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Abstract. Dynamic taint analysis is often used as a defense against low-integrity data in applications with untrusted user
interfaces. An important example is defense against XSS and injection attacks in programs with web interfaces. Data sanitization
is commonly used in this context, and can be treated as a precondition for endorsement in a dynamic integrity taint analysis.
However, sanitization is often incomplete in practice. We develop a model of dynamic integrity taint analysis for Java that
addresses imperfect sanitization with an in-depth approach. To avoid false positives, results of sanitization are endorsed for
access control (aka prospective security), but are tracked and logged for auditing and accountability (aka retrospective security).

We show how this heterogeneous prospective/retrospective mechanism can be specified as a uniform policy, separate from
code. We then use this policy to establish correctness conditions for a program rewriting algorithm that instruments code for
the analysis. These conditions synergize our previous work on the semantics of audit logging with explicit integrity which is
an analogue of noninterference for taint analysis. A technical contribution of our work is the extension of explicit integrity
to a high-level functional language setting with structured data, vs. previous systems that only address low level languages
with unstructured data. Our approach considers endorsement which is crucial to address sanitization. An implementation of
our rewriting algorithm is presented that hardens the OpenMRS medical records software system with in-depth taint analysis,
along with an empirical evaluation of the overhead imposed by instrumentation. Our results show that this instrumentation is
practical.

Keywords: Auditing, Dynamic taint analysis, Program rewriting

1. Introduction

Dynamic taint analysis implements a “direct” or “explicit” information flow analysis to support a
variety of security mechanisms [1]. Similar to information flow, taint analysis can be used to support
either confidentiality or integrity properties. An important application of integrity taint analysis is to
prevent the execution of security sensitive operations on untrusted data, in particular to combat cross-site
scripting (XSS) and SQL injection attacks in web applications [2]. Any untrusted user input is marked
as tainted, and then taint is tracked and propagated through data flow to ensure that tainted data is not
used by security sensitive operations.

Of course, since web applications aim to be interactive, user input is needed for certain security sen-
sitive operations such as database calls. To combat this, sanitization is commonly applied in practice to
analyze and possibly modify data. From a taint analysis perspective, sanitization is a precondition for in-
tegrity endorsement, i.e. subsequently viewing sanitization results as high integrity data. However, while
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sanitization is usually endorsed as “perfect” by taint analysis, in fact it is not. Indeed, previous work has
identified a number of flaws in existing sanitizers in a variety of applications [2, 3]. The work here is
in fact inspired by discovery of an XSS attack vector in the OpenMRS medical records software sys-
tems due to incomplete sanitization, discussed below in Section 1.1. We call such incomplete sanitizers
partially trusted or imperfect throughout the paper.

Thus, a main challenge we address is how to mitigate imperfect sanitization in taint analysis. An im-
portant feature of our approach is an in-depth [4] security policy, that combines the typical blocking
(prospective) behavior of taint-based access control with audit logging (retrospective) features. In the
presence of imperfect sanitization, this allows false positives to be avoided, while still providing ret-
rospective security measures via audit logs in case of attacks that leverage this imperfection. We are
concerned with both efficiency and correctness– we develop a language model intended to capture the
essence of Phosphor [5, 6], an existing Java taint analysis system with empirically demonstrated effi-
ciency. We define a source code language based on Featherweight Java (FJ) [7], and propose a rewriting
algorithm that instruments code with support for in-depth integrity taint analysis in the presence of
partially trusted sanitization. This model forms the basis for development of a real implementation of
in-depth taint analysis for OpenMRS, also discussed in this paper.

A contribution of our approach is a uniform expression of an in-depth security policy that combines
prospective (taint analysis) and retrospective (audit logging) policy features, and proof that our rewriting
algorithm enforces this policy. To characterize retrospective correctness we leverage our previous work
on the the semantics of retrospective security [8]. To characterize prospective correctness, we aim to go
deeper than operational definitions [1, 9] and characterize correctness as a true security property. To this
end we propose a semantic framework called explicit integrity, which is an extension of explicit secrecy
[10] to a high-level (Java) language model with structured data. Both explicit secrecy and integrity are
defined independently of language-level instrumentation, and (like e.g. information flow noninterfer-
ence) are hyperproperties [11]. Intuitively, if a program satisfies explicit integrity, then it is guaranteed
that data from low-integrity sources does not directly (i.e. explicitly) flow into high-integrity sinks. Fur-
thermore, we consider the variant explicit integrity modulo endorsement, since endorsement is necessary
in the taint analysis to accurately reflect the results of sanitization.

1.1. Vulnerability and Countermeasures

While our work is based on formal foundations it is inspired by practical concerns, in particular a
security flaw we discovered in a previous version (2.4) of OpenMRS originally reported in [12]1. This
flaw allows an attacker to launch persistent XSS attacks. When a web-based software receives and stores
user input without proper sanitization, and later retrieves this information for (other) users, persistent
XSS attacks could take place.

OpenMRS uses a set of validators to enforce expected data formats by implementation of the
Validator interface (e.g., PersonNameValidator, VisitTypeValidator, etc.). For some
of these classes the implementation is strict enough to reject script tags by enforcing data to match
a particular regular expression, e.g., PersonNameValidator. However, VisitTypeValidator
lacks such restriction and only checks for object fields to avoid being null, empty or whitespace, and
their lengths to be correct. Thus the corresponding webpage that receives user inputs to construct

1We responsibly disclosed the vulnerabilities we found to the OpenMRS development community, and they have been cor-
rected in current versions.
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VisitType objects (named VisitTypeForm.jsp) is generally not able to perform proper sanitiza-
tion through the invocation of the validator implemented by VisitTypeValidator. A VisitType
object is then stored in the MySQL database, and could be retrieved later based on user request. For in-
stance, VisitTypeList.jsp queries the database for all defined VisitType objects, and sends
VisitType names and descriptions to the client side. Therefore, the attacker can easily inject scripts
as part of VisitType name and/or description, and the constructed object would be stored in the
database and possibly in a later stage retrieved and executed in the victim’s client environment.

Integrity taint tracking is a well-recognized solution against these sorts of attacks. In our example,
using taint analysis the tainted VisitType object would be prevented from retrieval and execution.
The addition of sanitization methods would also be an obvious step, and commensurate with an integrity
taint analysis approach– sanitized objects would be endorsed for the purposes of prospective security.
However, many attack scenarios demonstrate degradation of taint tracking effectiveness due to unsound
or incomplete input sanitization [2, 3].

To support integrity taint analysis in the presence of incomplete sanitization for legacy code, we pro-
pose a program rewriting approach, which is applicable to systems such as OpenMRS. Our program
rewriting algorithm takes as input a heterogeneous (prospective and retrospective) taint analysis policy
specification and input code, and instruments the code to support the policy. The policy allows user
specification of taint sources, secure sinks, and sanitizers. A distinct feature of our system is that results
of sanitization are considered “maybe tainted” data, which are allowed to flow into security sensitive
operations but in such cases are entered in a log to support auditing and accountability.

1.2. The Security and Threat Model

The security problem we consider is about the integrity of data being passed to security sensitive oper-
ations (SSOs). An important example is a string entered by an untrusted user that is passed to a database
method for parsing and execution as a SQL command. The security mechanism should guarantee that
low-integrity data cannot be passed to SSOs without previous sanitization.

In contrast to standard information flow which is concerned with both direct (aka explicit) and in-
direct (aka implicit) flows, taint analysis is only concerned with direct flow. Direct flows transfer data
directly between variables, e.g., n1 and n2 directly affect the result of n1 + n2. Indirect flows are real-
ized when data can affect the result of code dispatch– the standard example is a conditional expression
if v then e1 else e2 where the data v indirectly affects the valuation of the expression by guarding dis-
patch.

More precisely, we posit that top-level programs p in this security setting are parameterized by a
low integrity data source a, and an arbitrary number of secure sinks (SSOs) and sanitizers which are
specified externally to the program by a security administrator. For simplicity we assume that SSOs are
unary operations over primitive objects, so there is no question about which argument may be tainted.
Since we define a Java based model, each SSO or sanitizer is identified as a specific method m in a class
C. That is, there exists a set of Sanitizers containing class, method pairs C.m which are assumed to return
high-integrity data, though they may be passed low-integrity data. Likewise, there exists a set of SSOs
of the same form, and for brevity we will write sso(e) for a method invocation v.m(e) on some object
v where C.m ∈ SSO. As a sanity condition we require SSO ∩ Sanitizers = ∅. For simplicity of our
formal presentation we assume that only one tainted source will exist. Explicit integrity, as a high-level
property, is instantiated for this model.

We assume that our program rewriting algorithm is trusted. Input code is trusted to be not malicious,
though it may contain errors. We note that this assumption is important for application of taint analysis
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that disregards indirect flows, since there is confidence that the latter will not be exploited (even acci-
dentally) as a side-channel attack vector by non-malicious code. We assume that untrusted data sources
provide low integrity data, though in this work we only consider tainted “static” values, e.g., strings,
not tainted code that may be run as part of the main program execution. However, the latter does not
preclude hardening against XSS or injection attacks in practice, if we consider an evaluation method to
be an SSO.

1.3. Overview and Main Technical Results of this Paper

The technical development of the paper proceeds as follows. In Section 2 we describe a formal se-
mantics of auditing, and the conditions for correctness of audit rewriting algorithms. That is, we define
what it means for a program instrumentation to correctly log information. In Section 2.1, we introduce
information algebra [13] as the basis of our model for correct audit log generation. We characterize log-
ging specifications and correctness conditions for audit logs in a high-level manner using information
algebra, and show how information elements and operations can be instantiated using first order logic.

