Formatters
version.

In the FJ subtyping system, the type Formatter subsumes its sub-
class types via the subtyping relation. So as a �rst approximation, we
can imagine extending subtyping to trace e�ects, meaning that H should
subsume the e�ect of the formatmethod in the Formatter class, as well
as the e�ects of every format method in Formatter subclasses. This
approach is taken in (Higuchi and Ohori, 2006) as part of a related
analysis for Java stack inspection, and a standard de�nition of e�ect
subtyping (Skalka and Smith, 2004; Amtoft et al., 1999; K. Marriott
and Sulzmann, 2003) approximates the e�ect of x.format() as the non-
deterministic choice of trace e�ects of the format method in every
Formatter subclass. For example, suppose that there exist only two
such classes, one which is owned by System, and the other which is
owned by an Applet. This would be implemented by prepending the
former's format method with a System event, and the latter's with
an Applet event. For simplicity, we assume that these methods are

main.tex; 1/11/2006; 10:39; p.5

6 Christian Skalka

otherwise event-free. In this case, we would have H = System|Applet,
where | is a choice constructor. But since it is natural to assume that
Applets are not FileWrite authorized, veri�cation of:

System; (System|Applet); demand(FileWrite)

will fail. This means that any invocation of safewrite would be sta-
tically rejected, even if invoked with a System formatter. Further, the
scheme requires the entire Formatter class hierarchy be known in ad-
vance for static analysis, since any addition would require re-computation
of its e�ects. This would disallow modularity.

We address this problem by using polymorphism, rather than sub-
typing, to approximate the e�ects of method parameters; to wit, the
e�ect H in question is represented by a universally quanti�ed type
variable. This is accomplished via the object type form [T C], where
T contains the inferred type and e�ects of a given object's methods,
and C is the declared object class� so that the nominal type language of
FJtrace is �superimposed� over the type language of FJ, as a conservative
extension of the latter (as is discussed more extensively in Sect. 5).
Let StringT, and FileT be the types of String, and File objects
respectively, the details of which are unimportant to the example. Then,
when typing the safewrite method in the Writer class, the FJtrace
type system will assign an abstract e�ect h to its x parameter, as in the
following type we abbreviate as AbsFormatterT:

AbsFormatterT , [format : () h−→StringT Formatter]

and safewrite may be assigned the type we abbreviate as T:

T , (AbsFormatterT, FileT)
System;h;demand(FileWrite)−−−−−−−−−−−−−−−−−−→ void

and the typing Writer : ∀h.[safewrite : T Writer] may be assigned,
where the abstract e�ect h of x.format() is quanti�ed. At speci�c ap-
plication points, h can then be instantiated with the accurate trace
e�ect of the substituant of x. This example is extended and discussed
in Sect. 5.3.1 following formal development of the type system.

2.2. Constraint Subtyping and Casting

To maintain decidability in the type system, we propose only �rst-order
parametric polymorphism. This means that if x is a formal parameter
of some method m, any method x.m′ cannot be invoked within m in a
polymorphic fashion. To obtain the �exibility necessary to statically
allow application of abstracted methods to objects of multiple types,
we propose a subtyping relation, similar to that discussed above, that

main.tex; 1/11/2006; 10:39; p.6

Types and Trace E�ects for Object Orientation 7

can be used where parametric polymorphism cannot due to �rst-orderly
restrictions.

A number of considerations motivate subtyping in our type and e�ect
system, beyond the fact that it integrates neatly with FJ subtyping
analysis. Firstly, while a top-level e�ect weakening rule, as in (Skalka
and Smith, 2004), is su�cient for a �exible type and e�ect analysis, a
subtyping rule that incorporates weakening of latent e�ects on function
types is more precise and complete, as observed in (Amtoft et al., 1999).
Also, we implement subtyping via a recursive constraint representation,
which has been shown to allow precise typing of common object-oriented
idioms, such as binary methods (Eifrig et al., 1995; Bruce et al., 1995).

A constraint type representation also supports a soft typing analy-
sis of downcasts, which combines static and dynamic checks to ensure
soundness (Cartwright and Fagan, 1991). For example, suppose some
expression e has a type T, where T is constrained to be a supertype
of both Triangle and Polygon objects, where Triangle is a subclass
of Polygon, and where R and S are the �eld and method types of the
Triangle and Polygon objects, respectively:

[R Triangle]<: T [S Polygon]<: T

Then, given the cast (Triangle)e, we �rst observe that an FJ dynamic
cast check will ensure that any run-time scenario in which e evaluates
to an object strictly in a superclass of Triangle will be stuck (Igarashi
et al., 2001). Guided by the intuition that constraints represent data
�ow paths, we further observe that any constraint representing �ow of
an object strictly in a superclass of Triangle to the program point
represented by T can be ignored when analyzing the cast (Triangle)e,
without compromising type safety, since this unsafe �ow will be caught
at run time by a dynamic cast check. In our type analysis, we implement
this idea by positing a type T′ such that:

(Triangle)e : [T′ Triangle]

with the condition that T be a soft subtype of T′, written:

T l [T′ Triangle]

This means that if some object type [U C] is a subtype of T, then
[U C]<: [T′ Triangle] only if C<: Triangle; see De�nition 5.2 for a for-
malization of the idea. This implies:

[R Triangle]<: [T′ Triangle]

and not [S Polygon]<: [T′ Triangle]. Note that requiring the latter
would yield an inconsistent constraint set in any case, so a bene�t of this

main.tex; 1/11/2006; 10:39; p.7

8 Christian Skalka

L ::= class C extends C {C̄ f̄; K M̄} class de�nitions

K ::= C(C̄ f̄){super(f̄); this.f̄ = f̄; } constructors

M ::= C m(C̄ x̄){return e; } methods

e ::= x | e.f | e.m(ē) | new C(ē) | (C)e | ev[i] | chk[i] expressions

η ::= ε | η; η | ev[i] | chk[i] traces

Figure 1. FJtrace language syntax

C<: C
B<: C C<: D

B<: D
CT (C) = class C extends D {. . .}

C<: D

Figure 2. Nominal subtyping for FJ

approach is completeness in the presence of dynamically checked down-
casts. We believe that a constraint representation yields a distinctly
precise type analysis; it is hard to see how the precision obtainable by
selective pruning of the constraint graph used in our implementation
of soft subtyping (Sect. 6) can be recreated with e.g. a uni�cation-
based approach. Subtyping and soft subtyping is further discussed in
Sect. 5.2.1 following formal development of the interpretation of sub-
typing constraints.

3. The Language FJtrace

In this section we de�ne the syntax and semantics of FJtrace, by ex-
tending the syntax of FJ with primitives for specifying events and
local checks, and the semantics of FJ with event traces as con�guration
components.

3.1. Syntax

The syntax of FJtrace is de�ned in Fig. 1. We let A, B, C, D range over
class names, f range over �eld names, m range over method names, x, y
range over both �eld and method names, and d, e range over expres-
sions. Values, denoted v or u, are objects, i.e. expressions of the form
new C(v1, . . . , vn). A class table CT is a mapping from class names C
to de�nitions L, and a program is a pair (CT , e); for brevity in the

main.tex; 1/11/2006; 10:39; p.8

Types and Trace E�ects for Object Orientation 9

following, we assume a �xed class table CT . As in (Igarashi et al.,
2001) we assume Object values that have no �elds or methods; we let
() denote the value new Object(). Since constructor de�nitions K are
hard-coded by the language grammar, for brevity we do not explicitly
include them in example class de�nitions in this paper.

The essential distinguishing features of FJtrace are events ev[i] and
local checks chk[i]. Both events and checks are distinguished by labels i.
Events and checks encountered during execution are accrued in linear
order in traces η, with execution blocking if unsuccessful checks are
encountered. Events and checks are therefore side-e�ecting instructions;
the value () is the direct evaluation result of checks and events, as
speci�ed in the next section.

In this presentation we leave the logic of checks abstract, specifying
only that checks are predicates on traces, and write η ` chk[i] to denote
that η satis�es chk[i]. We could for example instantiate the language
of checks with the linear mu-calculus, as in (Skalka and Smith, 2004),
but in this presentation we are mainly concerned with typing.

3.1.1. Vector Notations
For brevity in numerous instances, we adopt the vector notations of
(Igarashi et al., 2001). We write f̄ to denote the sequence f1, . . . , fn,
similarly for C̄, m̄, x̄, ē, etc., and we write M̄ as shorthand for M1 · · · Mn. We
write the empty sequence as ∅, and we write |x̄| to denote the length of
x̄. If and only if m is one of the names in m̄, we write m ∈ m̄, similarly for
f ∈ f̄. Given some f̄, we write fi to denote the ith element of f̄. Vector
notation is also used to abbreviate sequences of declarations; we let C̄ f̄
and C̄ f̄; denote C1 f1, . . . , Cn fn and C1 f1; . . . ; Cn fn; respectively,
and we write C f ∈ C̄ f̄ i� C f is one of the declarations in C̄ f̄.
The notation this.f̄ = f̄; abbreviates the sequence of initializations
this.f1 = f1; . . . ; this.fn = fn;. Sequences of names and declarations
are assumed to contain no duplicate names.

3.2. Operational Semantics

The operational semantics of FJtrace are de�ned in Fig. 3. The small-
step reduction relation → is de�ned on closed con�gurations, which
are pairs of traces and expressions η, e. As in (Igarashi et al., 2001),
we divide the operational rules into computation and congruence rules;
the former (resp. latter) are those whose names are pre�xed by R-

(resp. RC-). The semantics are de�ned in terms of a number of auxiliary
functions and a nominal subtyping relation <: taken from (Igarashi
et al., 2001) and recalled in Fig. 2 and Fig. 5. We let →? denote the
re�exive, transitive closure of →.

main.tex; 1/11/2006; 10:39; p.9

10 Christian Skalka

R-Field
fields(C) = C̄ f̄

η, (new C(v̄)).fi → η, vi

R-Invk
mbody(m, C) = x̄.e

η, (new C(v̄)).m(ū) → η, [ū/x̄, new C(v̄)/this]e

R-Cast
C<: D

η, (D)(new C(v̄)) → η, new C(v̄)

R-Event

η, ev[i] → η; ev[i], ()

R-Check
η ` chk[i]

η, chk[i] → η; chk[i], ()

RC-Field
η, e→ η′, e′

η, e.f→ η′, e′.f

RC-Invk-Recv
η, e→ η′, e′

η, e.m(ē) → η′, e′.m(ē)

RC-Invk-Arg
η, ei → η′, e′

i

η, v.m(v̄, ei, ē) → η′, v.m(v̄, e′
i, ē)

RC-New-Arg
η, ei → η′, e′

i

η, new C(v̄, ei, ē) → η′, new C(v̄, e′
i, ē)

RC-Cast
η, e→ η′, e′

η, (C)e→ η′, (C)e′

Figure 3. FJtrace operational semantics

The operational semantics are largely the same as FJ, with the ad-
dition of run-time traces and the treatment of events and checks. The
rules that directly a�ect the trace include R-Event, which appends an
event ev[i] encountered during execution to the end of the trace. The
R-Check rule is de�ned similarly, except the check chk[i] is required to
be satis�ed by the current trace, otherwise computation becomes stuck.
Each of the congruence rules propagates changes to the trace e�ected
by the reduction of subterms.

main.tex; 1/11/2006; 10:39; p.10

Types and Trace E�ects for Object Orientation 11

ev[i]
ev[i]−−−→ ε chk[i]

chk[i]−−−→ ε ε; H ε−→ H

H1; H2
a−→ H′

1; H2 if H1
a−→ H′

1 H1|H2
ε−→ H1 H1|H2

ε−→ H2

µh.H
ε−→ H[µh.H/h]

JHK =
{a1 · · · an | H

a1−→ · · · an−→ H′}
∪

{a1 · · · an ↓ | H
a1−→ · · · an−→ ε}

Figure 4. Interpretation of trace e�ects

4. Semantics of Trace E�ects

The aim of our analysis is to statically guarantee the satisfaction of
run-time checks in programs. To this end, our analysis infers an approx-
imation of the trace that will be generated during program execution,
by reconstructing the trace e�ect of programs. In essence, trace e�ects H
conservatively approximate traces η that may develop during execution,
by representing a set of traces containing at least η. The grammar of
trace e�ects is given in Fig. 6. A trace e�ect may be an event ev[i]
or check chk[i], or a sequencing of trace e�ects H1; H2, a nondeter-
ministic choice of trace e�ects H1|H2, or a µ-bound trace e�ect µh.H
which �nitely represents the set of traces that may be generated by a
recursive function. Noting that the syntax of traces η is the same as
linear, variable-free trace e�ects, we abuse syntax and let η also range
over linear, variable-free trace e�ects.

We de�ne a Labeled Transition System (LTS) interpretation of trace
e�ects as sets of abstract traces, which are strings of events and checks
that may be delimited by a ↓ symbol to denote termination. The inter-
pretation is de�ned via strings denoted θ, characterized by the following
grammar, where ε denotes the empty string in the usual manner and
the alphabet consists of events and checks:

a ::= ev[i] | chk[i] | ε
s ::= a | s s
θ ::= s | s↓

The interpretation of an e�ect H, denoted JHK and speci�ed in Fig. 4,
is then taken to be the pre�x-closed, �nite approximation of the trace

main.tex; 1/11/2006; 10:39; p.11

12 Christian Skalka

sets that may be generated by H, when viewed as a program in a transi-
tion semantics de�ned by relations

a−→ on closed e�ects. Since programs
may not terminate, their traces may be in�nite, but this possibility is
captured via �nite approximation� all �nite pre�xes of an in�nite trace
are contained in the interpretation. Trace e�ect equivalence is de�ned
via the interpretation, i.e. H1 = H2 i� JH1K = JH2K. This relation is
in fact undecidable: trace e�ects are equivalent to BPA's (basic process
algebras) (Skalka and Smith, 2004), and their trace equivalence is known
to be undecidable (Burkart et al., 2001). Note that pre�x closure does
not cause any loss of information in the interpretation, since the post-
pending of ↓ to terminating traces allows them to be distinguished from
their pre�xes. In particular, it is not necessarily true that JHK ⊆ JH; H′K
for arbitrary H and H′.

Trace e�ects predict the history of both events and checks. In order
to ensure that program checks will succeed, it is not su�cient for trace
e�ects to approximate run time traces, but also success of these checks
must be guaranteed. We base validity of trace e�ects on validity of
checks that occur in traces in its interpretation. In particular, for any
given check in a trace, that check must hold for its pre�x:

DEFINITION 4.1. H is valid i� for all (a1 · · · anchk[i]) ∈ JHK it is the
case that a1; . . . ; an ` chk[i] holds.