In Section 3 we develop a source language model based on featherweight Java (Section 3.1), called
FJ. We show how to logically specify an in-depth taint analysis policy separately from code in Section 4
via safety property and logging specifications. In Section 3.2 we develop a target language model FJtaint
with instrumentation for operationally enforcing an in-depth taint analysis, which we show to be correct
according to our formal condition in Section 4.2, with our main result being Theorem 4.1.

While Theorem 4.1 establishes correctness conditions for information in audit logs in an operational
sense, Section 5 focuses on the high level security property of dynamic integrity taint analysis. In Section
5.4, we show that our enforcement mechanism satisfies the hyperproperty of explicit integrity modulo
endorsement (Theorem 5.1). In Section 6 we discuss our implementation of the in-depth taint analysis
specification presented in Section 4 for the OpenMRS medical records system. We also describe experi-
ments for empirical evaluation of this implementation and discuss results. In Section 7 we conclude the
paper.

For the sake of brevity, we have elided the proofs of all Lemmas and Theorems. Readers are referred
to our accompanying Technical Report [14] for these details in full.

1.4. Related Work

Some of the results in this paper were discussed in a preliminary manuscript [12], but the current
work provides a fully developed metatheory, a formulation of the high-level security policy enforced
by our system (explicit integrity modulo endorsement), and a complete implementation and empirical
evaluation.

Taint analysis is an established solution to enforce confidentiality and integrity policies through direct
data flow control. Various systems have been proposed for both low and high level level languages. Our
policy language and semantics are based on a well-developed formal foundation, where we interpret
Horn clause logic as an instance of information algebra [15] in order to specify and interpret retrospective
policies. The work presented in this paper supersedes a previous presentation [12]– in the current paper
we extend our language model, provide more rigorous proofs of correctness of policy enforcement,
consider the hyperproperty of taint analysis in a model of Java, and report on a prototype implementation.

Schwartz et al. [1] define a general model for runtime enforcement of policies using taint tracking for
an intermediate language. In Livshits et al. [9], taint analysis is expressed as part of operational seman-
tics, similar to Schwartz et al., and a taxonomy of taint tracking is defined. Livshits et al. [2] propose a
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solution for a range of vulnerabilities regarding Java-based web applications, including SQL injections,
XSS attacks and parameter tampering, and formalize taint propagation including sanitization. The work
uses PQL [16] to specify vulnerabilities. However, these works are focused on operational definitions
of taint analysis for imperative languages. In contrast we have developed a logical specification of taint
analysis for a functional OO language model that is separate from code, and is used to establish correct-
ness of an implementation. Our work also comprises a unique retrospective component to protect against
incomplete input sanitization. According to earlier studies [2, 3], incomplete input sanitization makes a
variety of applications susceptible to injection attacks.

Another related line of work is focused on the optimization of integrity taint tracking deployment
in web-based applications. Sekar [17] proposes a taint tracking mechanism to mitigate injection at-
tacks in web applications. The work focuses on input/output behavior of the application, and proposes
a lower-overhead, language-independent and non-intrusive technique that can be deployed to track taint
information for web applications by blackbox taint analysis with syntax-aware policies. In our work,
however, we propose a deep instrumentation technique to enforce taint propagation in a layered in-depth
fashion. Wei et al. [18] attempt to lower the memory overhead of TaintDroid taint tracker [19] for An-
droid applications. The granularity of taint tracking places a significant role in the memory overhead.
To this end, TaintDroid trades taint precision for better overhead, e.g., by having a single taint label for
an array of elements. Our work reflects a more straightforward object-level taint approach in line with
existing Java approaches.

Saxena et al. [20] employ static techniques to optimize dynamic taint tracking done by binary in-
strumentation, through the analysis of registers and stack frames. They observe that it is common for
multiple local memory locations and registers to have the same taint value. A single taint tag is used
for all such locations. A shadow stack is employed to retain the taint of objects in the stack. Cheng et
al. [21] also study the solutions for taint tracking overhead for binary instrumentation. They propose a
byte to byte mapping between the main and shadow memory that keeps taint information. Bosman et
al. [22] propose a new emulator architecture for the x86 architecture from scratch with the sole purpose
of minimizing the instructions needed to propagate taint. Similar to Cheng et al. [21], they use shadow
memory to keep taint information, with a fixed offset from user memory space. Zhu et al. [23] track taint
for confidentiality and privacy purposes. In case a sensitive input is leaked, the event is either logged,
prohibited or replaced by some random value. We have modeled a similar technique for an OO language,
through high level logical specification of shadow objects, so that each step of computation is simulated
for the corresponding shadow expressions.

Particularly for Java, Chin et al. [24] propose taint tracking of Java web applications in order to prohibit
injection attacks. To this end, they focus on strings as user inputs, and analyze the taint in character
level. For each string, a separate taint tag is associated with each character of the string, indicating
whether that character was derived from untrusted input. The instrumentation is only done on the string-
related library classes to record taint information, and methods are modified in order to propagate taint
information. Haldar et al. [25] propose an object-level tainting mechanism for Java strings. They study
the same classes as the ones in Chin et al. [24], and instrument all methods in these classes that have some
string parameters and return a string. Then, the returned value of an instrumented method is tainted if at
least one of the argument strings is tainted. However, in contrast to our work, only strings are endowed
with integrity information, whereas all values are assigned integrity labels in our approach. Recently
Bodei et al. [26] have proposed a static enforcement mechanism for taint analysis in IoT devices which
predicts the propagation of taint in the system according to the flow of control. These previous works
lack retrospective features.
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Recent work has also considered static analysis for ensuring proper context-based sanitization of user
input data to defend against XSS attacks, in the JSPChecker system [27]. While this work refines what is
meant by “correct” sanitization, it relies on static analysis and thus introduces false positives. In contrast,
we propose a runtime tool that marks data generated by imperfect sanitizers for postfacto analysis. Our
work is more general in the sense that it can be used for any category of integrity data flow vulnerabilities
including XSS.

Phosphor [5, 6] is an attempt to apply taint tracking more generally in Java, to any primitive type and
object class. Phosphor instruments the application and libraries at bytecode level based on a given list
of taint source and sink methods. Input sanitizers with endorsement are not directly supported, however.
As Phosphor avoids any modifications to the JVM, the instrumented code is still portable. Our work is
an attempt to formalize Phosphor in FJ extended with input sanitization and in-depth enforcement. Our
larger goal is to develop an implementation of in-depth dynamic integrity analysis for Java by leveraging
the existing Phosphor system.

Secure information flow [28] and its interpretation as the well-known hyperproperty [11] of noninter-
ference [29] is challenging to implement in practical settings [30] due to implicit flows. Taint analysis
is thus an established solution to enforce confidentiality and integrity policies since it tracks only di-
rect data flow control. Various systems have been proposed for both low and high level level languages.
The majority of previous work, however, has been focused on taint analysis policy specification and en-
forcement (e.g., [1, 9, 18, 31]), rather than capturing the essence of direct information flow which could
provide an underlying framework to study numerous taint analysis tools.

Knowledge-based semantics has been introduced by Askarov et al. [32] as a general model for in-
formation flow of confidential data, concentrated on cryptographic computations and key release (de-
classification [33]) and later employed in other data secrecy analyses [34–36]. Schoepe et al. [10] have
proposed the semantic notion of correctness for taint tracking that enforces confidentiality policies of
direct information flow, called explicit secrecy. To this end, they propose a knowledge-based semantics,
influenced by Volpano’s weak secrecy [37] and gradual release [32]. Explicit secrecy is defined as a
property of a program, where the program execution does not change the explicit knowledge of public
user. The authors show that noninterference is not comparable to explicit secrecy. However, rather than
restricting the discussion to direct information flow in a low level language, we model a high level OO
language with a functional flavor to represent generality of our framework.

Schoepe et al. [38] have recently employed explicit secrecy to study correctness results for dynamic
confidentiality taint analysis in a core imperative setting with pointers and I/O, and deployed a Java-
based tool, called DroidFace. A recent framework by Balliu et al. [39] attempts to bring together the
general information flow and direct flow analyses using a security condition that models indirect flows
which are observable by a low confidentiality user.

A counterpart for attacker knowledge in the realm of general flow of information integrity, called
attacker power [36], is introduced as the set of low integrity inputs that generate the same observables.
In this regard, Askarov et al. [36] use holes in the syntax of program code for injection points, influenced
by [40]. However, their attack model is different as the low integrity and low confidentiality user is able
to inject program code in the main program, by which she could gain more knowledge. We have tailored
attacker power for explicit flows using state transformers, in order to interpret integrity taint analysis.

Birgisson et al. [41] give a unified framework to capture different flavors of integrity, in particular
integrity via information flow and via different types of invariance. Similar to other works in this line,
they give a simple imperative language with labeled operational semantics in order to enforce integrity
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policies through communication with a monitor. In contrast, we use program rewriting techniques to
enforce policies regarding flow of data integrity, which are applicable to legacy systems.

In addition to formal properties of direct information flow, our formulation of correctness conditions
also considers a formalization of audit logging based on our previous work [8], which considered a safety
property unrelated to taint analysis. Other authors have recently considered formal characterizations of
auditing based on logics of justification [42, 43]. In contrast, we consider a specific security application
of auditing in combination with taint analysis where audit logs are “extralinguistic” vestiges of program
computation, whereas these related works consider programs that are able to reflect on their own audit
trails, which is a distinct theoretical problem.

2. Foundations for In-Depth Policy Specification

In this section we establish formal foundations for a semantics of prospective and retrospective policy
features. More specifically, we develop a framework for characterizing the correctness of audit instru-
mentation, though safety properties in the standard style [44] can also be expressed in our framework–
thus it is appropriate for uniformly characterizing operational correctness conditions for in-depth in-
tegrity taint analysis. This framework was initially developed in previous work [8] where we studied
so-called “break-the-glass” policies for medical records software. In that work we justified the general-
ity of our framework and discuss its details at length. Here we reiterate the main technical points of the
framework to allow a standalone formal presentation.

We leverage ideas from the theory of information algebra [13, 45], which is an abstract mathematical
framework for information systems. In short, we interpret program traces as information, and logging
specifications as functions from traces to information. This separates logging specifications from their
implementation in code, and defines exactly the information that should be in an audit log. This in turn
establishes correctness conditions for audit logging implementations.

2.1. Introduction to Information Algebra

Information algebra is an algebraic theory of information where information is seen as a collection
of information elements with fundamental aggregation and refinement operations. The algebra consists
of two domains, an information domain and a query domain. The information domain Φ is the set of
information elements that can be aggregated in order to build more inclusive information elements. The
query domain E is a lattice of querying sublanguages in which the partial order relation among these
sublanguages represents the granularity of the queries. The information and query domains are left ab-
stract in the general theory– instantiation examples include relational algebra and first order logic as we
discuss below. By definition any instantiation must include basic operations for combining information
and for focusing on components of information.

Definition 2.1. Any information algebra (Φ, E) includes two basic operators:

• Combination ⊗ : Φ × Φ → Φ: The operation X ⊗ Y combines (or, aggregates) the information in
elements X,Y ∈ Φ.

• Focusing⇒: Φ × E → Φ: The operation X⇒S isolates the elements of X ∈ Φ that are relevant to
a sublanguage S ∈ E, i.e. the subpart of X specified by S .
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Using the combination operator we can define a partial order relation on Φ to compare the information
contained in the elements of Φ. A partial ordering is induced on Φ by the so-called information ordering
relation 6, where intuitively for X,Y ∈ Φ we have X 6 Y iff Y contains at least as much information as
X, though its precise meaning depends on the particular algebra.

Definition 2.2. X is contained in Y , denoted as X 6 Y , for all X,Y ∈ Φ iff X ⊗ Y = Y .

Definition 2.3. We say that X and Y are information equivalent, and write X = Y , iff X 6 Y and Y 6 X.

For a more detailed account of information algebra, the reader is referred to a definitive survey paper
[45].

2.1.1. Illustrative Example: Relational Algebras
Relational algebra is a well-recognized instance of information algebra. Let A denote the set of

attributes, Ai ⊆ A for i ∈ {1, 2, 3}, A2 ⊆ A1, and assume that A1 = {a1, ..., an}. Each tuple
((a1 : x1), · · · , (an : xn)) can be formulated as a function f : A1 → {x1, ..., xn}, where f (ai) = xi.

Function f [A2] : A2 → {x1, ..., xn} is the restriction of f to A2, defined as f [A2](a) = f (a), for all
a ∈ A2. A relation R over A1 is a set of functions f defined on a specific set of attributes A1. Then, the
projection of R on A2 is defined as πA2(R) = { f [A2] | f ∈ R}. The natural join of relation R over A1

and R′ over A3 is defined as R ./ R′ = { f | dom( f ) = A1 ∪ A3, f [A1] ∈ R, f [A3] ∈ R′}.

Instantiation. Let R be the universe of all relations R. Then, (R,P(A)) is an information algebra with
following definitions for combination and focusing:

R⊗ R′ , R ./ R′ R⇒A1 , πA1(R)

2.2. A General Model for Logging Specifications

Following [44], an execution trace τ = κ0κ1κ2 . . . is a possibly infinite sequence of configurations
κ that describe the state of an executing program. We deliberately leave configurations abstract, but
examples abound and we explore a specific instantiation for FJ-based calculus in Section 3. Note that an
execution trace τ may represent the partial execution of a program, i.e. the trace τ may be extended with
additional configurations as the program continues execution. We use metavariables τ and σ to range
over traces, and use ∅ to denote an empty trace.

We assume a given function b·c that is an injective mapping from traces to Φ. This mapping interprets
a given trace as information, where the injective requirement ensures that information is not lost in
the interpretation. For example, if σ is a proper prefix of τ and thus contains strictly less information,
then formally bσc 6 bτc. We intentionally leave both Φ and b·c underspecified for generality, though
application of our formalism to a particular logging implementation requires instantiation of them.

We let LS range over logging specifications, which are functions from traces to Φ. As for Φ and b·c,
we intentionally leave the language of specifications abstract, but consider a particular instantiation in
Section 2.6. Intuitively, LS(τ) denotes the information that should be recorded in an audit log during
the execution of τ given specification LS, regardless of whether τ actually records any log information,
correctly or incorrectly. We call this the semantics of the logging specification LS.

We assume that auditing is implementable, requiring at least that all conditions for logging any piece
of information must be met in a finite amount of time. As we will show, this restriction implies that
correct logging instrumentation is a safety property [44].
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Definition 2.4. We require of any logging specification LS that for all traces τ and information X 6
LS(τ), there exists a finite prefix σ of τ such that X 6 LS(σ).

It is crucial to observe that some logging specifications may add information not contained in traces to
the auditing process. Security information not relevant to program execution (such as ACLs), interpreta-
tion of event data (statistical or otherwise), etc., may be added by the logging specification. For example,
in the OpenMRS system [46], logging of sensitive operations includes a human-understandable “type”
designation which is not used by any other code. Thus, given a trace τ and logging specification LS, it is
not necessarily the case that LS(τ) 6 bτc. Audit logging is not just a filtering of program events.

2.3. Correctness Conditions for Audit Logs

A logging specification defines what information should be contained in an audit log. In this section
we develop formal notions of soundness and completeness as audit log correctness conditions. We use
metavariable L to range over audit logs. Again, we intentionally leave the language of audit logs un-
specified, but assume that the function b·c is extended to audit logs, i.e. b·c is an injective mapping from
audit logs to Φ. Intuitively, bLc denotes the information in L, interpreted as an element of Φ.

An audit log L is sound with respect to a logging specification LS and trace τ if the log information
is contained in LS(τ). Similarly, an audit log is complete with respect to a logging specification if it
contains all of the information in the logging specification’s semantics. Crucially, both definitions are
independent of the implementation details that generate L.

Definition 2.5. Audit log L is sound with respect to logging specification LS and execution trace τ iff
bLc 6 LS(τ).

Definition 2.6. Audit log L is complete with respect to logging specification LS and execution trace τ
iff LS(τ) 6 bLc.

2.4. Correct Logging Instrumentation is a Safety Property

In case program executions generate audit logs, we write τ ; L to mean that trace τ generates L,
i.e. τ = κ0 . . . κn and logof (κn) = L where logof (κ) denotes the audit log in configuration κ, i.e. the
residual log after execution of the full trace. Ideally, information that should be added to an audit log, is
added to an audit log, immediately as it becomes available. This ideal is formalized as follows.

Definition 2.7. For all logging specifications LS, the trace τ is ideally instrumented for LS iff for all
finite prefixes σ of τ we have σ ; L where L is sound and complete with respect to LS and σ.

We observe that the restriction imposed on logging specifications by Definition 2.4, implies that ideal
instrumentation of any logging specification is a safety property in the sense defined by Schneider [44].

Theorem 2.1. For all logging specifications LS, the set of ideally instrumented traces is a safety prop-
erty.

This result implies that e.g. edit automata can be used to enforce instrumentation of logging specifi-
cations [47]. However, theory related to safety properties and their enforcement by execution monitors
[44, 48] does not provide an adequate semantic foundation for audit log generation, nor an account of
soundness and completeness of audit logs.
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2.5. Implementing Logging Specifications with Program Rewriting

The above-defined correctness conditions for audit logs provide a foundation on which to establish
correctness of logging implementations. Here we consider program rewriting approaches. Since rewrit-
ing concerns specific languages, we introduce an abstract notion of programs p with an operational
semantics that can produce a trace. We write p ⇓ σ iff program p can produce execution trace τ, either
deterministically or non-deterministically, and σ is a finite prefix of τ.

A rewriting algorithm R is a (partial) function that takes a program p in a source language and a
logging specification LS and produces a new program,R(p,LS), in a target language.2 The intent is that
the target program is the result of instrumenting p to produce an audit log appropriate for the logging
specification LS. A rewriting algorithm may be partial, in particular because it may only be intended to
work for a specific set of logging specifications.

Ideally, a rewriting algorithm should preserve the semantics of the program it instruments. That is,
R is semantics-preserving if the rewritten program simulates the semantics of the source code, modulo
logging steps. We assume given a correspondence relation ∼= on execution traces. A coherent defini-
tion of correspondence should be similar to a bisimulation, but it is not necessarily symmetric nor a
bisimulation, since the instrumented target program may be in a different language than the source pro-
gram. We deliberately leave the correspondence relation underspecified, as its definition will depend on
the instantiation of the model. Possible definitions are that traces produce the same final value, or that
traces when restricted to a set of memory locations are equivalent up to stuttering. Furthermore, because
rewriting will often add blocking checks for unsafe behaviors (as in the case we will study), semantics
preservation is defined up to simulation of sets of program traces that will typically be defined as a
safety property. We provide an explicit definition of correspondence for FJ-calculus source and target
languages in Section 4.2.

Definition 2.8. Let T be a set of program traces. Rewriting algorithm R is semantics preserving up to
T iff for all programs p and logging specifications LS such that R(p,LS) is defined, all of the following
hold:

(1) For all traces τ ∈ T such that p ⇓ τ there exists τ′ with τ ∼= τ′ andR(p,LS) ⇓ τ′.
(2) For all traces τ such thatR(p,LS) ⇓ τ there exists a trace τ′ ∈ T such that τ′ ∼= τ and p ⇓ τ′.