This de�nition is logically su�cient to obtain our desired type safety
result. It is not algorithmic, but trace e�ects are equivalent to basic
process algebras (BPAs) as observed in (Skalka et al., 2006), for which
known model-checking techniques exist (Burkart et al., 2001), allowing
automated veri�cation of e�ect validity (Skalka and Smith, 2004). In
this paper, we focus on type and e�ect inference, rather than the e�ect
veri�cation component of our analysis. For details on the latter, the
reader is referred to (Skalka and Smith, 2004; Skalka et al., 2006).

4.1. Properties

Various properties of trace e�ect equivalence are enumerated as follows.
The equivalences will be exploited for brevity and clarity in examples
throughout the text, as well as for later proofs:

LEMMA 4.1. We note the following properties of trace e�ect equiva-
lence for closed H, H1, H2, and H3:

1. H|H = H

2. ε; H = H = H; ε

3. µh.H = H

main.tex; 1/11/2006; 10:39; p.12

Types and Trace E�ects for Object Orientation 13

4. H1|H2 = H2|H1

5. H1; (H2; H3) = (H1; H2); H3

6. H1|(H2|H3) = (H1|H2)|H3

7. H1; (H2|H3) = (H1; H2)|(H1; H3)

8. (H1|H2); H3 = (H1; H3)|(H2; H3)

9. Trace e�ect equivalence is homomorphic for all constructors.

We also note some properties related to trace e�ect interpretation con-
tainment; these properties are important, since our type analyses will
allow weakening of trace e�ects for �exibility. That is, if a trace e�ect H
approximates the traces generated by a program, and JHK ⊆ JH′K, then
H′ is also a sound approximation. Like equality, containment is known
to be undecidable.

LEMMA 4.2. Writing H<: H′ i� JHK ⊆ JH′K, the following properties
hold for arbitrary closed H, H1, and H2:

1. H<: H1 is undecidable.

2. H<: H|H1

3. For closed µh.H0, we have that H0[µh.H0/h]<:µh.H.

4. If H<: H1 then H|H2 <: H1|H2 and H2; H<: H2; H1 and H; H2 <: H1; H2.

5. If H1 <: H2 then validity of H2 implies validity of H1.

5. Types for FJtrace

Featherweight Java is equipped with a declarative, nominal type system;
the type language is based on class names, which annotate function
return and argument types, casts, and object creation points. Method
and �eld types are not explicit in the FJ type of objects, which are
just class names, but rather can be looked up given the object class
name and its de�nition in the class table. The lookup functions mtype
and fields are de�ned in Fig. 5. The FJ type system is algorithmically
checkable, and enjoys a type safety result (Igarashi et al., 2001). Our
intent is to not to redo the type system of FJ, but to �superimpose�
a type and e�ect analysis on it, thereby subsuming type safety for the
FJ subset of FJtrace. This superimposition should be conservative and

main.tex; 1/11/2006; 10:39; p.13

14 Christian Skalka

fields(Object) = ∅

CT (C) = class C extends D {C̄ f̄; K M̄} fields(D) = D̄ ḡ

fields(C) = D̄ ḡ, C̄ f̄

CT (C) = class C extends D {C̄ f̄; K M̄}
B m(B̄ x̄){return e; } ∈ M̄

mtype(m, C) = B̄→ B

CT (C) = class C extends D {C̄ f̄; K M̄} m 6∈ M̄

mtype(m, C) = mtype(m, D)

CT (C) = class C extends D {C̄ f̄; K M̄}
B m(B̄ x̄){return e; } ∈ M̄

mbody(m, C) = x̄.e

CT (C) = class C extends D {C̄ f̄; K M̄} m 6∈ M̄

mbody(m, C) = mbody(m, D)

Figure 5. Auxiliary functions

transparent to the programmer, both for ease of use, and for backwards
compatibility with Java. Thus, we reuse the declared, nominal type
system of FJ, but add machinery to infer trace e�ects, for static veri-
�cation of checks� although our type language will explicitly represent
the �eld and method types of objects, rather than implicitly via lookup
functions.

We de�ne our type and e�ect analysis via subtyping constraints
interpreted in a regular tree model. This representation promotes type
reconstruction for common Object Oriented idioms such as object self-
reference and binary methods (Eifrig et al., 1995; Bruce et al., 1995),
since it possesses precisely the expressiveness of recursive types (Pals-
berg and Smith, 1996). A constraint type representation also yields
an elegant de�nition of the soft subtyping relation for static analysis of
casts, discussed in Sect. 2 and formalized below, which supports a simple
form of soft typing (Cartwright and Fagan, 1991). Furthermore, as has
been observed frequently in previous related type and e�ect analyses
(Skalka and Smith, 2004; Igarashi and Kobayashi, 2002; K. Marriott
and Sulzmann, 2003), some �avor of sube�ecting is necessary to conser-
vatively extend underlying type structure, with a subtyping approach

main.tex; 1/11/2006; 10:39; p.14

Types and Trace E�ects for Object Orientation 15

H ::= ε | ev[i] | chk[i] | h | H; H | H|H | µh.H trace e�ects

T ::= H | X | [T C] | (x̄ : T̄) | T̄ H→ T types

X ::= h | t type variables

C ::= T<: T | T l T | C ∧ C | true constraints

Figure 6. FJtrace type and constraint syntax

being particularly �exible (Amtoft et al., 1999). A constraint repre-
sentation is an e�ective implementation of subtyping, providing the
expressiveness of intersection and union types (Eifrig et al., 1995). While
a recursive constraint representation is not the most human-readable
type abstraction, our goal here is a transparent program analysis, and
automatic extraction of trace e�ects for veri�cation.

As discussed in Sect. 2, we also incorporate e�ect polymorphism
(Skalka and Smith, 2004), in a manner that allows �exibility and mod-
ularity of trace e�ect analysis in the presence of method override and
dynamic dispatch.

5.1. Type and Constraint Language

The type and constraint grammar of FJtrace is given in Fig. 6. The type

language includes method types T̄
H−→ T where H is the latent e�ect of the

method. Object types are denoted [T C], where C is the class name of the
object and T is either a type variable t or a vector of bindings x̄ : T̄ for
the �eld and method types of the object. The language of constraints is
mostly standard, though in addition to subtyping constraints T<: T, we
include weaker soft subtyping constraints T l T, to address downcasting
in the type analysis.

The type language speci�ed in the grammar is more liberal than
what is actually allowed in type judgements. Formally, we will de�ne
well-formedness of types via interpretation in a regular tree model, de-
�ned and discussed in Sect. 5.2. The model is endowed with a primitive
subtyping relation, which also supplies meaning for constraints via the
interpretation. We will require that constraints and types C, T assigned
to expressions have a sensible (well-kinded and realizable, in our ter-
minology) interpretation in the model. Informally, in any object type
[T C], if T is a vector of type bindings x̄ : T̄, the set of bound names x̄
are restricted to be exactly the �eld and method names of C, providing
an �inlined� width constraint on the form of the type.

main.tex; 1/11/2006; 10:39; p.15

16 Christian Skalka

>∅,⊥∅ : k
fv(H) = ∅
H∅ : E�

mtype(m, C) = D̄→ D
ς = Body D̄,E� ,BodyD CT (C) = class C extends B {. . .}

if mtype(m, B) = Ē→ E then Ē = D̄ and E = D
¯[· D] ·−→ [· D] ς : Methm,C

x̄ distinct |ς| = |x̄| k ∈ ς ⇒ k ∈ {Type,Methm,C}
(x̄ : ·) ς : Type

fields(C) = D̄ f̄ ς = Body D̄,Meth m̄,C

(f̄ : ¯[· D] m̄ : ·)ς : BodyC
[· C]BodyC : Type

Figure 7. Regular tree ranked alphabet kinding rules

5.1.1. Vector Notations
For brevity we extend vector notation to the language of types and
constraints. The type T̄ is a vector T1, . . . , Tn, with ∅ denoting the
empty vector. We also write ¯[T C] to denote a vector of class types
[T1 C1], . . . , [Tn Cn], while x̄ : T̄ denotes a vector of bindings x1 : T1 · · · xn :
Tn. We abbreviate constraints using vector notation, writing S̄<: T̄ for
S1 <: T1 ∧ · · · ∧ Sn <: Tn.

Looking ahead to the next section, vector notations are also used to
abbreviate the kinding rules in Fig. 7 and Fig. 8. We write Body C̄ for
BodyC1

, . . . ,BodyCn
, and Meth m̄,C for Methm1,C, . . . ,Methmn,C. We write

ϕ̄ 4�n ϕ̄′ to denote ϕ1 4�n ϕ′
1, . . . , ϕn 4�n ϕ′

n.

5.2. Regular Tree Model and Subtyping

To accommodate recursive constraints, we de�ne subtyping in FJtrace
via primitive subtyping in a regular tree model, using techniques adapted
from (Trifonov and Smith, 1996). In our model, function type nodes
in regular trees are labeled with trace e�ects, and rather than being
constructed from ranked alphabets as in (Trifonov and Smith, 1996)
and elsewhere, our regular trees are constructed from kinded alphabets,
imposing well-formedness of trees. Trace e�ect labelings of regular trees
require an extension of the primitive subtyping relation to trace e�ects,
which is based on set containment of e�ect interpretations. Otherwise,
the interpretation is essentially standard.

main.tex; 1/11/2006; 10:39; p.16

Types and Trace E�ects for Object Orientation 17

ϕ is �nite

⊥ 4�n ϕ

ϕ is �nite

ϕ 4�n >
JHK ⊆ JH′K
H 4�n H

′

ϕ̄′
1 4�n ϕ̄1 ϕ2 4�n ϕ′

2 H 4 H′ ϕ1, ϕ
′
1, ϕ2, ϕ

′
2 �nite

ϕ̄1
H−→ ϕ2 4�n ϕ̄′

1
H−→ ϕ′

2

ϕ̄1 4�n ϕ̄′
1 ϕ̄1, ϕ̄′

1 �nite

x̄ : ϕ̄1, ȳ : ϕ̄2 4�n x̄ : ϕ̄′
1

ϕ 4�n ϕ′ ϕ, ϕ′ �nite C<: D
[ϕ C] 4�n [ϕ′ D]

ϕ |n 4�n ϕ′ |n for all n ∈ N
ϕ 4 ϕ′

Figure 8. Primitive subtyping for regular trees

DEFINITION 5.1 (Regular Tree Model). Let the tree constructor kinds
be de�ned as:

k ::= Type | E� | Methm,C | BodyC
and let signatures ς range over ordered sequences of kinds, where ∅
denotes the empty sequence and ς(n) denotes the 0-indexed nth kind
in ς. The alphabet L of tree constructors is built from the following
grammar:

c ::= > | ⊥ | H | (x̄ : ·) | [· C] | ¯[· C] ·−→ [· C]

where each element of the alphabet is indexed by a signature, written cς ,
and must be well-kinded according to the rules given in Fig. 7.

A tree ϕ is a partial function from �nite sequences (paths) π of nat-
ural numbers N? to L such that dom(ϕ) is pre�x-closed. Furthermore,
for all πn ∈ dom(ϕ), with cς = ϕ(π), it is the case that ϕ(πn) : ς(n).
Trees of the form (x̄ : ϕ̄) are equated up to reordering of labels. The
subtree at π ∈ dom(ϕ) is the function λπ′.ϕ(ππ′), while |π| is the level
of that subtree. A tree is regular i� the set of its subtrees is �nite, and
we de�ne T as the set of regular trees over L.

A partial order over T is then de�ned via an approximate relation
over �nite ϕ ∈ T. First, de�ne a level-n cut ϕ |n for ϕ ∈ T as the �nite
tree obtained by replacing all subtrees at level n of ϕ with >. Then, 4�n

is the partial order over �nite ϕ ∈ T axiomatized in Fig. 8, and 4 is
the partial order over T approximated by 4�n axiomatized in Fig. 8.

The meaning of subtyping constraints is then de�ned via interpre-
tation in the regular tree model. The principal novelties here are the

main.tex; 1/11/2006; 10:39; p.17

18 Christian Skalka

ρ(h, hs) = ρ(h) h 6∈ hs

ρ(h, hs) = h h ∈ hs

ρ(ev[i], hs) = ev[i]
ρ(chk[i], hs) = chk[i]

ρ(ε, hs) = ε

ρ(H1; H2, hs) = ρ(H1, hs); ρ(H2, hs)
ρ(H1|H2, hs) = ρ(H1, hs)|ρ(H2, hs)
ρ(µh.H, hs) = µh.ρ(H, hs ∪ {h})

ρ([T C]) = [ρ(T) C]
ρ(x : T) = x : ρ(T)

ρ(T̄ H−→ T) = ρ(T̄)
ρ(H)−−→ ρ(T)

ρ(T̄, T) = ρ(T̄), ρ(T)
ρ(∅) = ∅
ρ(H) = ρ(H, ∅)

Figure 9. Interpretations extended to types and e�ects

extension of subtyping to trace e�ects, and the interpretation of the
soft subtyping relation.

DEFINITION 5.2 (Interpretation of Constraints). Interpretations ρ are
total mappings from type variables X to T. Interpretations are extended
to types in Fig. 9, and also to e�ects by an abuse of notation allowing
parameterization by sets hs of e�ect variables, to prevent substitution of
µ-bound variables. The relation ρ ` C, pronounced ρ satis�es or solves
C, is axiomatized as follows:

ρ ` true
ρ(S) 4 ρ(T)
ρ ` S<: T

ρ ` C ρ ` D

ρ ` C ∧D

∀BR.(B<: D ∧ ρ ` [R B]<: S) ⇒ ρ ` [R B]<: [T D]
ρ ` S l [T D]

The relation C
 D holds i� ρ ` C implies ρ ` D for all interpretations
ρ. Constraints C and D are equivalent, written C = D, i� C
 D and
D
 C.

We immediately observe that transitivity of primitive subtyping is re-
�ected in the type and constraint representation.

main.tex; 1/11/2006; 10:39; p.18

Types and Trace E�ects for Object Orientation 19

LEMMA 5.1 (Transitivity of Entailment and Subtyping). C
 D and
D
 E implies C
 D, and C
 R<: S ∧ S<: T implies C
 R<: T.

We also note the relevance of soft subtyping for the type analysis, that
a soft subtyping relation entails an analogous subtyping relation just in
case the latter could be sound.

LEMMA 5.2. If C
 [T C] l [S D], then C
 [T C]<: [S D] i� C<: D.