In addition to preserving program semantics, a correctly rewritten program constructs a log in accor-
dance with the given logging specification. More precisely, if LS is a given logging specification and a
trace τ describes execution of a source program, rewriting should produce a program with a trace τ′ that
corresponds to τ (i.e., τ ∼= τ′), where the log L generated by τ′ contains the same information as LS(τ),
or at least a sound approximation. Some definitions of ∼= may allow several target-language traces to
correspond to source-language traces. In any case, we expect that at least one simulation exists. Hence
we write simlogs(p, τ) to denote a nonempty set of logs L such that, given source language trace τ and
target program p, there exists some trace τ′ where p ⇓ τ′ and τ ∼= τ′ and τ′ ; L. The name simlogs
evokes the relation to logs resulting from simulating executions in the target language.

The following definitions then establish correctness conditions for rewriting algorithms. Note that
satisfaction of either of these conditions only implies condition (i) of Definition 2.8, not condition (ii),

2We use metavariable p to range over programs in either the source or target language; it will be clear from context which
language is used.
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so semantics preservation is an independent condition. Like semantics preservation, we define soundness
and completeness with respect to a given set of traces.

Definition 2.9. Let T be a set of traces. Rewriting algorithm R is sound up to T iff for all programs p,
logging specifications LS, and finite traces τ ∈ T where p ⇓ τ, for all L ∈ simlogs(R(p,LS), τ) it is the
case that L is sound with respect to LS and τ.

Definition 2.10. Let T be a set of traces. Rewriting algorithmR is complete up to T iff for all programs
p, logging specifications LS, and finite traces τ ∈ T where p ⇓ τ, for all L ∈ simlogs(R(p,LS), τ) it is
the case that L is complete with respect to LS and τ.

2.6. A First Order Logic (FOL) Specification Language

Logics have been used in several well-developed auditing systems [49, 50], for the encoding of both
audit logs and queries. FOL in particular is attractive due to readily available implementation support,
e.g. Datalog and Prolog. We have shown in previous work that FOL is an information algebra, and
useful for e.g. break the glass policy specification [8]. Here we summarize important definitions for the
remainder of this paper.

Let Greek letters φ and ψ range over FOL formulas and let capital letters X,Y,Z range over sets of
formulas. We posit a sound and complete proof theory supporting judgements of the form X ` φ. In this
text we assume without loss of generality a natural deduction proof theory.

Elements of our algebra are sets of formulas closed under logical entailment. Intuitively, given a set
of formulas X, the closure of X is the set of formulas that are logically entailed by X, and thus represents
all the information contained in X. In spirit, we follow the treatment of sentential logic as an information
algebra explored in related foundational work [13], however our definition of closure is syntactic, not
semantic.

Definition 2.11. We define a closure operation C, and a set ΦFOL of closed sets of formulas:

C(X) = {φ | X ` φ} ΦFOL = {X | C(X) = X}

Note in particular that C(∅) is the set of logical tautologies.

Let Preds be the set of all predicate symbols, and let S ⊆ Preds be a set of predicate symbols. We
define sublanguage LS to be the set of well-formed formulas over predicate symbols in S (including
boolean atoms true and false, and closed under the usual first-order connectives and binders). We will
use sublanguages to define refinement operations in our information algebra. Subset containment induces
a lattice structure, denoted S, on the set of all sublanguages, with F = LPreds as the top element.

Now we can define the focusing and combination operators, which are the fundamental operators of
an information algebra. Focusing isolates the component of a closed set of formulas that is in a given
sublanguage. Combination closes the union of closed sets of formulas. Intuitively, the focus of a closed
set of formulas X to sublanguage L is the refinement of the information in X to the formulas in L. The
combination of closed sets of formulas X and Y combines the information of each set.

Definition 2.12. Define:

(1) Focusing: X⇒S = C(X ∩ LS ) where X ∈ ΦFOL, S ⊆ Preds
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(2) Combination: X ⊗ Y = C(X ∪ Y) where X,Y ∈ ΦFOL

Properties of the algebra ensure that 6 is a partial ordering by defining X 6 Y iff X ⊗ Y = Y , which
in the case of our logical formulation means that for all X,Y ∈ ΦFOL we have X 6 Y iff X ⊆ Y , i.e. 6
is subset inclusion over closed sets of formulas.

The following Theorem establishes that the construction is an information algebra– for a complete
proof the reader is directed to [47].

Theorem 2.2. Structure (ΦFOL,S) with focus operation X⇒S and combination operation X ⊗ Y forms
a domain-free information algebra.

In addition, to interpret traces and logs as elements of this algebra, i.e. to define the function b·c, we
assume existence of a function toFOL(·) that injectively maps traces and logs to sets of FOL formulas,
and then take b·c = C(toFOL(·)). To define the range of toFOL(·), that is, to specify how trace infor-
mation will be represented in FOL, we assume the existence of configuration description predicates P
which are each at least unary. Each configuration description predicate fully describes some element
of a configuration κ, and the first argument is always a natural number n, indicating the time at which
the configuration occurred. A set of configuration description predicates with the same timestamp de-
scribes a configuration, and traces are described by the union of sets describing each configuration in the
trace. We will fully define toFOL(·) when we discuss particular source and target languages for program
rewriting.

Formally, we define logging specifications in a logic programming style by using combination and
focusing. Any logging specification is parameterized by a sublanguage S that identifies the predicate(s)
to be resolved and Horn clauses X that define it/them, hence we define a functional spec from pairs
(X, S ) to specifications LS, where we use λ as a binder for function definitions in the usual manner:

Definition 2.13. The function spec is given a pair (X, S ) and returns a FOL logging specification, i.e. a
function from traces to elements of ΦFOL:

spec(X, S ) = λτ.(bτc ⊗C(X))⇒S .

3. Direct Information Flow: Dynamic Integrity Taint Analysis

In this section we present a basic object-oriented calculus as the foundation of our language model.
We also show how the in-depth integrity taint analysis model described in Section 1.2 can be specified as
a logical property of program traces in this model, independent of program instrumentation. This allows
us to define retrospective taint analysis as a logging specification in the style introduced in Section 2.
Subsequently in Section 4 we will show how this specification can be correctly instrumented via program
rewriting into a target language, hence we refer to the language introduced in this Section as our source
language.

3.1. Source Language

Our source language model is essentially Featherweight Java (FJ) [7] with minor extensions including
base types and an abstract notion of library methods for base types. The latter is important for an ade-
quate consideration of taint propagation (e.g. on strings) in our model. FJ is a functional core calculus
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L ::= class C extends C {C f; K M} classdefinitions

K ::= C(C f){super(f); this.f = f; } constructors

M ::= C m(C x){return e; } methods

e ::= x | e.f | e.m(e) | new C(e) | if e then e else e | C.m(e) expressions

E ::= [ ] | E.f | E.m(e) | v.m(v,E,e′) | new C(v,E,e′) | if E then e else e | C.m(E) evaluation contexts

Fig. 1. FJ Syntax

that includes class hierarchy definitions, subtyping, dynamic dispatch, and other basic features of Java.
An FJ program is an expression e which is executed given a static class table CT which maintains class
definitions. To describe program execution we will define a small step operational semantics relation on
expressions e which we will take as synonymous with configurations as defined previously.

3.1.1. Syntax
The syntax of FJ is defined in Figure 1. We let A,B,C,D range over class names, x range over vari-

ables, f range over field names, and m range over method names. Values, denoted v or u, are objects,
i.e. expressions of the form new C(v1, . . . ,vn). We assume given an Object value that has no fields or
methods. In addition to the standard expressions of FJ, we introduce a new form C.m(e). This form is
used to identify the method C.m associated with a current evaluation context (aka the “activation frame”).
This does not really change the semantics, but is a useful feature for our specification of sanitizer en-
dorsement since return values from sanitizers need to be endorsed– see the Invoke and Return rules in
the operational semantics below for its usage.

Conditional expressions are an important feature of the language for this presentation, since they are
a control flow operation that should not be considered in a direct flow analysis. We assume that in any
program setting true and false values, denote T and F, will be specified. When we consider base values
and library methods below in Section 3.1.6, we will define a particular boolean value that we will use in
this presentation.

For brevity in this syntax, we use vector notations. Specifically we write f to denote the sequence
f1, . . . ,fn, similarly for C, m, x, e, etc., and we write M as shorthand for M1 · · ·Mn. We write the empty
sequence as ∅, we use a comma as a sequence concatenation operator. If and only if m is one of the
names in m, we write m ∈ m. Vector notation is also used to abbreviate sequences of declarations; we
let C f and C f; denote C1 f1, . . . ,Cn fn and C1 f1; . . . ;Cn fn; respectively. The notation this.f = f;
abbreviates this.f1 = f1; . . . ;this.fn = fn;. Sequences of names and declarations are assumed to
contain no duplicate names.

3.1.2. The class table and field and method body lookup
The class table CT maintains class definitions. The manner in which we look up field and method

definitions implements inheritance and override, which allows fields and methods to be redefined in
subclasses. Given a class table CT , the definitions of mbodyCT (C,m) and fieldsCT (C) are given in Figure
2.