5.2.1. Discussion
The kinding rules in the interpretation of types impose certain well-
formedness qualities on types, in particular the class name component
C of a type [T C] �xes any �elds and methods appearing in the type to
be exactly those that are listed in the class de�nition. This is because
the underlying FJ type system allows any object to be treated as an
object in its statically known class� thus, types for all known �elds and
methods for that class must be available, and no others. For example,
imagining a class Foo with two �elds a and b of Object type:

class Foo extends Object { Object a; Object b; }

The type of Foo objects are labeled with the class name, and types for
each of the �elds:

[(a : [Object]; b : [Object]) Foo]

While the type system will allow any Foo object to be viewed as an
Object by subsumption, any object type term labeled Foo with any-
thing other than both a and b �elds has no interpretation due to the
kinding rules. For example, the following type term has no interpreta-
tion:

[(a : [Object]) Foo]

The kinding rule for method typings also deserves attention for its
contribution to the independence of inheritance and e�ects in the analy-
sis. Recalling that the type system of (Igarashi et al., 2001) requires
that method overrides in a subclass have the same type signature as
the overridden methods in their superclass, we observe that the kinding
rule for constructors of kind Methm,C imposes this restriction, but only
on the declared class name component of the type. The inferred e�ect
component H, on the other hand, is not restricted to relate to superclass
method e�ects in any way. This issue is revisited with examples in
Sect. 5.3.1.

The interpretation of type constraints de�nes a system of object
width and depth subtyping, with method subtyping predicated on sub-
sumption of trace e�ects. This extension, de�ned in Fig. 8, is based on

main.tex; 1/11/2006; 10:39; p.19

20 Christian Skalka

containment of trace e�ect interpretations, re�ecting a type soundness
requirement that if T subsumes S, it must also subsume S's trace e�ects.
Since constraints are de�ned on the basis of interpretations, constraints
on types with abstract components are meaningful; for example, we
could assert:

S<: T ∧ T̄<: S̄
 S̄
h−→ S<: T̄

h|(ev[1];ev[2])−−−−−−−−→ T

since any interpretation of h must be contained in the same interpreta-
tion h|(ev[1]; ev[2]).

The soft subtyping relation is useful in application to downcasts, al-
lowing constraints to be relaxed for downcasting. For example, assuming
C<: D, we could meaningfully assert:

[R C]<: T ∧ [S D]<: T ∧ T l [U C]
 [R C]<: [U C]

but not:
[R C]<: T ∧ [S D]<: T ∧ T l [U C]
 [S D]<: [U C]

which formalizes the idea discussed in Sect. 2. This relaxation is allow-
able at casting points, since dynamic checks will �pick up the slack�,
preserving type safety as discussed in the next section.

This de�nition of subtyping may raise questions about the decidabil-
ity of typing, since subtyping is predicated on trace e�ect containment,
but equivalence of trace e�ects was shown to be undecidable in Sect. 4.
However, while trace e�ect containment is undecidable in the general
case, we show in Sect. 6 that constraints generated by type inference
are in a normal form that is amenable to algorithmic solution.

5.3. Logical Type Judgements and Properties

To de�ne the logical type system, we introduce constrained type schemes
∀X̄[C].T and type environments Γ binding class names and variables to
type schemes. If X̄ ∩ fv(T) = ∅ we abbreviate ∀X̄[true].T as T. We also
introduce three forms of type judgements: Γ, C, H ` e : T for expressions,
Γ, C ` m, C : T̄ H−→ T for method m in class C, and Γ ` C : ∀X̄[C].T for
classes. Sensibility of types and constraints in judgements is imposed
by realizability conditions, as follows.

DEFINITION 5.3 (Realizability of Types). We say that a constraint,
type pair C, T or type scheme ∀X̄[C].T is realizable i� there exists a so-
lution ρ of C such that ρ(T) is well-kinded, and we impose the following
sanity conditions on judgements: for any Γ, C, H ` e : T or Γ, C ` m, C : T
we require that C, T is realizable, and every type scheme in Γ must be
realizable, in which case we say that Γ is realizable.

main.tex; 1/11/2006; 10:39; p.20

Types and Trace E�ects for Object Orientation 21

T-Var

Γ, C, ε ` x : Γ(x)

T-Field
Γ, C, H ` e : [S C] C
 S<: (f : [T D]) D f ∈ fields(C)

Γ, C, H ` e.f : [T D]

T-SeqNil

Γ, C, ε ` ∅ : ∅

T-SeqCons

Γ, C, H1 ` ē : T̄ Γ, C, H2 ` e : T
Γ, C, H1; H2 ` ē, e : T̄, T

T-Invk
Γ, C, H1 ` e : [T C]

Γ, C, H2 ` ē : S̄ C
 T<: (m : S̄ H3−→ [S D]) mtype(m, C) = D̄→ D

Γ, C, H1; H2; H3 ` e.m(ē) : [S D]

T-New
Γ(C) = ∀X̄[D].[T C] C
 D[S̄/X̄]

fieldsig [T C] = T̄ Γ, C, H ` ē : R̄ C
 R̄<: T̄[S̄/X̄]
Γ, C, H ` new C(ē) : [T[S̄/X̄] C]

T-Event

Γ, C, ev[i] ` ev[i] : Unit
T-Check

Γ, C, chk[i] ` chk[i] : Unit

T-Cast
Γ, C, H ` e : T C
 T l [S D]

Γ, C, H ` (D)e : [S D]

T-Weaken
Γ, C, H′ ` e : T C
 H′ <: H

Γ, C, H ` e : T

T-Meth
Γ; x̄ : S̄, C, H ` e : S

C
 S<: T ∧ T̄<: S̄ Γ(this).m = T̄
H−→ T mbody(m, C) = x̄.e

Γ, C ` m, C : T̄ H−→ T

T-Class
Γ; C : [T C]; this : [T C], C ` mi, C : Ti for all mi ∈ meths(C)

Γ ` C : ∀X̄[C].[T C]

Figure 10. FJtrace logical typing rules

main.tex; 1/11/2006; 10:39; p.21

22 Christian Skalka

{m1, . . . , mn} = {m | mbody(m, C) is de�ned}
meths(C) = m1, . . . , mn

fields(C) = D1 f1, . . . , Dn fn f1 : T1 ∈ T, . . . , fn : Tn ∈ T

fieldsig [T C] = T1, . . . , Tn

Figure 11. Auxiliary functions

Type derivation rules are given in Fig. 10, with some auxiliary functions
de�ned in Fig. 11. For these rules and later examples, we posit a Unit
type, which is the type of objects in the Object class, that possess no
�elds or methods; i.e.:

Unit , [Object]

In these and later rules we also write [x̄ : T̄ C].xi to denote Ti. We note
that ∀-intro and -elim are located at class de�nition and object construc-
tion points, respectively. Sube�ecting of top level e�ects is allowable at
any point in a derivation via T-Weaken. The soft subtyping relation is
used for casts (C)e; due to the interpretation of soft subtyping de�ned in
the previous section, this rule will only track the �ow of objects to the
casting point that are in a subclass of C. Any other objects will cause a
dynamic cast check exception, and can therefore be ignored statically
without compromising type safety, as in (Igarashi et al., 2001). Ignoring
�junk� in this manner gives a more precise analysis, and allows typing
of downcasts. We omit the distinction of �stupid casts� entailing �stupid
warnings� as in (Igarashi et al., 2001), noting that we essentially follow
their approach, and can easily adopt this distinction. We make the
following de�nitions:

DEFINITION 5.4. The judgement Γ, C, H ` e : T is valid i� it is
derivable and there exists a solution ρ of C such that ρ(H) is valid.
An environment Γ is well-formed i� Γ ` C : ∀X[C].T is derivable for all
(C : ∀X[C].T) ∈ Γ.

It is demonstrable that for closed, event- and check-free expressions
e, there exists a derivable typing for e in FJtrace i� e is well-typed in
the type system of (Igarashi et al., 2001), as we show in Sect. 5.4,
Lemma 5.8. This means that our system absorbs properties of FJ,
including type safety for the FJ subset of FJtrace, implying that the
only case we really need to consider, to extend type safety to FJtrace,
is progress for trace checks. That is, we must show that checks can be
statically enforced by our type analysis. We establish this by a subject

main.tex; 1/11/2006; 10:39; p.22

Types and Trace E�ects for Object Orientation 23

reduction argument, showing that trace e�ect approximations are pre-
served by computation. Note that the statement of subject reduction
must apply to con�gurations; the proof, given in Sect. 5.4, follows by
induction on derivations:

LEMMA 5.3 (Subject Reduction). If Γ, C, H ` e : [T C] is derivable for
closed e and well formed Γ, and η, e → η′, e′, then Γ, C, H′ ` e′ : [T′ C′]
is derivable with C
 [T′ C′]<: [T C] and C
 η′; H′ <: η; H.

A corollary of this result formalizes the intuition that trace e�ects
approximate event traces, insofar as any event trace generated dur-
ing evaluation of an expression must be contained in the trace e�ect
assigned to that expression by the type analysis:

COROLLARY 5.1. If Γ, C, H ` e : [T C] is derivable for closed e and
well-formed Γ, and ε, e→ η, e′, then C
 η <: H.

To state our type safety result, we must de�ne what we mean by
�run-time checks�. In short, these are checks in the hole of an evaluation
context encountered during execution:

DEFINITION 5.5. Evaluation contexts are de�ned as follows:

E ::= [] | E.f | E.m(ē) | v.m(v̄, E, ē) | new C(v̄, E, ē) | (C)E

We can then formally assert that run-time checks in well-typed pro-
grams are guaranteed to succeed:

LEMMA 5.4 (Static Enforcement of Checks). Given closed e and well-
formed Γ, if the judgement Γ, C, H ` e : T is valid , and ε, e →?

η, E[chk[x]], then η ` chk[x].

Proofs are demonstrated in Sect. 5.4.

5.3.1. Discussion
In this section we discuss some examples that illustrate properties of
the type system. We assume the de�nitions and types given in Sect. 2.
We also assume the trivial extension of the language with a sequencing
construct e; e and a lexically scoped name-to-value binding construct
C x = new C(). To provide intuitions more easily, we present types and
e�ects in a uni�ed form. We posit the de�nition of a class PasswdTmpl,
which is owned by System; in class PasswdTmpl the format method is
overridden, de�ned to format a password �le template string:

class PasswdTmpl extends Formatter {
String format() { System; . . .}

}

main.tex; 1/11/2006; 10:39; p.23

24 Christian Skalka

Assuming that the body of this version of format is e�ect free other
than the initial System event, the type of PasswdTmpl can be given as
follows, where StringT is the type of a String object, the details of
which are unimportant to the example:

PTmplT , [format : ()
System−−−−→ StringT PasswdTmpl]

We also posit the de�nition of a class Backdoor, devised as an untrusted
Applet extending PasswdTmpl, that formats a password �le template
containing a uname/passwd combination known to the attacker:

class Backdoor extends PasswdTmpl {
String format() { Applet; . . .}

}

Assuming that the body of this version of format is also e�ect free
other than the initial Applet event, the type of Backdoor can be given
as follows, which we abbreviate as BdoorT:

BdoorT , [format : ()
Applet−−−−→ StringT Backdoor]

Notice that the e�ects assigned to the Backdoor and PasswdTmpl ver-
sions of format are incomparable, despite their inheritance relation.

For the purposes of the example, we further imagine that there ex-
ists an open PasswdFile object in the current namespace. Now, since
Writer.safewrite can be assigned a type which is polymorphic in the
e�ects of its arguments, the code:

Writer w = new Writer();
PasswdTmpl p = new PasswdTmpl();
w.safewrite(p, PasswdFile);

could be assigned the e�ect:

System; System; demand(FileWrite);

which we assume is veri�able, whereas the following application of
safewrite could be treated independently:

Writer w = new Writer();
Backdoor b = new Backdoor();
w.safewrite(b, PasswdFile);

and assigned the following e�ect, which we assume is not veri�able:

System; Applet; demand(FileWrite)

main.tex; 1/11/2006; 10:39; p.24

Types and Trace E�ects for Object Orientation 25

Since polymorphism is restricted to be �rst orderly, method parame-
ters themselves cannot be polymorphic. This means that in code such
as the following, the domain e�ects of functionally abstracted objects
will be merged by subtyping:

class C extends Object {
void m(Writer w, File f){

Backdoor b = new Backdoor();
PasswdTmpl p = new PasswdTmpl();
w.safewrite(b, f);
w.safewrite(p, f);

}
}

This implies that the e�ects at each calling site of w.safewrite gener-
ated by the following code cannot be distinguished:

Writer w = new Writer();
C c = new C();
c.m(w, PasswdFile);

so that the following e�ect would be assigned:

System;)(System|Applet); demand(FileWrite);
System; (System|Applet); demand(FileWrite)

Soft subtyping can be used at downcasts to ignore unsound �ow
that will be caught by dynamic cast checks. Suppose that type analysis
predicts that some expression e may evaluate to either a PasswdTmpl
object or a Backdoor object; i.e. Γ, C, H ` e : T with:

C
 PTmplT<: T ∧ BdoorT<: T

where PTmplT and BdoorT are de�ned as above. By the T-Cast typing
rule and properties of soft subtyping discussed above, we therefore may
assert (as a somewhat contrived example; a Backdoor cast is not likely
to occur in practice):

Γ, C, ε ` (Backdoor)e : BdoorT

meaning that the following:

Writer w = new Writer();
w.safewrite((Backdoor)e, f);

may be assigned the following e�ect:

H; System; Applet; demand(FileWrite)

main.tex; 1/11/2006; 10:39; p.25

26 Christian Skalka

5.4. Properties

In this section we demonstrate our main type safety result, based on a
subject reduction argument. We also show that FJtrace typings conserve
FJ typings, i.e. any program that is typable in the FJ type system is also
typable in the FJtrace type system. In the course of proving these results,
we demonstrate a standard suite of results (weakening, substitution,
canonical forms, etc.) for the FJtrace type system.

We begin by demonstrating conservation of FJ typing in FJtrace. FJ
typing is nominal, and object types are represented �implicitly� via the
mtype and fields functions. In FJtrace, types are represented �explicitly�
via type terms and constraints. Thus, we de�ne a translation, or �expan-
sion�, from types of the former to the latter. The translation expands
every class name C into a representation [T C], where T is a listing of �eld
and method types. Each method is assigned an ε e�ect, since FJ is e�ect
free. Expansion of any class name C is only one level deep� that is, class
names D in C's �eld and method types are not recursively expanded,
but assigned a special type variable that is constrained to be the lower
bounds of the expansion of D. This ensures termination of expansion
in the presence of recursive types. Since constraints can be recursive, a
corollary of this de�nition is the representability of recursive class types
in the expansion� i.e., the constraint is solvable.