3.1.3. Method type lookup
Just as we’ve defined a function for looking up method bodies in the class table, we also define a

function mtypeCT (C,m) that will look up types of a method C.m in a class table in Figure 2. Although
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fieldsCT (Object) = ∅
CT(C) = class C extends D {C f; K M} fieldsCT (D) = D g

fieldsCT (C) = D g,C f

CT(C) = class C extends D {C f; K M} B m(B x){return e; } ∈ M
mbodyCT (m,C) = x,e

CT(C) = class C extends D {C f; K M} m 6∈ M
mbodyCT (m,C) = mbodyCT (m,D)

class C extends D {C f; K M} B m(B x){return e; } ∈ M
mtypeCT (m,C) = B→ B

class C extends D {C f; K M} m 6∈ M
mtypeCT (m,C) = mtypeCT (m,D)

Fig. 2. Object Field, Method Body, and Method Type Lookup

Context
e→ e′

E[e]→ E[e′]

Field
fieldsCT (C) = C f fi ∈ f

new C(v).fi → vi

Invoke
mbodyCT (m,C) = x,e

new C(v).m(u)→ C.m(e[new C(v)/this][u/x])

IfT
if T then e1 else e2 → e1

IfF
if F then e1 else e2 → e2

Return
C.m(v)→ v

Fig. 3. Operational Semantics for FJ

we omit FJ type analysis from this presentation, method type lookup will be useful for taint analysis
instrumentation (Definition 4.1).

3.1.4. Operational semantics
Now, we can define the operational semantics of FJ. The reduction relation is binary, of the form

κ→ κ′, and is defined via the inference rules in Figure 3.
The definition of → assumes given a class table CT which is typically clear from context, but we

will write CT ` κ → κ′ to disambiguate class tables used in reductions when necessary. The definition
also assumes that boolean values T and F are specified. We use →∗ to denote the reflexive, transitive
closure of→, and we use→n to denote an n-step reduction. We will also use the notion of an execution
trace τ to range over sequences of configurations κ0 . . . κn where κi → κi+1 for all 0 6 i < n. Note that
an execution trace τ may represent the partial execution of a program, i.e. the trace τ may be extended
with additional configurations as the program continues execution. In general we will write CT `→ τ
to disambiguate the class table CT and reduction relation→ used for a trace τ when it is not clear from
context.

3.1.5. Top-Level Programs
We define top-level programs p(a) as programs of the form:

new TopLevel().main(a)
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where a is a primitive object new C(ν). We assume that all class tables CT include an entry point
TopLevel.main with formal parameter attack, where TopLevel objects have no fields. We write
p(a) ⇓ τ iff trace τ begins with the configuration p(a).

3.1.6. Library Methods
In order to study dynamic integrity taint analysis in FJ, we extend the semantics for library methods

that allow specification of operations on base values (such as strings and integers). Consideration of these
features is important for a thorough modeling of Phosphor-style taint analysis, and important related
issues such as string- vs. character-based taint [24] which have not been considered in previous formal
work on taint analysis [1]. Since static analysis is not a topic of this paper, for brevity we omit the
standard FJ type analysis which is described in [7].

The abstract calculus described above is not particularly interesting with respect to direct information
flow and integrity propagation, especially since method dispatch and conditional expressions are control
flows that are discounted in direct data flow. More interesting is the manner in which taint propagates
through base values and library operations, since direct flows propagate through some of these methods.
Also, for run-time efficiency and ease of coding some Java taint analysis tools treat even complex library
methods as “black boxes” that are instrumented at the top level for efficiency [25], rather than relying
on instrumentation of lower-level operations.

Note that treating library methods as “black boxes” introduces a potential for over- and under-tainting–
for example in some systems all string library methods that return strings are instrumented to return
tainted results if any of the arguments are tainted, regardless of any direct flow from the argument to
result [25]. Clearly this strategy introduces a potential for over-taint. Other systems do not propagate
taint from strings to their component characters when decomposed [24], which is an example of under-
taint. Part of our goal here is to develop an adequate language model to consider these approaches.

We therefore extend our basic definitions to accommodate base values and their manipulation. Let
a primitive field be a field containing a base value. We call a base type any class with primitive fields
only, and a library method is any method that operates on base type objects, defined in a primitive
class. We expect primitive objects to be object wrappers for primitive values (e.g., Int(5) wrapping
primitive value 5), and library methods to be object-oriented wrappers over primitive operations (e.g.,
Int plus(Int) wrapping primitive operation +), allowing the latter’s embedding in FJ. As a sanity
condition we only allow library methods to select primitive fields or perform primitive operations. Let
LibMeths be the set of library method names paired with their corresponding base classes in BaseTypes.

We posit a special set of field names PrimField that access primitive values ranged over by ν that
may occur in objects, and a set of operations ranged over by Op that operate on primitive values. We
require that special field name selections only occur as arguments to Op, which can easily be enforced
in practice by a static analysis. Similarly, primitive values ν may only occur in special object fields and
be manipulated there by any Op.

f∗ ∈ PrimField
e ::= ν | e.f∗
e ::= · · · | Op(e)
v ::= new C(v) | ν
E ::= · · · | Op(ν,E, e)

The body of any library method is required to be of the form return new C(e1, . . . ,en) where C is a
primitive class.



16 Skalka et al. / Maybe Tainted Data

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

We define the meaning of operations Op via an “immediate” big-step semantic relation ≈ where the
rhs of the relation is required to be a primitive value, and we identify expressions up to ≈. For example,
to define a library method for integer addition, where Int objects contain a primitive numeric val, field
we would define a + operation as follows:

+(n1, n2) ≈ n1 + n2

Then we can add to the definition of Int in CT a method Plus to support arithmetic in programs:

Int plus(Int x) { return(new Int(+(this.val,x.val))); }

Similarly, to define string concatenation, we define a concatenation operation @ on primitive strings:

@(s1, s2) ≈ s1s2

and we extend the definition of String in CT with the following method, where we assume all
String objects maintain their primitive representation in a val field:

String concat(String x) { return(new String(@(this.val,x.val))); }

A boolean class Bool can be defined on the basis of constants true and false and standard boolean
connectives– we will subsequently use this encoding for values T and F and conditional guards:

b ∈ {true, false} T , new Bool(true) F , new Bool(false) ∧(b1, b2) ≈ b1 ∧ b2

∨(b1, b2) ≈ b1 ∨ b2 ¬(b) ≈ ¬b

These boolean values can represent the results of base object comparison operators such as a string
equality test:

eq(s1, s2) ≈ b =

{
true if s1 = s2
false otherwise

String eq(String x) { return(new Bool(eq(this.val,x.val))); }

3.2. In-Depth Integrity Analysis Specified Logically

In this section, we demonstrate how in-depth integrity taint analysis for FJ can be expressed as a
single uniform policy separate from code. To accomplish this we interpret program traces as information
represented by a logical fact base in the style of Datalog. We then define a predicate called Shadow that
inductively constructs a “shadow” of configurations reflecting the taint of values.
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toFOL(v, n) = {Value(n,v)}

toFOL(E[new C(v).f], n) = {GetField(n,new C(v),f),Context(n,E)}

toFOL(E[new C(v).m(u)], n) = {Call(n,C,v,m,u),Context(n,E)}

toFOL(E[C.m(v)], n) = {ReturnValue(n,C,m,v),Context(n,E)}

toFOL(E[Op(ν)], n) = {PrimCall(n,Op, ν),Context(n,E)}

toFOL(E[if T then e1 else e2], n) = {IfT(n,e1,e2),Context(n,E)}.

toFOL(E[if F then e1 else e2], n) = {IfF(n,e1,e2),Context(n,E)}.

Fig. 4. Interpreting Expressions as Formulas via toFOL(·).

Java-based taint analyses naturally tend to be object-based, i.e. low-integrity values are objects con-
ceptually, and objects have an assigned taint level in the implementation. The types of tainted objects
vary depending on the analysis, but most emphasize taint of base values. We will likewise focus on
taint of base values, though we will support taint labeling of all objects. This is partly to generalize the
representation, but also for formal convenience– In our logical specification of taint analysis, a shadow
expression has a syntactic structure that matches the configuration expression, and associates integrity
levels (including “high” ◦ and “low” •) with particular objects via shape conformance.

Example 3.1. Suppose a method m of an untainted C object with no fields is invoked on a pair of tainted
s1 and untainted s2 strings:

new C().m(new String(s1),new String(s2))

Its proper shadow is:

shadow C(◦).m(shadow String(•),shadow String(◦)).

On the basis of shadow expressions that correctly track integrity, we can logically specify prospective
taint analysis as a property of shadowed trace information, and retrospective taint analysis as a function
of shadowed trace information. An extended example of a shadowed trace is presented in Section 3.2.4.

3.2.1. Taint Tracking as a Logical Trace Property
In order to specify taint tracking, we define the mapping toFOL(·) that shows how we concretely

model execution traces in FOL. We develop toFOL(·) that interprets FJ traces as sets of logical facts
(a fact base). Intuitively, in the interpretation each configuration is represented by a Context predicate
representing the evaluation context, and a predicate representing the redex (e.g. Call). Each of these
predicates has an initial natural number argument denoting a “timestamp” that orders configurations in
a trace.

Definition 3.1. We define toFOL(·) as a mapping on traces and configurations:

toFOL(τ) =
⋃

σ∈prefix(τ)

toFOL(σ)
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such that toFOL(σ) =
⋃

i toFOL(κi, i) for σ = κ1 · · · κk. We define toFOL(κ, n) in Figure 4.

Integrity Identifiers. We introduce an integrity identifier t that denotes the integrity level associated
with objects. To support a notion of “partial endorsement” for partially trusted sanitizers, we define
three taint labels, to denote high integrity (◦), low integrity (•), and uncertain integrity (�). We refer to
these levels as tainted, untainted, and maybe tainted, respectively.

t ::= ◦ | � | •

We specify an ordering 6 on these labels denoting their integrity relation:

• 6 � 6 ◦

For simplicity in this presentation we will assume that all Sanitizers are partially trusted and cannot raise
the integrity of a tainted or maybe tainted object beyond maybe tainted. It would be possible to include
both trusted and untrusted sanitizers without changing the formalism.