DEFINITION 5.6. Assume given a �xed type variable tC for each C ∈
dom(CT). Then the expansion of method types, class names, and vec-
tors of class names is de�ned as follows:

mtype(m, C) = D̄→ D ∀Si ∈ S̄.Si = tDi

expand(m, C) = ¯[S D] ε−→ [tD D]

fields(C) = D̄ f̄ ∀Si ∈ S̄.Si = tDi

meths(C) = m̄ ∀mi ∈ m̄.expand(mi, C) = Ti

expand(C) = [f̄ : ¯[S D] m̄ : T̄ C]

expand(C̄) = expand(C1), . . . , expand(Cn)

We also construct a possibly recursive system of lower bounds on type
variables tC, as follows. Given CT such that dom(CT) = C1, . . . , Cn.
Then:

CCT , expand(C1) <: [tC1 C1] ∧ · · · ∧ expand(Cn) <: [tCn Cn]

LEMMA 5.5. CCT , expand(C) is realizable for all C ∈ dom(CT).

We observe that expansion preserves subtyping, as desired:

main.tex; 1/11/2006; 10:39; p.26

Types and Trace E�ects for Object Orientation 27

LEMMA 5.6. If C<: D then CCT
 expand(C) <: expand(D).

Now, we show that the expansion allows a simulation of FJ �eld and
method typing.

LEMMA 5.7. Given expand(D) = [T D]. Then the following properties
hold:

1. CCT
 T<: (m : expand(B̄) ε−→ expand(B)) if mtype(m, D) = B̄→ B.

2. CCT
 T<: (f : expand(B)) if B f ∈ fields(D).

Now we can prove the conservativity result by induction on FJ type
derivations. To properly frame the result, we need to extend expansion
to environments, both to correctly state the induction, and to gather
class type representations into the FJtrace type environment in the
appropriate manner.

LEMMA 5.8 (Conservation of FJ Typing). De�ne:

expand(Γ) = Γ′ expand(C) = T

expand(Γ;x : C) = Γ′;x : T

dom(CT) = C1, . . . , Cn

expand(∅) = ∀∅[CCT].expand(C1); . . . ;∀∅[CCT].expand(Cn)

If Γ ` e : C is derivable, then so is expand(Γ), CCT , ε ` e : expand(C).

Proof. The result follows by induction on Γ ` e : C and case analysis
on the last step in the derivation. Here, we give only the T-Invk case,
wherein e = e0.m(ē), and by inversion of the rule we have:

Γ ` e0 : C0 mtype(m, C0) = D̄→ C Γ ` ē : C̄ C̄<: D̄

Hence by the induction hypothesis the judgements:

expand(Γ), CCT , ε ` e0 : expand(C0)

expand(Γ), CCT , ε ` ē : expand(C̄)

are derivable. Let expand(C0) = [T C0]. Then by Lemma 5.6 and Lemma 5.7,
the following are valid:

CCT
 T<: (m : expand(D̄) ε−→ expand(C))

CCT
 expand(C̄) <: expand(D̄)

main.tex; 1/11/2006; 10:39; p.27

28 Christian Skalka

But then by De�nition 5.2 and Lemma 5.1:

CCT
 T<: (m : expand(C̄) ε−→ expand(C))

so the judgement:

expand(Γ), CCT , ε; ε; ε ` e : expand(C)

is derivable byT-Invk in FJtrace, hence this case follows byT-Weaken.
ut

Next, we turn to subject reduction and type soundness. We start by
showing that valid typing judgements can always be specialized, either
by weakening the top-level constraint in the judgement, instantiating
type variables, or by adding extraneous bindings to the type environ-
ment. Each of these results follows by a straightforward induction on
type derivations. The instantiation Lemma also follows because instan-
tiation preserves subtyping, as we show in Lemma 5.10, a result that
follows immediately by De�nition 5.2.

LEMMA 5.9 (Constraint Weakening). If Γ, C, H ` e : T and D
 C for
solvable D then Γ, D, H ` e : T.

LEMMA 5.10. If C
 S<: T then C[T̄/X̄]
 S[T̄/X̄]<: T[T̄/X̄].

LEMMA 5.11 (Instantiation). If Γ, C, H ` e : T is derivable, then so is
Γ[T̄/X̄], C[T̄/X̄], H[T̄/X̄] ` e : T[T̄/X̄].

LEMMA 5.12 (Environment Weakening). If Γ, C, H ` e : T is derivable
and Γ(C) = Γ′(C) for all C ∈ dom(CT) and Γ(x) = Γ′(x) for all x ∈
fv(e), then Γ′, C, H ` e : T is derivable.

Since the T-Weaken rule is not syntax directed, it introduces non-
determinism in derivations. The following result allows us to treat spec-
i�ed normal forms of derivations in proofs, without loss of generality.

LEMMA 5.13 (Normalization). If Γ, C, H ` e : T, then it follows by one
instance of T-Weaken preceded by an instance of a syntax-directed rule
corresponding to the form of e.

We also show that substitution preserves typings, to underpin the method
invocation case of subject reduction. After that, we give a canonical
forms Lemma, specifying the form of values inhabiting particular types.
We also observe that values can always be assigned top-level ε e�ects�
since values do not reduce, they can have no trace history.

main.tex; 1/11/2006; 10:39; p.28

Types and Trace E�ects for Object Orientation 29

LEMMA 5.14 (Substitution). If Γ; x : S, C, H ` e : T and Γ, C, ε ` v : S′

with C
 S′ <: S, then Γ, C, H′ ` [v/x]e : T′ for some T′ and H′ with
C
 T′ <: T ∧ H′ <: H.

LEMMA 5.15 (Canonical Forms). If Γ, C, H ` v : [T C] is derivable for
closed v and well formed Γ, then v = new C(v̄) for some v̄.

LEMMA 5.16. If Γ, C, H ` v : [T C] is derivable, then C
 ε <: H and
Γ, C, ε ` v : [T C] is also derivable.

The next two utility results allow the typings of method bodies to be
retrieved by inversion of method invocation typings. Like Lemma 5.14,
they will be instrumental for the method invocation case of subject
reduction.

LEMMA 5.17. Given Γ(C) = ∀X̄[C].[T C] and mbody(m, C) = x̄.e for

well formed Γ. Then there exists (m : S̄ H−→ S) ∈ T, R̄ and R such that the
following are valid:

C
 R<: S ∧ S̄<: R̄ Γ; this : [T C]; x̄ : R̄, C, H ` e : R

Proof. By inversion of theT-Class andT-Meth rules, and Lemma 5.12.
ut

LEMMA 5.18. Given well formed Γ and:

Γ, C, H0 ` new C(v̄) : [T C] mbody(m, C) = x̄.e

C
 T<: (m : S̄ H1−→ S)

Then:
Γ; this : [T C]; x̄ : R̄, C, H2 ` e : R

is derivable, where:

C
 R<: S ∧ S̄<: R̄ ∧ H2 <: H1

Proof. By Lemma 5.13 and inversion of the T-New rule, we have that
[T C] = [T0 C][S̄′/X̄] where Γ(C) = ∀X̄[D].[T0 C] and C
 D[S̄′/X̄]. Then by

Lemma 5.17, there exists (m : R̄0
H→ R0) ∈ T0, S̄0 and S0 such that:

C
 S0 <: R0 ∧ R̄0 <: S̄0 Γ; this : [T0 C]; x̄ : S̄0, D, H ` e : S0

are both valid. Letting:

R̄ , S̄0[S̄′/X̄] R , S0[S̄′/X̄] H2 , H[S̄′/X̄]

main.tex; 1/11/2006; 10:39; p.29

30 Christian Skalka

Then by Lemma 5.10:

C
 R<: R0[S̄′/X̄] ∧ R̄0[S̄′/X̄]<: R̄

so by De�nition 5.2 and Lemma 5.1:

C
 R<: S ∧ S̄<: R̄ ∧ H2 <: H1

and by Lemma 5.9 and Lemma 5.11:

Γ; this : [T C]; x̄ : R̄, C, H2 ` e : R

which was to be demonstrated. ut
We can now prove subject reduction. Note that the statement of the

proof allows for an increase in precision of type and e�ect in reduced
terms.

LEMMA 5.3 (Subject Reduction). If Γ, C, H ` e : [T C] is derivable for
closed e and well formed Γ, and η, e → η′, e′, then Γ, C, H′ ` e′ : [T′ C′]
is derivable with C
 [T′ C′]<: [T C] and C
 η′; H′ <: η; H.

Proof. By induction on Γ, C, H ` e : [T C], case analysis on the last step
in the derivation, and associated subcase analysis de�ned by possible
last steps in the derivation of and η, e → η′, e′, given the form of e
as required by the case. We consider the most interesting and crucial
cases, treating method invocation, casting and soft subtyping, events,
and e�ect weakening.

Case T-Invk. In this case, by inversion of the rule we have:

e = e0.m(ē) H = H1; H2; H3 Γ, C, H1 ` e0 : [S D] Γ, C, H2 ` ē : T̄

C
 S<: (m : T̄ H3−→ [T C])

A subcase analysis for the form of e in this case comprises R-Invk,
RC-Invk-Recv, and RC-Invk-Arg, as follows.

Subcase R-Invk. In this subcase by rule R-Invk and Lemma 5.15
we have:

e0 = new D(v̄) ē = ū e′ = [ū/x̄, new D(v̄)/this]e1

mbody(m, D) = x̄.e1 η′ = η

Thus by Lemma 5.18:

Γ; this : [S D]; x̄ : S̄, C, H4 ` e1 : [T1 C1]

is derivable, where:

C
 [T1 C1]<: [T C] ∧ T̄<: S̄ ∧ H4 <: H3

main.tex; 1/11/2006; 10:39; p.30

Types and Trace E�ects for Object Orientation 31

Therefore by Lemma 5.16 and Lemma 5.14 the judgement:

Γ, C, H′
4 ` [ū/x̄, new D(v̄)/this]e1 : [T′

1 C
′
1]

is derivable, where C
 [T′
1 C

′
1]<: [T1 C1] and C
 H′

4 <: H4. Thus C

[T′

1 C
′
1]<: [T C] and C
 H′

4 <: H3 by Lemma 5.1, so it only remains to
be shown that C
 η; H′

4 <: η; H3. But C
 ε <: H1 and C
 ε <: H2 by
Lemma 5.16, hence C
 H3 <: H1; H2; H3 by Lemma 4.2, so the result
follows by Lemma 4.2 and Lemma 5.1.

Subcase RC-Invk-Recv. In this subcase e′ = e1.m(ē) for some e1

such that η, e1 → η′, e1. But then by the induction hypothesis we have
Γ, C, H′

1 ` e1 : [S′ D′] with C
 η′; H′
1 <: η; H1∧ [S′ D′]<: [S D]. These facts,

De�nition 5.2, and Lemma 5.1 imply C
 S′ <: (m : ¯[R B] H3−→ [T C]), hence
Γ, C, H′

1; H2; H3 ` e1.m(ē) : [T C] is derivable by an instance of T-Invk,
with C
 η′; H′

1; H2; H3 <: η; H1; H2; H3 by Lemma 4.2, so this case holds.
Subcase RC-Invk-Arg follows in a similar manner.

Case T-Cast. In this case, by inversion of the rule we have:

e = (C)e0 Γ, C, H ` e0 : [S D] C
 [S D] l [T C]

A subcase analysis for the form of e in this case comprises R-Cast and
RC-Cast, as follows.

Subcase R-Cast. In this subcase we have:

e0 = new D(v̄) D<: C e′ = e0 η = η′

by inversion of R-Cast and Lemma 5.15. But then C
 [S D]<: [T C] by
Lemma 5.2; the result follows. Subcase RC-Cast follows in a manner
similar to the RC-Invk-Recv subcase of the T-Invk case above.

Case T-Event. In this case by inversion of the rule we have:

e = ev[i] H = ev[i] [T C] = Unit

The only reduction rule that applies to the form of e in this case is
R-Event, inversion of which obtains:

e′ = () η′ = η; ev[i]

But Γ, C, ε ` () : Unit by assumption and Lemma 5.16, so this case
holds.

Case T-Weaken. In this case we have Γ, C, H′ ` e : [T C] with C

H′ <: H by inversion of rule T-Weaken. But then Γ, C, H′′ ` e′ : [T′ C′]
with C
 η′; H′′ <: η; H′ ∧ [T′ C′]<: [T C] by the induction hypothesis, and
C
 η′; H′′ <: η; H Lemma 4.2 and Lemma 5.1, so this case holds. ut

We then prove one auxiliary lemma followed by our main type safety
result, demonstrating that run-time checks in well-typed programs are
guaranteed to succeed:

main.tex; 1/11/2006; 10:39; p.31

32 Christian Skalka

LEMMA 5.19. If Γ, C, H ` E[chk[x]] : T then C
 chk[x]; H′ <: H.

LEMMA 5.4 (Static Enforcement of Checks). Given closed e and well-
formed Γ, if the judgement Γ, C, H ` e : T is valid , and ε, e →?

η, E[chk[x]], then η ` chk[x].

Proof. By Lemma 5.3 and Lemma 5.19, Γ, C, H′ ` E[chk[x]] : T is
derivable with C
 chk[x]; H′′ <: H′ and C
 η; H′ <: H. Now, by as-
sumption there exists a solution ρ of C such that ρ(H) is valid; but
since Jρ(chk[x]; H′′)K ⊆ Jρ(H′)K and Jρ(η; H′)K ⊆ Jρ(H)K by previous facts
and De�nition 5.2, therefore Jρ(η; chk[x]; H′′)K ⊆ Jρ(H)K. By Lemma 4.2
it follows that the e�ect ρ(η; chk[x]; H′) is valid, thus η ` chk[x] by
De�nition 4.1. ut

6. Type Inference for FJtrace

We now develop an implementation of the FJtrace type system. This
includes a type inference algorithm for reconstructing type judgements.
In addition, it is necessary to check satis�ability of constraints, to ensure
that these judgements are coherent. For this purpose we adapt standard
closure techniques for subtyping constraints (Palsberg and O'Keefe,
1995), extended to accommodate e�ect constraints. Closure distills in-
ferred constraints into their basic component elements, upon which a
simple structural consistency check can be used to ensure satis�ability.
Inference and closure serve as preliminary phases for statically verifying
trace based program assertions, which can �nally be accomplished by
model checking trace e�ects, as in (Skalka and Smith, 2004). Model
checking is applicable, since we endow trace e�ects with an LTS seman-
tics (Sect. 4), for which a variety of model checking techniques exist
(Burkart et al., 2001). However, standard techniques expect term, rather
than constraint, representation of LTSs. Therefore, it is also necessary
to de�ne a means of extracting a uni�ed trace e�ect representation
from inferred typing judgements. For this purpose we de�ne an algo-
rithm, called hextract , to obtain a uni�ed representation of trace e�ects
from the inferred constraint representation. The composition of type
inference, closure, and hextraction obtain an algorithmic technique for
enforcing type safety, as observed in Theorem 6.1.