We posit the usual meet ∧ and join ∨ operations on taint lattice elements, and introduce logical predi-
cates meet and join such that meet(t1 ∧ t2, t1, t2) and join(t1 ∨ t2, t1, t2) hold.

3.2.2. Shadow Traces, Taint Propagation, and Sanitization
Shadow traces reflect taint information of objects as they are passed around programs. Shadow traces

are comprised of shadow expressions and contexts which are terms in the logic with the following syntax.
Note the structural conformance with closed e and E, but with primitive values replaced with a single
dummy value δ that is omitted for brevity in examples, but is necessary to maintain proper arity for field
selection. Shadow expressions most importantly assign integrity identifiers t to objects:

sv ::= shadow C(t, sv) | δ
se ::= sv | se.f | se.m(se) | shadow C(t, se) | C.m(se) | Op(se) | if se then se else se

SE ::= [ ] | SE.f | SE.m(se) | sv.m(sv, SE, se′) | shadow C(t, sv, SE, se′) | C.m(SE) |
Op(sv, SE, se) | if SE then se else se

The shadowing specification requires that shadow expressions evolve in a shape-conformant way with
the original configuration. To this end, we define a metatheoretic function for shadow method bodies,
smbody, that imposes untainted tags on all method bodies, defined a priori, and removes primitive values.

Definition 3.2. Shadow method bodies are defined by the function smbody.

smbodyCT (m,C) = x.srewrite(e),

where mbodyCT (m,C) = x.e and the shadow rewriting function, srewrite, is defined as follows, where
srewrite(e) denotes a mapping of srewrite over the vector e:

srewrite(x) = x

srewrite(new C(e)) = shadow C(◦, srewrite(e))

srewrite(e.f) = srewrite(e).f
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match(sv, [ ], sv).

match(shadow C(t, sv).fi, [ ],shadow C(t, sv).fi).

match(shadow C(t, sv).m(su), [ ],shadow C(t, sv).m(su)).

match(C.m(sv), [ ],C.m(sv)).

match(if sv then se1 else se2, [ ],if sv then se1 else se2).

match(se, SE, se′) =⇒ match(se.f, SE.f, se′).

match(se, SE, se′) =⇒ match(se.m(se), SE.m(se), se′).

match(se, SE, se′) =⇒ match(sv.m(sv, se, se), sv.m(sv, SE, se), se′).

match(se, SE, se′) =⇒ match(shadow C(t, sv, se, se),shadow C(t, sv, SE, se), se′).

match(se, SE, se′) =⇒ match(C.m(se),C.m(SE), se′).

match(se, SE, se′) =⇒ match(Op(sv, se, se),Op(sv, SE, se), se′).

match(se, SE, se′) =⇒ match(if se then se1 else se2,if SE then se1 else se2, se′)

Fig. 5. match Predicate Definition.

srewrite(e.m(e′)) = srewrite(e).m(srewrite(e′))

srewrite(C.m(e)) = C.m(srewrite(e))

srewrite(Op(e)) = Op(srewrite(e))

srewrite(if e1 then e2 else e3) = if srewrite(e1) then srewrite(e2) else srewrite(e3)

srewrite(ν) = δ

We use match as a predicate which matches a shadow expression se, to a shadow context SE and a
shadow expression se′ where se′ is the part of the shadow in the hole. The definition of match is given
in Figure 5.

Next, in Figure 6, we define a predicate Shadow(n, se) where se is the relevant shadow expression at
execution step n, establishing an ordering for the shadow trace. Shadow has as its precondition a “cur-
rent” shadow expression, and as its postcondition the shadow expression for the next step of evaluation
(with the exception of the rule for shadowing Ops on primitive values which reflects the “immediate”
valuation due to the definition of ≈– note the timestamp is not incremented in the postcondition in that
case). We set the shadow of the initial configuration at timestamp 1, and then Shadow inductively shad-
ows the full trace. Shadow is defined by case analysis on the structure of shadow expression in the hole.
The shadow expression in the hole and the shadow evaluation context are derived from match predicate
definition.3

With respect to control flow, the most notable rules of Shadow are those governing conditional branch-
ing, which ignore the taint of the guard, and method dispatch, which ignore the taint of the object asso-
ciated with the dispatched method. Since we focus on base value taint, method dispatch is essentially a

3Some notational liberties are taken in Figure 6 regarding expression and context substitutions, which are defined using
predicates elided for brevity.
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non-issue, however conditional branching is directly dependent on base values so ignoring the taint of
the guard explicitly ignores indirect data flow.

Taint Propagation and Endorsement. The propagation of taint in the model described in Section 1.2
is embedded in the definition of Shadow, in particular we assume a set of Sanitizers. For elements
of Sanitizers, if the input is tainted then the result is considered to be only partially endorsed (maybe
tainted). For library methods, taint is propagated given a user-defined predicate Prop(t, ι) where ι is a
compound term of the form C.m(t) with t the given integrity of this followed by the integrity of the
arguments to method C.m, and t is the integrity of the result. For example, one could define:

meet(t, t1, t2)⇒ Prop(t,String.concat(t1, t2)) meet(t, t1, t2)⇒ Prop(t,String.eq(t1, t2))

Later in Section 5.2.1 we will discuss formal semantic conditions on library methods that ensure sound
taint propagation.

3.2.3. In-Depth Integrity Taint Analysis Policies
Now we can logically specify an in-depth policy for integrity taint analysis, as proposed originally in

Section 1.2. In particular we assume a set Sanitizers and a set SSOs. Since objects may inherit a sanitizer
or SSO from a superclass, we require that Sanitizers and SSOs are closed under inheritance as a sanity
condition, as follows:

CT (C) = class C extends D {C f; K M} m 6∈ M D.m ∈ SSOs
C.m ∈ SSOs

CT (C) = class C extends D {C f; K M} m 6∈ M D.m ∈ Sanitizers
C.m ∈ Sanitizers

The in-depth policy has both prospective and retrospective component– the former is defined as a
safety property [44], while the latter is defined as a logging specification. The prospective component of
the policy must identify traces where a tainted value is passed to a secure method. To this end, in Figure
7 we define the predicate BAD which identifies traces that should be rejected as unsafe– a bad trace is
any in which an SSO is executed with a tainted argument. The retrospective component specifies that
data of questionable integrity that is passed to a secure method should be logged. The relevant logging
specification is specified in terms of a predicate MaybeBAD also defined in Figure 7.

Definition 3.3. Let X be the set of rules in Figures 5, 6, and 7 and the set of user-defined rules for Prop.
The prospective integrity taint analysis policy is defined as the set of traces that are free from, or at most
end in, BAD configurations. This latter condition is not necessary for the specification, and may seem
extraneous, but it is mainly in place to allow a clean proof correspondence with the implementation (as
detailed in Section 4.2), since taint checks will be placed to execute immediately after SSO invocation in
the implementation.

SPtaint = {τκ | (bτc ⊗C(X))⇒{BAD} = C(∅)}.

The retrospective integrity taint analysis policy is the following logging specification– in this definition
again to simplify semantic correspondence with instrumentation, we specify that arguments should be
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Shadow(1,shadow TopLevel(◦).main(shadow C(•, δ))).

Shadow(n, se) ∧ match(se, SE, sv.m(sv′)) ∧ C.m /∈ LibMeths ∧ smbodyCT (m,C) = x.se′ =⇒

Shadow(n + 1, SE[C.m(se′[sv′/x][sv/this])]).

Shadow(n, se) ∧ match(se, SE,shadow C(t0, sv).m(shadow C(t, sv))) ∧ C.m ∈ LibMeths ∧ smbodyCT (m,C) = x.shadow D(◦, se)∧

Prop(t,C.m(t0, t)) =⇒ Shadow(n + 1, SE[C.m(shadow D(t, se)[shadow C(t0, sv)/this][shadow C(t, sv))/x])]).

Shadow(n, se) ∧ match(se, SE,shadow C(t, sv).fi) =⇒ Shadow(n + 1, SE[svi]).

Shadow(n, se) ∧ match(se, SE,Op(δ)) =⇒ Shadow(n, SE[δ]).

Shadow(n, se) ∧ match(se, SE,C.m(shadow D(t, sv))) ∧ C.m ∈ Sanitizers =⇒ Shadow(n + 1, SE[shadow D(t ∨�, sv)]).

Shadow(n, se) ∧ match(se, SE,C.m(sv)) ∧ C.m /∈ Sanitizers =⇒ Shadow(n + 1, SE[sv]).

Shadow(n, se) ∧ match(se, SE,if sv then se1 else se2) ∧ IfT(n,e1,e2) =⇒ Shadow(n + 1, SE[se1]).

Shadow(n, se) ∧ match(se, SE,if sv then se1 else se2) ∧ IfF(n,e1,e2) =⇒ Shadow(n + 1, SE[se2])

Fig. 6. Shadow Predicate Definition.

match(se, SE,shadow C(t, sv).m(shadow D(t′, sv′)) ∧ Shadow(n, se) ∧ Call(n,C,v,m,u) ∧ C.m ∈ SSOs =⇒ SsoTaint(n, t′,u).

SsoTaint(n, •,u) =⇒ BAD(n). SsoTaint(n, t,u) ∧ t 6 � =⇒ MaybeBAD(u).

Fig. 7. Predicates for Specifying Prospective and Retrospective Properties

logged one step after invocation of an SSO:

LStaint = λτκ.(bτc ⊗C(X))⇒{MaybeBAD}

We immediately observe that SPtaint is a safety property:

Lemma 3.1. SPtaint is a safety property.