6.1. The Type Language

The type and constraint language used by inference is the same as that
presented in Sect. 5, albeit specialized to integrate neatly with closure.

main.tex; 1/11/2006; 10:39; p.32

Types and Trace E�ects for Object Orientation 33

mtype(m, C) = D̄→ D CT (C) = class C extends B {. . .}
if mtype(m, B) = Ē→ E then Ē = D̄ and E = D

hexpand(m, C) = ¯[t D] h−→ [t D]

fields(C) = D̄ f̄ meths(C) = m̄ ∀mi ∈ m̄.hexpand(mi, C) = Ti

hexpand(C) = [f̄ : ¯[t D] m̄ : T̄ C]

hexpand(C̄) = hexpand(C1), . . . , hexpand(Cn)

Figure 12. hexpand type construction

There are two forms of object types used by inference, a form [t C] that
we call abstract, and an hexpanded form de�ned in Fig. 12. This form is
similar to the expanded form of object types de�ned in Sect. 5.4, where
�eld and method types of a given class are explicitly listed, except
method types are assigned abstract e�ects, and canonical hexpansion
will always choose fresh variables with which to construct the type.

Inference always assigns hexpanded type forms to expressions (see
Lemma 6.6 for a precise statement of this), which invariant provides
a uniform representation for proofs. More importantly, the invariant
preserves soundness when imposing constraints due to method or �eld
selection. That is, the selection of a method or �eld x from an object
of type [T C] will impose a constraint of the form T<: (x : S). If [T C]
is in hexpanded form, a lower bound constraint on the width of T is
hard-coded by the form of T, whereas if T was a type variable t, a lower
bound width constraint on t would have to be explicitly imposed to
ensure soundness.

Since hexpanded types do have abstract forms as subterms, the latter
occur in types and constraints in inference judgements, but only serve as
conduits for transitive �ow during closure. Furthermore, type variables
t never appear �bare� during inference, but only within an abstract
object type form [t C], so that object type variables always have an
implicit width constraint associated with C.

6.2. Type Inference Judgements

Type inference rules are given in Fig. 13; the W subscripting the relation
`W distinguishes type inference from logical typing judgements, and is
named after the polymorphic type reconstruction algorithm W (Damas
and Milner, 1982). The type inference rules are deterministic except for
the choice of type variables; we call canonical those derivations that al-

main.tex; 1/11/2006; 10:39; p.33

34 Christian Skalka

T-Var

Γ, true, ε `W x : Γ(x)

T-Field
Γ, C, H `W e : [T C] D f ∈ fields(C) hexpand(D) = [S D]

Γ, C ∧ T<: (f : [S D]), H `W e.f : [S D]

T-SeqNil

Γ, true, ε `W ∅ : ∅

T-SeqCons

Γ, C1, H1 `W ē : T̄ Γ, C2, H2 `W e : T
Γ, C1 ∧ C2, H1; H2 `W ē, e : T̄, T

T-Invk
Γ, C, H `W e : [T C]

Γ, D, H′ `W ē : S̄ mtype(m, C) = D̄→ D hexpand(D) = [S D]

Γ, C ∧D ∧ T<: (m : S̄ h−→ [S D]), H; H′; h `W e.m(ē) : [S D]

T-New
Γ(C) = ∀X̄[D].[T C] fieldsig [T C] = T̄ Γ, C, H `W ē : S̄

Γ, C ∧D[X̄′/X̄] ∧ S̄<: T̄[X̄′/X̄], H `W new C(ē) : [T[X̄′/X̄] C]

T-Event

Γ, true, ev[i] `W ev[i] : Unit
T-Check

Γ, true, chk[i] `W chk[i] : Unit

T-Cast
Γ, C, H `W e : T hexpand(D) = [S D]

Γ, C ∧ T l [S D], H `W (D)e : [S D]

T-Meth
Γ; x̄ : S̄, C, H `W e : S

hexpand(D̄) = S̄ Γ(this).m = ¯[T D] h−→ T mbody(m, C) = x̄.e

Γ, C ∧ S<: T ∧ ¯[T D]<: S̄ ∧ H<: h `W m, C : ¯[T D] h−→ T

T-ClassConstraint
meths(C) = m̄ Γ; this : Γ(C), Di `W mi, C : Ti for all mi ∈ m̄

Γ `W C : D1 ∧ · · · ∧Dn,Γ(C)

T-Class
Γ; C̄ : hexpand(C̄) `W Ci : Di, Ti and fv(D, Ti) = X̄i for all i ∈ 1..n

D = D1 ∧ · · · ∧Dn

Γ `W C1 : ∀X̄1[D].T1, . . . , Cn : ∀X̄n[D].Tn

Figure 13. FJtrace type inference rules

main.tex; 1/11/2006; 10:39; p.34

Types and Trace E�ects for Object Orientation 35

ways choose fresh type variables, and hereafter restrict our consideration
to canonical derivations without loss of generality.

Type inference rules are mostly analogous to their logical counter-
parts. The T-Class rule is slightly di�erent, and the T-Constraint
rule interposed, to deal with mutually recursive class de�nitions. If C̄
are all mutually recursive, then the T-Class rule allows typings to be
assigned to them �in parallel�, as a group� a group of one, in case a
given class is not mutually recursive with any others. We specify a nor-
mal form for environments in inference derivations, and also we de�ne
the inference analog of well formed environments, which formalizes the
notion of complete typing for a full class table.

DEFINITION 6.1. Any Γ is in inference form i� hexpand(C) = T for
all C : ∀X̄[C].T ∈ Γ, and for all x : S ∈ Γ there exists D such that
hexpand(D) = T.

Hereafter, we restrict inference judgements to the use of environments
in inference form, and observe that derivations preserve this property.

We obtain soundness for type inference via the following result for
expression inference; generalization to method and class inference are
obtained on this basis. The result follows by induction on inference
derivations. The Lemma states that inference derivations can be recon-
structed as logical derivations of less general typings; this formulation is
necessary to allow the induction to go through, since logical judgements
are given complete constraints a priori, whereas they are reconstructed
from the leaves towards the root in inference derivations. The proof is
given in Sect. 6.4.

LEMMA 6.1 (Soundness of Inference). If Γ, C, H `W e : T is derivable
with Γ and C ∧D, T realizable, then Γ, C ∧D, H ` e : T is derivable.

6.3. Closure and Extraction of Effects

To automatically check satis�ability of constraints, hence realizability of
types, the type implementation comprises a constraint closure algorithm
and consistency check. We say that a constraint C is consistent i�
` C : ok is derivable given the deterministic rules in Fig. 15. For brevity
in the de�nition of closure, we introduce the following notation:

DEFINITION 6.2. Let Ĉ range over atomic constraints, i.e.:

Ĉ ::= true | T<: T | T l T

and for all C = Ĉ1 ∧ · · · ∧ Ĉn, let set(C) = {C1, . . . , Cn}. Then de�ne:

Ĉ ∈ C ⇐⇒ Ĉ ∈ set(C) D ⊆ C ⇐⇒ set(D) ⊆ set(C)

main.tex; 1/11/2006; 10:39; p.35

36 Christian Skalka

C-Fn

(T̄ H−→ T<: S̄ H′
−→ S) ;close (S̄<: T̄ ∧ T<: S ∧ H<: H′)

C-Trans

(R<: S ∧ S<: T) ;close R<: T
C-STrans

(R<: S ∧ S l T) ;close R l T

C-Obj

[(x̄ : T̄) C]<: [(ȳ : S̄) D] ;close (x̄ : T̄) <: (ȳ : S̄)

C-Row

(x̄ : R̄, ȳ : S̄) <: (x̄ : T̄) ;close R̄<: T̄

C-Cast
C<: D

[T C] l [S D] ;close [T C]<: [S D]

C-Context
C ′ ⊆ C C ′ ;close D D 6⊆ C

C →close C ∧D

Figure 14. Constraint closure rules

Constraint closure is then de�ned via the rewrite rules given in Fig. 14
and De�nition 6.3. The closure rules are mostly standard, except for
those that treat soft subtyping constraints, C-Cast and C-Strans.
These rules implement selective pruning of the constraint graph de-
scribed previously; note that they e�ectively discard unsound �ow along
soft subtyping edges.

DEFINITION 6.3 (Closure). The rewrite relations ;close and →close

are de�ned in Fig. 14. C is closed i� there does not exist D such that
C →close D. The relation →?

close is the re�exive, transitive closure of
→close . We de�ne close(C) as a closed constraint such that C →?

close
close(C).

Correctness of closure for inferred types and constraints is stated as
follows. While our interpretation has slight modi�cations for specialized
object type forms, our approach to type constraint closure is fundamen-
tally standard, and correctness of standard closure techniques has been
thoroughly treated in previous work, notably (Palsberg and O'Keefe,
1995). Solvability of closed, consistent e�ect constraints is established
constructively in Lemma 6.3, and solutions of type and e�ect constraints
can be composed to obtain a solution for whole constraints generated
by inference. This argument is developed in more detail in (Skalka et al.,
2006).

main.tex; 1/11/2006; 10:39; p.36

Types and Trace E�ects for Object Orientation 37

` true : ok
` C : ok ` D : ok

` C ∧D : ok
` H<: H′ : ok

C<: D
` [T C]<: [S D] : ok

` [T C] l [S D] : ok ` (T̄ H−→ T<: S̄ H′
−→ S) : ok

` (x̄ : R̄, ȳ : S̄) <: (x̄ : T̄) : ok

Figure 15. Constraint consistency rules

LEMMA 6.2. If Γ, C, H `W e : T is derivable, then C is satis�able i�
close(C) is consistent.

A key property of e�ect constraints that ensures their satis�ability,
is that they de�ne a system of lower bounds on e�ect variables. That
is, if Γ, C, H `W e : T is derivable and H<: H′ ∈ close(C), then H′ is an
e�ect variable h. It is easy to demonstrate this property by observing
that it is established by inference, and preserved by closure. This form
of e�ect constraint implies that, given Γ, C, H `W e : T, a solution for H
can be obtained, more or less, by recursively joining the lower bounds
of type variable components of H in close(C). The algorithm for ex-
tracting term representation of e�ects from a constraint representation,
called hextract , is de�ned in Fig. 16. Since extraction does not alter
the given constraint in any way, the �xed parameter C is written as a
subscript. Extraction returns a closed trace e�ect that is a sound term
representation of the top-level e�ect of given closed expressions, in the
following sense. The result constructively proves satis�ability of closed,
consistent e�ect constraints.

LEMMA 6.3 (Extraction Correctness). If Γ, C, H `W e : T is derivable
for closed e and close(C) is consistent, then hextractclose(C)(H) is de-
�ned and there exists a solution ρ of C such that hextractclose(C)(H) =
ρ(H).

Correctness of the hextract algorithm is rigorously established in (Skalka
et al., 2006) by a �xpoint construction argument. Since the form of
constraints treated in that result is the same as that generated by
inference in this paper, the result is entirely applicable.

To make the �nal connection to logical typing judgements, we must
de�ne the analogue of well-formed environments, wherein all type schemes
bindings are realizable and logically derivable. In the inference sys-
tem, this requires that environments contain bindings that are logically
inferable, and whose constraint closures are consistent.

main.tex; 1/11/2006; 10:39; p.37

38 Christian Skalka

hextractC(ε, hs) = ε

hextractC(ev[i], hs) = ev[i]
hextractC(chk[i], hs) = chk[i]
hextractC(H1; H2, hs) = (hextractC(H1, hs));(hextractC(H2, hs))
hextractC(H1|H2, hs) = (hextractC(H1, hs))|(hextractC(H2, hs))

hextractC(h, {h} ∪ hs) = h

hextractC(h, hs) = µh.hextractC(boundsC(h), hs ∪ {h})

boundsC(h) = H1| · · · |Hn where {H1, . . . , Hn} = {H | H<: h ∈ C}

Figure 16. hextract and bounds functions

DEFINITION 6.4. Letting σ range over constrained type schemes, and
given:

Γ = C1 : σ1; . . . ; Cn : σn

Then Γ is inferable i� for all 0 < i ≤ n there exists 0 < k ≤ i such
that:

C1 : σ1; . . . ; Ck − 1 : σk−1 `W Ck : σk, . . . , Ci : σi

and for all ∀X̄[C].T ∈ Γ, close(C) is consistent.

Putting the pieces together, a complete analysis is obtained by com-
position of inference, closure, consistency, and hextract ion. Validity of
e�ects can be implemented by techniques described in (Skalka and
Smith, 2004).

THEOREM 6.1 (Soundness of Analysis). Suppose Γ, C, H `W e : T
is derivable for inferable Γ and closed e, close(C) is consistent, and
hextractclose(C)(H) is valid. Then ε, e→? η, E[chk[x]] implies η ` chk[x].

The proof is given in Sect. 6.4, following by soundness of inference as
established by Lemma 6.1, Lemma 6.2, Lemma 6.3, and type safety as
established by Lemma 5.4.

6.4. Properties

We now investigate formal properties of type inference in more depth.
First, we observe a fairly obvious characteristic of constraints, that any
solution of a compound constraint is also a solution of its parts.

LEMMA 6.4. C ∧D
 D.

main.tex; 1/11/2006; 10:39; p.38

Types and Trace E�ects for Object Orientation 39

Now, we characterize the essential property allowing the innards of an
hexpanded object type to be unwrapped, while still retaining a width
constraint associated with the object class. This is essential for ensuring
soundness of inference. The result is a straightforward consequence of
the de�nition of hexpand .

LEMMA 6.5. Let hexpand(C) = [T C]. Then if ρ(T) is well kinded, so is
ρ([T C]).

We also observe the invariant that all top-level types in inference are
in hexpanded form, which are well-formed with respect to any inferred
top-level constraint. The result follows by induction on type derivations.

LEMMA 6.6. If Γ, C, H `W e : T is derivable for well formed Γ, then
T = hexpand(C), and satis�ability of C implies realizability of C, T.

Soundness of inference follows by induction on inference derivations.
In essence, soundness is proved by transforming an inference derivation
into a logical derivation, by allowing the root constraint to be pushed
towards the leaves in the induction, via appropriate statement of the
result (i.e. the logical derivation permits weakening of the top level
constraint with some constraint D).

LEMMA 6.1 (Soundness of Inference). If Γ, C, H `W e : T is derivable
with Γ and C ∧D, T realizable, then Γ, C ∧D, H ` e : T is derivable.

Proof. By induction on the derivation of Γ, C, H `W e : [T C] and case
analysis on the last step.

Cases T-Var, T-SeqNil, T-Event, and T-Check are immediate.
Case T-Field. In this case, by inversion of the rule we have:

e = e0.f hexpand(C) = [T C] C = C0 ∧ S<: (f : [T C])

Γ, C0, H `W e : [S D] C f ∈ fields(D)

Since by assumption C has a solution ρ, therefore ρ(S) is well kinded,
so C, [S D] is realizable by Lemma 6.6 and Lemma 6.5. Hence Γ, C, H `
e : [S D] is derivable by the induction hypothesis, and C
 S<: (f : [T C])
by Lemma 6.4, so the result follows by an instance of T-Field.

Case T-Invk. By inversion of the rule in this case we have:

C = C1 ∧ C2 ∧ S<: (m : ¯[S B] h−→ [T C]) e = e0.m(ē) H = H1; H2; h

Γ, C1, H1 `W e0 : [S D] Γ, C2, H2 `W ē : ¯[S B]

mtype(m, D) = C̄→ C hexpand(C) = [T C]

main.tex; 1/11/2006; 10:39; p.39

40 Christian Skalka

Since C has a solution ρ by assumption, therefore ρ(S) and ρ(¯[S B])
are well kinded, so C, ¯[S B] is realizable, and C, [S D] is realizable by
Lemma 6.6 and Lemma 6.5. Thus, Γ, C, H1 ` e0 : [S D] and Γ, C, H2 `
ē : ¯[S B] by the induction hypothesis, and C
 S<: (m : ¯[S B] h−→ [T C]) by
Lemma 6.4, so the result follows by an instance of T-Invk.

Case T-New. In this case, by inversion of the rule we have:

e = new C(ē) T = [S[X̄′/X̄] C] C = C0 ∧D0[X̄′/X̄] ∧ S̄<: T̄[X̄′/X̄]

Γ(C) = ∀X̄[D0].[S C] fieldsig [S C] = T̄ Γ, C0, H `W ē : S̄

But C∧D is satis�able by assumption, so C∧D, S̄ is realizable, therefore
Γ, C ∧ D, H ` ē : S̄ is derivable by the induction hypothesis. And by
Lemma 6.4:

C ∧D
 D0[X̄′/X̄] C ∧D
 S̄<: T̄[X̄′/X̄]

so the result follows in this case by an instance of T-New. The T-Cast
and T-Seq cases follow in a straightforward manner by the induction
hypothesis. ut

A �nal technical hurdle is to show that inferable environments are
well-formed. The result shows how to obtain logical class typing judge-
ments from inferred ones with consistent closures.

LEMMA 6.7. If Γ is inferable, then it is well-formed.

Proof. Assume that the following judgement is derivable in the inference
system, with close(D) consistent:

Γ `W C1 : ∀X̄1[D].Ti, . . . , Cn : ∀X̄n[D].Tn

Then it su�ces to show that for any i ∈ [1..n] the judgement:

Γ; C1 : ∀X̄1[D].T1; . . . ; Cn : ∀X̄n[D].Tn ` D : ∀X̄i[D].Ti

is derivable in the logical system. Inverting the T-Class rule we can
reconstruct:

Γ; C̄ : hexpand(C̄) `W Ci : Di, Ti and fv(D, Ti) = X̄i for all i ∈ 1..n
D = D1 ∧ · · · ∧Dn

Γ `W C1 : ∀X̄1[D].T1, . . . , Cn : ∀X̄n[D].Tn

where for each i ∈ 1..n, the constraint Di is of the form C1 ∧ · · · ∧ Cj ,
and for each mk ∈ meths(Ci) a judgement:

Γ; C̄ : hexpand(C̄); this : Γ(C), Ck `W mk, Ci : Tk

main.tex; 1/11/2006; 10:39; p.40

Types and Trace E�ects for Object Orientation 41

is derivable, by inversion of the T-ClassConstraint rule. Let:

Γ′ , (Γ; C̄ : hexpand(C̄); this : Γ(C))

Then by inversion of the T-Meth rule we have that Tk is of the form
¯[T D] h−→ T, and Ck is of the form:

C ∧ S<: T ∧ ¯[T D]<: S̄ ∧ H<: h

and we can reconstruct:

Γ′; x̄ : S̄, C, H `W e : S
hexpand(D̄) = S̄ Γ′(this).mk = ¯[T D] h−→ T mbody(mk, Ci) = x̄.e

Γ′, C ∧ S<: T ∧ ¯[T D]<: S̄ ∧ H<: h `W mk, Ci : ¯[T D] h−→ T

Since close(D) is consistent by assumption, therefore D has a solution
by Lemma 6.2. And since S occurs in D, therefore D, S is realizable,
hence by Lemma 6.1 the judgement Γ′; x̄ : S̄, D, H ` e : S is derivable in
the logical system, from which can be derived Γ′; x̄ : S̄, D, h ` e : S by
Lemma 6.4 and an instance of T-Weaken. But then the form of Ck

as noted above, Lemma 6.4, and an instance of T-Meth in the logical

system allows us to derive Γ′, D ` mk, Ci : ¯[T D] h−→ T. But since [T D] and
h and T all occur in D, therefore D, ¯[T D] h−→ T is realizable. The result
follows by an instance of T-Class in the logical system. ut

Now we can demonstrate our main result, showing how the di�erent
components of inference can be combined to generate a sound auto-
mated type analysis. The result follows by soundness of inference and
closure, correctness of hextract ion, and type safety.

THEOREM 6.1 (Soundness of Analysis). Suppose Γ, C, H `W e : T
is derivable for inferable Γ and closed e, close(C) is consistent, and
hextractclose(C)(H) is valid. Then ε, e→? η, E[chk[x]] implies η ` chk[x].

Proof. If Γ is inferable, then it is well-formed by Lemma 6.7. If close(C)
is consistent, then C has a solution by Lemma 6.2. Therefore C, T is
realizable by Lemma 6.6, and Γ, C, H ` e : T is derivable in the logical
system by Lemma 6.1. By Lemma 6.3, there exists a solution ρ of C
such that hextractclose(C)(H) = ρ(H), the validity of which establishes
validity of Γ, C, H ` e : T. The result follows by Lemma 5.4. ut

main.tex; 1/11/2006; 10:39; p.41

42 Christian Skalka

R-Throw

η, E[throw] → η, throw

RC-Try
η, e1 → η′, e′

1

η, try{e1}catch{e2} → η, try{e′
1}catch{e2}

R-Try
v 6= throw

η, try{v}catch{e2} → η, v

R-Catch

η, try{throw}catch{e2} → η, e2

Figure 17. Semantics of exceptions

7. Control Flow and E�ect Transformations

In this section we show that a bene�t of our approach is that trace
e�ect representations are amenable to transformational techniques, for
�exibility of analysis. These transformations can be used to post-process
inferred e�ects, without requiring any reworking of the inference com-
ponent of analysis. This means that certain extensions of the language
can be treated statically in a modular fashion, including extensions that
have a fundamental e�ect on program semantics and control �ow.

We consider exnization and stacki�cation transformations. Exniza-
tion implements the impact of exceptions on e�ect representations.
Stacki�cation is useful in a stack-based safety context� that is, where
events associated with function activations are �forgotten� when that ac-
tivation returns, as in e.g. Java stack inspection. Thus, security contexts
are established by the current calling context.

7.1. A Transformation for Exceptions

Exceptions exist in Java, so a realistic application of our approach must
account for them. In this section we consider a �rst approximation
of the full exception feature set, where we assume there exists only
one anonymous exception in the language. The FJtrace language of
expressions is extended to include the form throw for throwing this
anonymous exception, and to include the form try{e1}catch{e2} for
handling thrown exceptions, yielding the language FJexn. The semantics
of FJexn are the semantics of FJtrace extended with the rules in Fig. 17,
where evaluation contexts E are as speci�ed in De�nition 5.5.

main.tex; 1/11/2006; 10:39; p.42

Types and Trace E�ects for Object Orientation 43

T-Throw

Γ, true, throw ` throw : [T C]

T-TryCatch
Γ, C, H1 ` e1 : [T C] Γ, C, H2 ` e2 : [T C]
Γ, C, H1 �H2 ` try{e1}catch{e2} : [T C]

Figure 18. Logical typing rules for exceptions

7.1.1. Logical Type System
To treat these new language forms in type analysis, we introduce two
new forms to the language of e�ects: throw to identify control �ow
points where an exception is thrown, and H1 �H2 to represent the e�ect
of handlers, where H1 represents the e�ect of the try clause, and H2

represents the e�ect of the catch clause. We endow these forms with
an LTS semantics appropriate to the behavior of exceptions, as follows:

throw; H ε−→ throw throw�H ε−→ H ε�H ε−→ ε

H1 �H2
a−→ H′

1 �H2 if H1
a−→ H′

1

The transition rules ensure that for any sequence of events H1; H2, if
H1 encounters a throw, then none of the events in H2 are reached.
Also, if H1 in the e�ect H1 �H2 of some handler encounters a throw
event, then the transition rules ensure that the e�ect H2 of the handling
clause is encountered. Otherwise, if H1 transitions safely to ε without
encountering a throw then the events in H2 are never encountered.

We also rede�ne the interpretation of trace e�ects as follows, to
account for the fact that e�ect computation may be terminated by
an uncaught exception:

JHKexn =
{a1 · · · an | H a1−→ · · · an−→ H′}

∪
{a1 · · · an ↓ | H

a1−→ · · · an−→ H′ where H′ ∈ {ε, throw}}

We refer to this interpretation as the exn interpretation of e�ects, as
opposed to the previous exn-free interpretation of e�ects. The de�nition
of primitive subtyping is modi�ed to accommodate this interpretation
of e�ects:

JHKexn ⊆ JH′Kexn
H 4�n H

′

Finally, we extend the logical type system to account for exceptions and
handlers, as in Fig. 18.

main.tex; 1/11/2006; 10:39; p.43

44 Christian Skalka

XZ f ε = {ε} , ∅
XZ f ev[i] = {ev[i]} , ∅

XZ f throw = ∅, {ε}
XZ f H1|H2 = let s1, t1 = f H1 in

let s2, t2 = f H2 in
s1 ∪ s2, t1 ∪ t2

XZ f H1; H2 = let s1, t1 = f H1 in
let s2, t2 = f H2 in
s1; s2, t1 ∪ (s1; t2)

XZ f H1 �H2 = let s1, t1 = f H1 in
let s2, t2 = f H2 in
s1 ∪ (t1; s2), t1; t2

XZ f µh.H = f H[µh.H/h]

Figure 19. The XZ combinator

While the exn interpretation of e�ects is a su�cient and appealing
approach to obtaining type safety, it has the drawback that throw
and H1 �H2 forms are non-standard and not treated by existing model-
checking techniques. Our solution to this is to transform FJexn e�ects
into FJtrace e�ects, such that the latter conservatively approximate the
former. In particular, we are interested in a class of functions we call exn
transformers, that take an e�ect H and return a pair of sets s, t of exn-
free trace e�ects, where s generates the safe traces in JHK that are not
terminated by a raised exception, and t generates the remaining throw
traces in JHK. To manipulate these sets in subsequent development, we
de�ne the following notation:

s1; s2 = {H1; H2 | H1 ∈ s1 and H2 ∈ s2} s[H/h] =
{
H′[H/h] | H′ ∈ s

}
join({H}) = H

join({H} ∪ s) = H|join(s)

We equate sets of e�ects up to their join interpretation, i.e. s = t i�
join(s) = join(t). Formally, we de�ne exn transformers as follows:

DEFINITION 7.1. An exn transformer is a total function f on trace
e�ects such that for all H, f(H) is a pair of trace e�ect sets (s, t) such
that JHKexn ⊆ Jjoin(s ∪ t)K.

We precisely characterize the behavior of exn transformers via the
combinator XZ de�ned in Fig. 19, clearly illustrating the relation be-
tween input and output of transformation of closed e�ects. For example,

main.tex; 1/11/2006; 10:39; p.44

Types and Trace E�ects for Object Orientation 45

T-Throw

Γ, true, throw `W throw : t

T-TryCatch
Γ, C, H1 `W e1 : [T C] Γ, D, H2 `W e2 : [S C]

Γ, C ∧D ∧ S<: t ∧ T<: t, H1 �H2 `W try{e1}catch{e2} : [t C]

Figure 20. Type inference rules for exceptions

all the throw paths of H1 are pre�xes of the safe and throw paths of H2

in the transform interpretation of H1 �H1, re�ecting its exn interpreta-
tion. An important consequence of the de�nition of XZ and the exn
interpretation of e�ects is:

LEMMA 7.1. Any �xpoint of XZ is an exn transformer.

It would be possible to show that XZ is monotonic, guaranteeing the
existence of an exn transformer. However, we will instead de�ne an
algorithm that is shown to be a �xpoint of XZ , providing a technique
for applying standard model checking techniques to FJexn type safety
enforcement.

7.1.2. Type Inference System
To obtain type inference for FJexn, we extend the FJtrace type inference
system with the rules speci�ed in Fig. 20 for language forms related to
exceptions. Also necessary is an extension of hextract to accommodate
new e�ect forms:

hextract(throw, hs) = throw

hextract(H1 �H2, hs) = hextract(H1, hs)�hextract(H2, hs)

This completes the logical speci�cation of the system, for which we
can demonstrate a subject reduction result as in Lemma 7.3 below.
But to apply standard model checking techniques to FJexn as discussed
above, we now de�ne an exn transformer. The core of it is a function
called exnize, de�ned in Fig. 21. Since termination in the algorithm
precludes unrolling of µ-bound e�ects, it must deal with free variables.
Thus, in addition to returning safe and throw paths, exnize returns a
set of e�ects called precursors. Precursors are safe paths that end in a
variable (tail recursive paths); they may be �pruned back� from other
paths (safe, throw, or recursive), since if a recursive call causes a throw,
everything after the call with be short-circuited until the �rst enclosing
handler. The idea is that precursors should be joined with throw paths

main.tex; 1/11/2006; 10:39; p.45

46 Christian Skalka

within a µ-binding, since any number of recursive calls can be made
before a throw is encountered; this yields µ-bound throw paths. For
example, given:

H , µh.ev[1]|(ev[2]; h; ev[3])|(ev[4]; throw; ev[5])

we yield the following safe and throw paths obtained from H:

safe: µh.ev[1]|(ev[2]; h; ev[3]) throw: µh.ev[4]|(ev[2]; h)

An added complication is that recursive calls h may precede other tail
recursions or throws in recursive or throw paths; the analysis replaces
these �inner� recursions with the safe recursive call paths of h, to obtain
safe preceding ground paths.