Finally we define a program as being safe iff it does not produce a bad trace.

Definition 3.4. We call a program p(a) safe iff for all τ it is the case that p(a) ⇓ τ implies τ ∈ SPtaint.
We call the program unsafe iff there exists some trace τ such that p(a) ⇓ τ and τ /∈ SPtaint.

3.2.4. Extended Example: Reduction and Shadowing
To illustrate the major points of our construction for source program traces and their shadows, we

consider an example of program that contains an sso call on a string that has been constructed from a
sanitized low integrity input.
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p
(
new String(′′hello ′′)

)
→5

TopLevel.main
(
new Sec().secureMeth(new Sec().sanitize(new String(′′hello world′′)))

)
→2

TopLevel.main
(
new Sec().secureMeth(new String(′′hello world′′))

)
→2

TopLevel.main
(
new String(′′hello world′′)

)
→

new String(′′hello world′′)

Fig. 8. Example 3.2: Source Trace.

Shadow
(
1, shadow TopLevel(◦).main(shadow String(•, δ))

)
Shadow

(
5, TopLevel.main

(
shadow Sec(◦).secureMeth(shadow Sec(◦).sanitize(shadow String(•, δ)))

))
Shadow

(
7, TopLevel.main

(
shadow Sec(◦).secureMeth(shadow String(�, δ))

))
Shadow

(
9, TopLevel.main

(
shadow String(�, δ)

))
Shadow

(
10, shadow String(�, δ)

)

Fig. 9. Example 3.2: Shadow Expressions.

Example 3.2. Assume that sanitizer and SSO methods Sec.sanitize and Sec.secureMeth are
identity functions for the sake of brevity, i.e.:

mbodyCT (Sec,sanitize) = x,x mbodyCT (Sec,secureMeth) = x,x

and let mbodyCT (main,TopLevel) be:

attack,
new Sec().secureMeth(new Sec().sanitize(attack.concat(new String(′′world′′)))

Assume also that an input string ′′hello ′′ is tainted with low integrity– Figure 8 depicts a source trace
given the initial configuration:

new TopLevel().main(new String(′′hello ′′))

with some reduction steps elided to highlight calls to Sec.sanitize and Sec.secureMeth. In Fig-
ure 9 we show shadows of configurations highlighted (depicted) in the source trace. We note this trace
is in SPtaint and hence is safe.
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4. Correct Instrumentation via Program Rewriting

Now we define an object-based dynamic integrity taint analysis in a more familiar operational style.
Taint analysis instrumentation is added automatically by a program rewriting algorithm Phos that models
the Phosphor rewriting algorithm, defined in Section 4.1. It adds taint label fields to all objects, and
operations for appropriately propagating taint along direct flow paths. In addition to blocking behavior
to enforce prospective checks, we incorporate logging instrumentation to support retrospective measures
in the presence of partially trusted sanitization. We illustrate computation of instrumented code via an
extended example in Section 4.1.4, which continues the (now running) example introduced in Section
3.2.4.

In Section 4.2 we follow the methods developed in Section 2 and show that Phos is semantics pre-
serving, and that instrumented code generates sound and complete audit logs with respect to the logging
specification LStaint defined in Section 3.2.3. We will also show that instrumented code respects the safety
property SPtaint defined in the latter section.

4.1. In-Depth Taint Analysis Instrumentation

The target language FJtaint of the rewriting algorithm Phos has the same syntax as FJ except we add
taint labels t as a form of primitive value ν, the type of which we posit as Taint. For the semantics of
taint values operations we define:

∨(t1, t2) ≈ t1 ∨ t2 ∧ (t1, t2) ≈ t1 ∧ t2

In addition we introduce a “check” operation ? such that ?t ≈ t iff t > •. We also add a convenient
sequencing operation of the form e;e to target language expressions, and evaluation contexts of the
form E;e.

4.1.1. The Phos Algorithm.
Now we define the program rewriting algorithm Phos as follows. It incorporates a rewriting function

µ that assigns an untainted label to every object in an FJ source program. The class table is manipulated
by Phos to specify a taint field for all objects, a check object method that blocks if the argument is
tainted, and an endorse method for any object returned by a sanitizer.

Definition 4.1. For any expression e, the expression µ(e) is syntactically equivalent to e except every
subexpression new C(e) is replaced with new C(◦,e). Given SSOs and Sanitizers, define:

Phos(e,CT ) = (µ(e),Phos(CT ))

where Phos(CT ) is the smallest class table satisfying the axioms given in Figure 10. Furthermore, to
correctly mark low integrity input as tainted, given class table CT and top-level program p(a) where
a = new C(ν) we define:

Phos(p(a)) = Phos(p,CT )(new C(•, ν))

As discussed in Section 1, sanitization is typically taken to be “ideal” for integrity flow analyses,
however in practice sanitization is imperfect, which creates an attack vector. To support retrospective
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fieldsPhos(CT)(Object) = Taint taint mbodyPhos(CT)(check,Object) = x,new Object(?x.taint);x

C.m ∈ Sanitizers mtypeCT (m,C) = C→ D fieldsCT (D) = f

mbodyPhos(CT)(endorse,D) = ∅,new D(∨(�,this.taint),this.f)

C.m ∈ SSOs mbodyCT (m,C) = x,e

mbodyPhos(CT)(m,C) = x,this.log(x);this.check(x); µ(e)

C.m ∈ Sanitizers mbodyCT (m,C) = x,e

mbodyPhos(CT)(m,C) = x, µ(e).endorse()

C.m 6∈ Sanitizers ∪ SSOs mbodyCT (m,C) = x,e

mbodyPhos(CT)(m,C) = x, µ(e)

Fig. 10. Axioms for Rewriting Algorithm

measures specified in Definition 3.3, we define endorse so it takes object taint t to the join of t and
�. The algorithm also adds a log method call to the beginning of SSOs, which will log objects that are
maybe tainted or worse. The semantics of log are defined directly in the operational semantics of FJtaint
below.

4.1.2. Taint Propagation of Library Methods
Another important element of taint analysis is instrumentation of library methods that propagate taint–

the propagation must be made explicit to reflect the interference of arguments with results. The approach
to this in taint analysis systems is often motivated by efficiency as much as correctness [25]. We assume
that library methods are instrumented to propagate taint as intended (i.e. in accordance with the user
defined predicate Prop).

Here is how addition, string concatenation, and equality test, can be modified to propagate taint. Note
the taint of arguments will be propagated to results by taking the meet of argument taint, thus reflecting
the degree of integrity corruption:

Int plus(Int x)
{ return(new Int (∧(this.taint,x.taint),+(this.val,x.val))); }

String concat(String x)
{ return(new String (∧(this.taint,x.taint),@(this.val,x.val))); }

String eq(String x)
{ return(new Bool (∧(this.taint,x.taint), eq(this.val,x.val))); }

4.1.3. Operational Semantics of FJtaint

The operational semantics of FJtaint are defined in Figure 11. Configurations in FJ are of the form
(e,L) where reductions are defined in terms of a labeled transition relation α→ on configurations, where
α is a possibly empty sequence ε of security events. These events are either integrity events iev(v)
emitted when a check succeeds during evaluation as defined in the CheckPassed rule, or endorsement
events eev(v), emitted when a value is endorsed as defined in the Endorsed rule.
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Reduce
e→ e′ ¬(e = E[C.m(v)] ∧ m ∈ {check,endorse})

(e,L) ε→ (e′,L)

CheckPassed

(C.check(v),L)
iev(v)−−−→ (v,L)

Endorsed

(C.endorse(v),L)
eev(v)−−−−→ (v,L)

Sequence
(v;e,L) ε→ (e,L)

Log
t 6 �

(u.log(new C(t,v)),L) ε→ (new C(t,v),L ∪ {new C(v)})

NoLog
t > �

(u.log(new C(t,v)),L) ε→ (new C(t,v),L)

Fig. 11. Operational Semantics of FJtaint.

Audit logs L are added to configurations to support the retrospective security via audit logging, and
are defined as sets of objects (values). The log method is the only one that interacts with the log in
any way, and its semantics are specified in the Log and NoLog rules, where possibly tainted values are
logged, and untainted ones are not. Note that we strip taint tags from values for logging– this is mainly
to simplify the correspondence with LStaint semantics for our technical development (where taint tags
don’t exist). We otherwise “inherit” the reduction semantics of FJ via the Reduce rule.

We write κ0
α0···αn−1−−−−−→

n
κn iff κi

αi→ κi+1 for all 0 6 i < n, and write κ α−→
∗
κ′ iff κ α−→

n
κ′ for some n. We may

omit transition labels in cases where they are empty (ε) or not relevant to discussion, abusing notation
→,→n, and→∗ as defined for FJ. We define traces as for FJ, and we write e ⇓ τ iff τ begins with the
configuration (e, ∅).

4.1.4. Extended Example: Target Trace
Revisiting the example introduced in Section 3.2.4, we show execution of the rewritten program

Phos(p(a)) in Figure 12. By definition the rewritten top-level program is:

new TopLevel(◦).main(new String(•, ′′hello ′′))

We note that additional reduction steps are necessary to evaluate instrumentation code in the target
program, and that eev and iev events mark points during reduction when a value is endorsed and when it
is checked.

4.2. Operational Properties of Phos

Now we can leverage machinery developed previously to demonstrate in-depth operational correctness
of Phos, i.e. both prospective and retrospective operational correctness.