In more detail, the algorithm exnize, de�ned in Fig. 21, returns a
triple s, t, r, where s are the safe paths, t are the throw paths, and r are
the precursors, each represented as history e�ect sets. The exception
transformation is de�ned via some auxiliary functions, including map
and filter de�ned as usual (where the latter accepts only values that
match the given predicate). We also adapt a pattern-matching syntax,
so that functions (λ(H; h). . . .) match e�ect arguments of the form H; h;
we observe that precursors are guaranteed to be of the this form, by
de�nition of exnize and type inference.

At the top-level, the ultimate transformation is the join of the de-
duced safe and throw paths; note also that at the top-level, the set of
precursors should be empty. Thus, the exception transformation of an
e�ect H is implemented as:

let s, t, ∅ = exnize(H) in join(s ∪ t)

For brevity, we have excluded a special subcase of exnize(µh.H), where
the recursive call exnize(H) returns s, t, r such that s = ∅. However,
this is the case where every program control path through a function
throws an exception, which we believe will be rare, and can be easily
dealt with by modifying the case where s is not empty.

7.1.3. Properties
We now establish relevant results for the theory developed in this sec-
tion, in particular we demonstrate type soundness, and show that the
exnize transformation obtains a sound approximation of the exn inter-
pretation in the exn-free interpretation of e�ects.

Type soundness is proved by extending Lemma 5.3, in light of the
de�nitions above. In order to prove the R-Throw case, we observe that
the e�ect of an expression E[throw] will re�ect that throw is the ��rst
thing that happens�.

main.tex; 1/11/2006; 10:39; p.46

Types and Trace E�ects for Object Orientation 47

exnize(ε) = {ε} , ∅, ∅
exnize(ev[i]) = {ev[i]} , ∅, ∅

exnize(throw) = ∅, {ε} , ∅
exnize(h) = {h} , ∅, {h}

exnize(H1|H2) = let s1, t1, r1 = exnize(H1) in
let s2, t2, r2 = exnize(H2) in
s1 ∪ s2, t1 ∪ t2, r1 ∪ r2

exnize(H1; H2) = let s1, t1, r1 = exnize(H1) in
let s2, t2, r2 = exnize(H2) in
s1; s2, t1 ∪ (s1; t2), r1 ∪ (s1; r2)

exnize(H1 �H2) = let s1, t1, r1 = exnize(H1) in
let s2, t2, r2 = exnize(H2) in
s1 ∪ (t1; s2), t1; t2, r1 ∪ (t1; r2)

exnize(µh.H) = let s, t, r = exnize(H) in
let Hs = µh.join(s) in
let r′ = map (λ(H; h′) . H[Hs/h]; h′) r in
let rh = filter (λ(H; h′) . h′ = h) r′ in
let t′ = map (λH . µh.join({H[Hs/h]} ∪ rh)) t in
{Hs} , t′, r′ − rh

Figure 21. The exception transformation function exnize

LEMMA 7.2. If Γ, C, H ` E[throw] : T then C
 throw; H′ <: H.

This Lemma is proved in the identical manner as Lemma 5.19, since
evaluation context forms are conserved. Now, we can easily prove sub-
ject reduction for FJexn.

LEMMA 7.3 (FJexn Subject Reduction). If Γ, C, H ` e : [T C] is deriv-
able for closed e and well-formed Γ, and η, e → η′, e′, then Γ, C, H′ `
e′ : [T C] is derivable with C
 η′; H′ <: η; H.

Proof. Since the semantics of FJexn are conservative with respect to the
semantics of FJtrace, Lemma 5.3 implies the result for the exn-free subset
of FJexn. What remains is to prove theRC-Try,R-Try, andR-Catch,
and R-Throw cases. The �rst three follow in a straightforward manner
by de�nition of logical typing for exception handlers, the interpretation
of e�ects H1 �H2, and the induction hypothesis. The interesting case is
R-Throw, which goes as follows. We have e = E[throw], e′ = throw,
and η = η′, and by Lemma 7.2 it is the case that C
 throw; H′′ <: H for
some H′′. But Γ, C, throw ` throw : [T C] by T-Throw, and it is easy to

main.tex; 1/11/2006; 10:39; p.47

48 Christian Skalka

show that C
 throw<: throw; H′′, given the LTS semantics of throw,
therefore C
 η; throw<: η; throw; H′′ by Lemma 4.1. ut

Finally, we establish that exnize provides an exn transformer, via
the following Lemma.

LEMMA 7.4. (λx.let s, t, ∅ = exnize(x) in s, t) is an exn transformer.

We just need to show that the function is a �xpoint of XZ . Clearly, the
main issue is to prove that exnize deals with variables and the µh.H case
correctly. This is essentially established by the next auxiliary Lemma.

LEMMA 7.5. Let all identi�ers be as de�ned in the µh.H case of exnize,
and let s	, r	, t	 = exnize(H[µh.H/h]). Then:

1. s	 = s[Hs/h]

2. r	 = r′ − rh

3. t	 = (map (λH.H[Hs/h]) t) ∪ (
⋃

(map (λ(H;h).{H}; t′) rh))

4. join(s) = Hs

5. join(t) = join(t′)

Proof. (Sketch). Each property follows by a straightforward induction
on H, and (intuitively) since the computation of exnize(H[µh.H/h]) will
encounter µh.H in recursive calls, rather than h, hence the latter will be
replaced with appropriate parts of exnize(µh.H) in the transformation.
In essence, property (1) follows since the safe paths of exnize(H[µh.H/h])
will be the same as the safe paths of exnize(H), except with every
instance of h replaced with the safe paths of exnize(µh.H)� that is, Hs.
Property (2) follows since the only precursors in r′ not also returned
by exnize(H[µh.H/h]) will be those terminated by h� that is, rh� since
h is no longer free in H[µh.H/h]. Property (3) follows by de�nition of
the H1; H2 case of exnize, and since exnize(H[µh.H/h]) will encounter the
same throw terminated paths as exnize(H), except with the safe paths
of exnize(µh.H) substituted for internal occurrences of h, since free h
encountered by exnize(H) will instead be occurrences of µh.H. For the
same reason, the h-terminated precursors of exnize(H) will be treated
as safe pre�xes of throw paths of exnize(µh.H) in exnize(H[µh.H/h]).
Properties (4) and (5) follow immediately by (1) and (3) and properties
of e�ect equivalence as described in Lemma 4.1. ut

Now we can establish the precondition of the main result for exnize.

LEMMA 7.6. (λx.let s, t, ∅ = exnize(x) in s, t) is a �xpoint of XZ .

main.tex; 1/11/2006; 10:39; p.48

Types and Trace E�ects for Object Orientation 49

R-Invk
mbody(m, C) = x̄.e

ς, (new C(v̄)).m(ū) → ς :: ε, ·[ū/x̄, new C(v̄)/this]e·

R-Event

ς :: η, ev[i] → ς :: η; ev[i], ()
R-Pop

ς :: η, E[·v·] → ς, E[v]

Figure 22. The stack-based semantics of FJstack

Proof. All cases are trivial except the µh.H case, where it remains to
be shown that exnize(µh.H) = exnize(H[µh.H]) by de�nition of XZ� but
this case follows immediately by Lemma 7.5 (2), (4) and (5). ut

7.2. A Transformation for Stack-Based Policies

Rather than consistently accruing events in a trace, a stack-based model
can be de�ned where events generated by method activations are associ-
ated with the activation call-stack frame; when the activation is popped,
so are the associated events. This allows security decisions to be made
with respect to events in the current calling context. The Java stack
inspection (Gong et al., 1997) access control mechanism, for example,
is based on sequences of events on the call stack. A stack-based access
control model has additionally been combined with a history-based se-
curity mechanism in (Abadi and Fournet, 2003), and a static analysis for
enforcing general stack-based properties via temporal logic is presented
in (Besson et al., 2001). Direct type inference for a stack-based security
model has been studied previously, e.g. in (Skalka and Smith, 2000);
however, since security mechanisms such as that proposed in (Abadi and
Fournet, 2003) require both a history- and stack-based perspective, we
believe that our uniform approach is simpler than e.g. combining direct
stack- and history-based inference in such a context.

In this section, we observe that a stack-based security model can be
statically enforced, not by rede�ning the inference system discussed in
Sect. 6, but by an e�ect post-processing technique called stacki�cation.
Stacki�cation takes as input an e�ect that predicts the trace generated
by a program, and returns the stack contexts generated by a program.
The stack contexts generated by a program are formalized by re�guring
the FJtrace operational semantics with regard to stacks, rather than
histories, yielding the language model we call FJstack. Stack contexts
maintain a notion of ordering; hence stacks, which we denote ς, are
LIFO sequences of histories, and are either nil or constructed with a

main.tex; 1/11/2006; 10:39; p.49

50 Christian Skalka

stackify(ε) = ε
stackify(ε; H) = stackify(H)

stackify(ev[i]; H) = ev[i]; stackify(H)
stackify(h; H) = h|stackify(H)

stackify((µh.H1); H2) = (µh.stackify(H1)) | stackify(H2)
stackify((H1|H2); H) = stackify(H1; H) | stackify(H2; H)

stackify((H1; H2); H3) = stackify(H1; (H2; H3))
stackify(H) = stackify(H; ε)

Figure 23. The stackify algorithm

cons operator (::):

ς ::= nil | ς :: η trace stacks

The FJstack source language is identical to FJtrace, except that so-called
framed expressions ·e· are included, to delimit regions of code associated
with a stack frame. Stack frames are associated with activations in
keeping with the standard stack-based model. We also extend evaluation
contexts (De�nition 5.5) with the form ·E·. Thus, in the operational
semantics de�ned in Fig. 22, the rule governing method invocation,
R-Invk, will push a new frame on the stack, and delimit the code region
associated with the activation. Frames are popped, as in R-Pop, when
activations return the result of evaluation. Events are accrued in order
within an activation frame, as in R-Event.

Given this model, a static analysis in FJstack will approximate the
stack contexts that can be generated during program execution. As
mentioned above, we accomplish this by a stackify transformation,
which takes as input trace e�ects output by FJtrace type inference,
which is also applicable to FJstack source programs (framed expres-
sions are only generated at run-time). A phenomenon exploited by our
transformation is that the scope of inferred method e�ects is always
delimited by a µ-binding. This is because the hextract algorithm will
resolve any trace e�ect variable h as a µ-bound e�ect, and every method
is assigned a variable h as its e�ect during inference. In other words,
stack �pushes� and �pops� are implicitly recorded during inference as
the beginning and end of µ-scope.

This means that stackify , de�ned in Fig. 23, can use the syntax of
e�ects to recognize corresponding pushes and pops. Note that in the
transformation of µ-bound e�ects, any e�ects H2 following a µ-bound
e�ect H1 will be considered as part of a di�erent stack context, since H1

main.tex; 1/11/2006; 10:39; p.50

Types and Trace E�ects for Object Orientation 51

is associated with an activation that will be pushed and popped before
any events predicted by H2 can occur.

The stackify algorithm generally exploits a normal form represen-
tation of e�ects as a sequence H1; H2. The last three clauses use trace
e�ect equalities to massage trace e�ects into this normal form. Ob-
serve that the range of stackify consists of trace e�ects that are all
tail-recursive; stacks are therefore �nite-state transition systems and
more e�cient model-checking algorithms are possible for stacks than
for general histories (Esparza et al., 2001).

EXAMPLE 7.1. With a, b and c representing arbitrary events, and re-
sults of stacki�cation simpli�ed via e�ect equivalences to increase read-
ability:

stackify(a; b) = a; b stackify(a; (µh.b)) = a; b

stackify((µh.a); b) = a|b stackify(µh.a|(b; h)) = (µh.a|(b; h))|ε

stackify(µh.a|(h; b)) = (µh.a|b|h)|ε

In the second example, since µh.a precedes b, but µh.a denotes the e�ect
of a function call, stacki�cation speci�es that no events precede b since
a will be popped before encountering b. In the last example, since b is
preceded by h, which represents recursive µ-scope and hence a recursive
call, any events preceding b will be popped before b is encountered,
hence stacki�cation speci�es that no events precede b. The ε in the last
two examples is an artifact of the transformation, that could be cleaned
up with some minor alterations to stackify . Stacki�cation is thoroughly
discussed, and correctness of the approach rigorously established, in
application to a core functional calculus in (Skalka et al., 2006). Those
results can easily be adapted to the Object Oriented model presented
here.

8. Conclusion

In this section we conclude with a discussion of related work and some
�nal remarks.

8.1. Related Work

Previous work relevant to the application of trace based security models
has been noted in Sect. 1. A number of di�erent systems have been
developed to enforce trace based, or temporal, properties of program
execution. Perhaps the principal division between them is run-time

main.tex; 1/11/2006; 10:39; p.51

52 Christian Skalka

(Schneider, 2000; Abadi and Fournet, 2003) vs. compile-time (Ball and
Rajamani, 2000; Chen and Wagner, 2002; Besson et al., 2001; Schmidt,
1998) veri�cation. The focus of this paper is on the latter, which have in
common the idea of extracting an abstract interpretation of some form
from a program and verifying properties of that abstraction. The MOPS
system (Chen and Wagner, 2002) compiles C programs to Push-down
Automata (PDAs) re�ecting the program control �ow, where transitions
are program transitions and the automaton stack abstracts the program
call stack. (Jensen et al., 1999; Besson et al., 2001) assume that some
(unde�ned) algorithm has already converted a program to a control �ow
graph, expressed as a form of PDA.

These aforementioned abstractions work well for procedural pro-
grams, but are not powerful enough to fully address advanced language
features such as higher order functions and objects. Our type and ef-
fect (Talpin and Jouvelot, 1992; Amtoft et al., 1999) approach, on the
other hand, allows abstract interpretation of higher order (Skalka and
Smith, 2004) and Object Oriented programs. Trace e�ects yielded by
the analysis provide a conservative approximation of trace behavior
via an LTS (Labelled Transition System) interpretation. This allows
the expression of program assertions as temporal logical formulae and
the automated veri�cation of assertions via model-checking techniques
(Ste�en and Burkart, 1992).

Some of the aforecited systems also automatically verify assertions
at compile-time via model-checking, including (Ball and Rajamani,
2000; Chen and Wagner, 2002; Besson et al., 2001), though none of
these de�ne a rigorous process for extracting an LTS from higher order
or Object Oriented programs. In these works, the speci�cations are
temporal logics, regular languages, or �nite automata, and the abstract
control �ow is extracted as an LTS in the form of a �nite automaton,
grammar, or PDA. These particular formats are chosen because these
combinations of logics and abstract interpretations can be automatically
model-checked.

Security automata (Schneider, 2000) use �nite automata for the
speci�cation and run-time enforcement of language safety properties.
Systems have also been developed for statically verifying correctness
of security automata using dependent types (Walker, 2000) and in
a more general form as re�nement types (Mandelbaum et al., 2003).
These systems do not extract any abstract interpretations, so are in a
somewhat di�erent category than the aforementioned (and our) work.

Logical assertions can be local, concerning a particular program
point, or global, de�ning the whole behavior required. However, ac-
cess control systems (Wallach and Felten, 1998; Abadi and Fournet,
2003; Edjlali et al., 1998), use local checks. Since we are interested in

main.tex; 1/11/2006; 10:39; p.52

Types and Trace E�ects for Object Orientation 53

the static enforcement of access control mechanisms, the focus in this
paper is on local, compile-time checkable assertions, though in principle
the veri�cation of global properties is possible in our system. Related
work has also modi�ed our basic approach to enforce �policy framings�
that support so-called local liveness properties (Bartoletti et al., 2005b).

Perhaps the most closely related work is (K. Marriott and Sulzmann,
2003), which proposes a similar type and e�ect system and type infer-
ence algorithm, but their �resource usage� abstraction is of a markedly
di�erent character, based on grammars rather than LTSs. Their sys-
tem lacks parametric polymorphism, which restricts expressiveness in
practice, and veri�es global, rather than local, assertions. Furthermore,
their system analyzes only history-based properties, not stack-based
properties as in our system. The system of (Igarashi and Kobayashi,
2002) is based on linear types, not e�ect types. Their usages U are
similar to our history e�ects H, but the usages have a much more
complex grammar and appear to have no real gain in expressiveness.
Their speci�cation logic is left abstract, thus they provide no automated
mechanism for expressing or deciding assertions. Also, both of these
systems are developed in functional, not Object Oriented, language
models.

The systems in (Colcombet and Fradet, 2000; Besson et al., 2002;
Jensen et al., 1999; Besson et al., 2001) use LTSs extracted from control-
�ow graph abstractions to model-check program security properties
expressed in temporal logic. Their approach is close in several respects,
but we are primarily focused on the programming language as opposed
to the model-checking side of the problem. Their analyses assume the
pre-existence of a control-�ow graph abstraction, which is in the for-
mat for a �rst-order program analysis only. Our type-based approach
is de�ned directly at the language level, and type inference provides
an explicit, scalable mechanism for extracting an abstract program
interpretation, which is applicable to Object Oriented features. Fur-
thermore, polymorphic e�ects are inferable in our system and events
may be parameterized by constants so partial data�ow information can
be included. We believe our results are critical to bringing this general
approach to practical fruition for production programming languages
such as ML and Java (Skalka et al., 2005; Skalka, 2005).

Another important related work is (Higuchi and Ohori, 2006), where
a type system for static enforcement of stack inspection is developed
for Java bytecode. In particular, they address issues related to dynamic
dispatch and linking that are similar to those discussed in Sect. 2,
although our system treats a more general class of program properties
than stack inspection. Also, their system essentially relies on the �join
of all e�ects� approach discussed in Sect. 2 for dynamically dispatched

main.tex; 1/11/2006; 10:39; p.53

54 Christian Skalka

method typings, whereas we develop a more accurate solution based on
parametric polymorphism.

Some recent work (Logozzo, 2004; Alur et al., 2005) has focused
on analyzing patterns of method invocations for model checking safety
properties of Object Oriented programs, although traces in these works
are represented as regular expressions, not LTSs. While there are some
similarities in their approaches and applications, we believe that our
system is the �rst to consider the extension of trace e�ects per se
to Object Oriented programs, as a technique for statically verifying
assertions in a general event trace program logic.

8.2. Summary

We have de�ned the language FJtrace, a version of Featherweight Java
(FJ) extended with event traces and checks, which are local assertions
imposing well-formedness properties on traces. This provides a foun-
dation for a general logic of trace based program properties in Object
Oriented languages such as Java. We have de�ned a static type and ef-
fect analysis that automatically generates conservative approximations
of FJtrace program trace behavior, called trace e�ects. Trace e�ects are
endowed with a label transition system semantics, and are therefore
amenable to model checking for static veri�cation of asserted trace
based properties. The analysis is sound, in that static veri�cation of
program trace e�ects guarantees success of dynamic checks.

The Object Oriented paradigm presents several challenges to trace
e�ect analysis, including complications due to inheritance, method over-
ride, and dynamic dispatch. In particular, we have observed that dif-
ferent versions of methods in a given class hierarchy should not be
required to agree in their trace e�ects, since this requirement would be
overly restrictive. We have proposed a particular application of para-
metric polymorphism to promote �exibility in the presence of dynamic
dispatch. We have also shown that a novel de�nition of subtyping con-
straints in a regular tree model can be used for �exibility in application
to Object Oriented program features, including dynamically checked
downcasts.

In addition to a basic Object Oriented model based on FJ, we
have considered extensions including exceptions and stack-based se-
curity contexts. Transformations of inferred trace e�ects were de�ned,
that were demonstrated to faithfully re�ect the behavior of these exten-
sions. This provides additional evidence that trace e�ects are scalable
static representations of program trace behavior, well suited to a general
purpose Object Oriented model.

main.tex; 1/11/2006; 10:39; p.54

Types and Trace E�ects for Object Orientation 55

References

Abadi, M. and C. Fournet: 2003, `Access Control Based on Execution History'.
In: Proceedings of the 10th Annual Network and Distributed System Security
Symposium (NDSS'03).

Alur, R., P. Cerny, P. Madhusudan, and W. Nam: 2005, `Synthesis of interface
speci�cations for Java classes'. In: POPL '05: Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of programming languages. pp.
98�109, ACM Press.

Amtoft, T., F. Nielson, and H. R. Nielson: 1999, Type and E�ect Systems. Imperial
College Press.

Ball, T. and S. K. Rajamani: 2000, `Bebop: A Symbolic Model Checker for Boolean
Programs'. In: SPIN. pp. 113�130.

Bartoletti, M., P. Degano, and G. L. Ferrari: 2005a, `Enforcing Secure Service
Composition.'. In: CSFW. pp. 211�223, IEEE Computer Society.

Bartoletti, M., P. Degano, and G. L. Ferrari: 2005b, `History-Based Access Control
with Local Policies.'. In: V. Sassone (ed.): FoSSaCS, Vol. 3441 of Lecture Notes
in Computer Science. pp. 316�332, Springer.

Bartoletti, M., P. Degano, and G. L. Ferrari: 2005c, `Policy framings for access
control'. In: WITS '05: Proceedings of the 2005 workshop on Issues in the theory
of security. pp. 5�11, ACM Press.

Besson, F., T. de Grenier de Latour, and T. Jensen: 2002, `Secure calling contexts
for stack inspection'. In: Proceedings of the Fourth ACM SIGPLAN Conference
on Principles and Practice of Declarative Programming (PPDP'02). pp. 76�87,
ACM Press.

Besson, F., T. Jensen, D. L. Métayer, and T. Thorn: 2001, `Model checking security
properties of control �ow graphs'. J. Computer Security 9, 217�250.

Bruce, K. B., L. Cardelli, G. Castagna, J. Eifrig, S. F. Smith, V. Trifonov, G. T.
Leavens, and B. C. Pierce: 1995, `On Binary Methods'. Theory and Practice of
Object Systems 1(3), 221�242.

Burkart, O., D. Caucal, F. Moller, , and B. Ste�en: 2001, `Veri�cation on In�nite
Structures'. In: S. S. J. Bergstra, A. Pons (ed.): Handbook on Process Algebra.
North-Holland.

Cartwright, R. and M. Fagan: 1991, `Soft typing'. In: Proceedings of the ACM SIG-
PLAN 1991 conference on Programming language design and implementation.
pp. 278�292, ACM Press.

Chen, H. and D. Wagner: 2002, `MOPS: an Infrastructure for Examining Security
Properties of Software'. In: Proceedings of the 9th ACM Conference on Computer
and Communications Security. Washington, DC, pp. 235�244.

Colcombet, T. and P. Fradet: 2000, `Enforcing Trace Properties by Program Trans-
formation'. In: 27th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. pp. 54�66.

Damas, L. and R. Milner: 1982, `Principal type-schemes for functional programs'.
In: ACM Symposium on Principles of Programming Languages (POPL). pp.
207�212.

Edjlali, G., A. Acharya, and V. Chaudhary: 1998, `History-Based Access Control for
Mobile Code'. In: ACM Conference on Computer and Communications Security.
pp. 38�48.

Eifrig, J., S. Smith, and V. Trifonov: 1995, `Type Inference for Recursively Con-
strained Types and its Application to OOP'. In: Mathematical Foundations

main.tex; 1/11/2006; 10:39; p.55

56 Christian Skalka

of Programming Semantics, Vol. 1 of Electronic Notes in Theoretical Computer
Science. Elsevier Science.

Esparza, J., A. Kucera, and S. Schwoon: 2001, `Model-Checking LTL with Regular
Valuations for Pushdown Systems'. In: TACS: 4th International Conference on
Theoretical Aspects of Computer Software.

Foster, J. S., T. Terauchi, and A. Aiken: 2002, `Flow-Sensitive Type Quali�ers'. In:
Proceedings of the 2002 ACM SIGPLAN Conference on Programming Language
Design and Implementation. Berlin, Germany, pp. 1�12.

Gong, L., M. Mueller, H. Prafullchandra, and R. Schemers: 1997, `Going Beyond
the Sandbox: An Overview of the New Security Architecture in the Java Devel-
opment Kit 1.2'. In: USENIX Symposium on Internet Technologies and Systems.
Monterey, CA, pp. 103�112.

Higuchi, T. and A. Ohori: 2006, `A static type system for JVM access control'.
toplas. To appear.

Holzmann, G. J. and M. H. Smith: 2001, `Software model checking: extracting ver-
i�cation models from source code'. Software Testing, Veri�cation & Reliability
11(2), 65�79.

Igarashi, A. and N. Kobayashi: 2002, `Resource Usage Analysis'. In: Confer-
ence Record of POPL'02: The 29th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. Portland, Oregon, pp. 331�342.

Igarashi, A., B. C. Pierce, and P. Wadler: 2001, `Featherweight Java: a minimal core
calculus for Java and GJ'. ACM Trans. Program. Lang. Syst. 23(3), 396�450.

Jensen, T., D. L. Métayer, and T. Thorn: 1999, `Veri�cation of Control Flow Based
Security Properties'. In: Proceedings of the 1999 IEEE Symposium on Security
and Privacy.

K. Marriott, P. J. S. and M. Sulzmann: 2003, `Resource Usage Veri�cation'. In:
Proc. of First Asian Programming Languages Symposium, APLAS 2003.

Logozzo, F.: 2004, `Separate Compositional Analysis of Class-based Object-oriented
Languages'. In: Proceedings of the 10th International Conference on Algebraic
Methodology And Software Technology (AMAST'2004), Vol. 3116 of Lectures
Notes in Computer Science. pp. 332�346, Springer-Verlag.

Mandelbaum, Y., D. Walker, and R. Harper: 2003, `An E�ective Theory of Type
Re�nements'. In: Proceedings of the the Eighth ACM SIGPLAN International
Conference on Functional Programming (ICFP'03). Uppsala, Sweden.

Palsberg, J. and P. O'Keefe: 1995, `A type system equivalent to �ow analysis'. In:
POPL '95: Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. New York, NY, USA, pp. 367�378, ACM
Press.

Palsberg, J. and S. Smith: 1996, `Constrained types and their expressiveness'. ACM
Transactions on Programming Languages and Systems 18(5), 519�527.

Schmidt, D. A.: 1998, `Trace-Based Abstract Interpretation of Operational Seman-
tics'. Lisp and Symbolic Computation 10(3), 237�271.

Schneider, F. B.: 2000, `Enforceable security policies'. Information and System
Security 3(1), 30�50.

Skalka, C.: 2005, `Trace e�ects and object orientation'. In: PPDP '05: Proceedings
of the 7th ACM SIGPLAN international conference on Principles and practice
of declarative programming. New York, NY, USA, pp. 139�150, ACM Press.

Skalka, C. and S. Smith: 2000, `Static Enforcement of Security with Types'. In: Pro-
ceedings of the the Fifth ACM SIGPLAN International Conference on Functional
Programming (ICFP'00). Montréal, Canada, pp. 34�45.

main.tex; 1/11/2006; 10:39; p.56

Types and Trace E�ects for Object Orientation 57

Skalka, C. and S. Smith: 2004, `History E�ects and Veri�cation'. In: Asian
Programming Languages Symposium. Springer.

Skalka, C., S. Smith, and D. Van Horn: 2005, `A Type and E�ect System for Flexible
Abstract Interpretation of Java'. In: Proceedings of the ACM Workshop on
Abstract Interpretation of Object Oriented Languages.

Skalka, C., S. Smith, and D. Van Horn: 2006, `Types and Trace E�ects for Higher
Order Programs'. Technical Report CS-06-03, The University of Vermont.

Ste�en, B. and O. Burkart: 1992, `Model Checking for Context-Free Processes'. In:
CONCUR'92, Stony Brook (NY), Vol. 630 of Lecture Notes in Computer Science
(LNCS). Heidelberg, Germany, pp. 123�137, Springer-Verlag.

Talpin, J.-P. and P. Jouvelot: 1992, `The Type and E�ect Discipline'. In: Seventh
Annual IEEE Symposium on Logic in Computer Science, Santa Cruz, California.
Los Alamitos, California, pp. 162�173, IEEE Computer Society Press.

Trifonov, V. and S. Smith: 1996, `Subtyping Constrained Types'. In: Proceedings
of the Third International Static Analysis Symposium, Vol. 1145. pp. 349�365,
Springer Verlag.

Walker, D.: 2000, `A Type System for Expressive Security Policies'. In: Confer-
ence Record of POPL'00: The 27th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. Boston, Massachusetts, pp. 254�267.

Wallach, D. S. and E. Felten: 1998, `Understanding Java Stack Inspection'. In:
Proceedings of the 1998 IEEE Symposium on Security and Privacy.

main.tex; 1/11/2006; 10:39; p.57