Recalling our definitions of semantics preservation, soundness, and completeness from Section 2, we
state our main results as follows. These results tie together our relevant logging specification LStaint and
safety property SPtaint defined in Section 3.2.3. We note that in this Section we will ignore transition
labels α in target language reduction since they are irrelevant to the properties of interest, and will use
→ exclusively to refer to the reduction relation in FJtaint defined in Section 4.

Regarding our main result for retrospective security, we note that our definition is general with respect
to SSOs and Sanitizers defined at the top-level, which fix LStaint and SPtaint. Soundness and complete-
ness as defined in Section 2.5 require definition of the notation τ ; L, which for FJtaint means that
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(
Phos(p(new String(′′hello ′′))), ∅

)
ε−→
7(

TopLevel.main
(
new Sec(◦).secureMeth(new Sec(◦).sanitize(new String(•, ′′hello world′′)))

)
, ∅

)
ε−→(

TopLevel.main
(
new Sec(◦).secureMeth(Sec.sanitize(new String(•, ′′hello world′′).endorse()))

)
, ∅

)
eev(new String(�,′′hello world′′))
−−−−−−−−−−−−−−−−−−−−−−−→

4(
TopLevel.main

(
new Sec(◦).secureMeth(new String(�, ′′hello world′′))

)
, ∅

)
ε−→(

TopLevel.main
(
Sec.secureMeth(new Sec(◦).log(v�); new Sec(◦).check(v�); v�)

)
, ∅

)
v� , new String(�, ′′hello world′′)

ε−→
2(

TopLevel.main
(
Sec.secureMeth(new Sec(◦).check(v�); v�)

)
,
{
new String(′′hello world′′)}

)
iev(new String(�,′′hello world′′))
−−−−−−−−−−−−−−−−−−−−−−−→

5(
TopLevel.main

(
v�

)
,
{
new String(′′hello world′′)}

)
ε−→(

new String(�, ′′hello world′′),
{
new String(′′hello world′′)

})

Fig. 12. Example 3.2: Target Trace.

L is the log in the last configuration of τ. We define toFOL(L) = {MaybeBAD(v) | v ∈ L}, and
thus bLc = C(toFOL(L)). Also as required, we need to define the relation ∼=, establishing a semantic
correspondence between FJ and FJtaint traces. Intuitively, the relation holds on source, target trace pairs
if the taint shadow of configurations in the source trace match up with the structure of configurations
in the target trace modulo security instrumentation. This definition along with the detailed proofs of
R’s semantics preservation, soundness, and completeness (Theorem 4.1), and prospective correctness
(Theorem 4.2) are given in the accompanying Technical Report [14].

Theorem 4.1. For all p(a), SSOs, and Sanitizers, let R(p(a),LStaint) = Phos(p(a)). Then R is seman-
tics preserving, sound, and complete up to SPtaint.

Since the safety property SPtaint has been defined for FJ, operational correctness for prospective se-
curity means that any rewritten unsafe programs are blocked by instrumentation. We can formalize this
property as follows, noting it is a consequence of semantics preservation under ∼=. This occurs because
bad shadows in source code correspond to values that fail security checks in the target.

Definition 4.2. An FJtaint program e causes a security failure iff

(e, ∅)→∗ (E[v.check(new C(•,v))],L)

for some E, v, new C(•,v), and L.

Operational correctness of the prospective component of Phos can then be stated as follows:
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Theorem 4.2. The FJ program p(a) is unsafe iff Phos(p(a)) causes a security failure.

5. The Security Property of Phos

The semantics of information flow has been well studied and is typically characterized via nonin-
terference properties, but surprisingly little work has been done to develop similar properties for taint
analysis. In recent years it has been shown that direct flow of data confidentiality is not comparable with
noninterference [10], i.e., there are both noninterfering programs with direct leakage of secret data to
public domain, and programs without such direct leakages, but interfering. For instance consider the
following two statements in a core imperative language, in which s and p are respectively secret and
public variables:

if s = 0 then p := s else p := 0 if s = 0 then p := 1 else p := 2

The first statement is noninterfering, but direct flow of information from s to p exists, whereas the second
statement is interfering due to the indirect flow from s to p, but there are no direct flows from s to p.

Formal definitions of taint analysis implementations do exist, but they are usually operational in na-
ture. For example, in Section 4.2, we have established an operational correctness result for the prospec-
tive enforcement of direct integrity flow. In this section, we propose a hyperproperty to characterize
the security property enforced by integrity taint analysis techniques. This hyperproperty is defined in a
general, language-agnostic way, though in this Section we also show that the instrumentation of FJtaint

programs by Phos enjoys this property as a correctness condition. We illustrate key points in Section
5.3.

5.1. Direct Integrity Flow Semantics: Explicit Integrity

We define explicit integrity as a semantic hyperproperty that builds on (dualizes) the notions of explicit
secrecy [10] and attacker power [36]. Similar to explicit secrecy, explicit integrity is language-agnostic.
In later sections, we discuss instantiation of this model for FJtaint.

Intuitively, a program enjoys explicit secrecy if execution of its state transformation components does
not affect the knowledge of a low confidentiality user. By formally specifying state transformation com-
ponents, control flow operations (such as conditional expressions) can be omitted to only consider direct
aka explicit program flows. Knowledge [32] is defined as the set of initial states configurable by a low
confidentiality user that generate a particular sequence of observables– the smaller the set, the greater
the knowledge. Explicit knowledge [10] restricts this concept to direct program data flow. In this section,
we demonstrate how explicit knowledge can be “dualized” for direct integrity flow analysis and applied
as a semantic framework for dynamic integrity taint analysis tools, particularly in functional languages
with hierarchical data structures (FJtaint).

Attacker power [36] is introduced as a counterpart to attacker knowledge in the context of integrity,
as the set of low integrity inputs that generate the same sequence of high integrity events. Each high
integrity event could be a simple assignment to a predefined high integrity variable, a method that ma-
nipulates trusted data (secure sinks), etc. according to the language model. The more refined the attacker
power is, the more powerful the low integrity attacker becomes, as she becomes more capable to distin-
guish between the effects of different attacks on high integrity data.
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We define explicit attacker power as the attacker power constrained on direct integrity flows. Then,
explicit integrity is defined as the property of preserving explicit attacker power during program execu-
tion. In order to limit flows to direct ones, we have followed the techniques introduced in [10] to define
state transformers. State transformers extract direct flows semantically by specifying the ways in which
program state is modified in each step of execution, along with direct-flow events that are generated.

5.1.1. Model Specification
We formulate our explicit integrity semantics following [10]. We first define the interface for our

framework. Let K be the set of program configurations for a given object language where κ ranges
over configurations. Configurations consist of control and state segments. Control refers to code and
state refers to data. Let C be the set of controls with c ranging over the elements of C. Moreover, let S
denote the set of states and s represent a given state. We also define a set of high integrity events, E. A
high integrity event e may refer to different computations in different language models and settings. For
example, it could be as simple as assigning low integrity data to a high integrity variable, or invoking a
method with low integrity data as its parameter to store that parameter in a database. We let α range over
elements of E∗. We assume the existence of the evaluation relation→⊆ K×E∗×K where (κ, α, κ′) ∈→
is denoted as κ α−→ κ′. We use κ → κ′ if α is empty (ε) or could be elided in the discussion. Notation→∗
is used for reflexive and transitive closure of→.

Each configuration is considered to include two segments: control (code) and state (data). These seg-
ments are not necessarily disjoint and could overlap in some language models. In this regard, let map-
pings state : K → S and com : K → C extract the state and control segments of configurations, and
〈·, ·〉 : C × S → K construct a configuration from its control and state segments. These mappings need
to satisfy the following property, for any κ:

〈com(κ), state(κ)〉 = κ.

We assume the existence of an entry point [·] in the controls denoted by c[·] by which the attacker can
inject low integrity input. The attacker input is denoted by a. Then c[a] represents a control in which the
attacker has injected input a. Note that an attack a is a data piece itself, i.e., a is a value.

We define extracted state transformers as follows. A consideration of state transformation, rather than
complete program execution, allows us to focus only on direct program flow, rather than indirect control
flow e.g. via conditionals. State transformers play the same role that explicit flow statements do in Weak
Secrecy [37]. We note that this definition is a slight refinement of the analogous definition in [10]– in
their work, a command is assumed to be compatible with all states, whereas we require compatibility of
commands and states. This refinement is necessary due to structured expressions in HLLs such as Java,
vs. lower level languages. However, we add a completeness condition expressed in Definition 5.3 that
ensures we can compare all trust equivalent states via state transformation functions.

Definition 5.1. Let κ → κ′ and com(κ) = c for some c. f : S → S × E∗ is the function where
f (s) = (state(κ′′), α) for all s such that 〈c, s〉 is defined and for the unique κ′′ and α such that 〈c, s〉 α−→ κ′′.
We write κ → f κ

′ to associate the state transformer f with the reduction κ → κ′. This definition is then
extended to multiple evaluation steps by composing state transformers at each step. Let f (s) = (s′, α)
and g(s′) = (s′′, α′). Then, (g ∗ f )(s) = (s′′, αα′).

We now define the power an attacker obtains by observing high integrity events. We capture this by
defining a set of high integrity equivalent states that generate the same sequence of high integrity events.
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We posit the binary relation =◦ on S to denote high integrity equivalent (or trust equivalent) states. The
general sense of this relation is that s =◦ s′ if s and s′ agree on high integrity data. The instantiation of
the relation depends on the language model in which the states are defined. For a state s and some state
transformer f , the state s′ is considered as an element of the explicit attacker power if s =◦ s′ and s′
agrees with s on the generated high integrity events.

Definition 5.2. We define explicit attacker power with respect to state s and state transformer f as
follows, where projection on the ith element of a tuple is denoted by πi.

pe(s, f ) = {s′ | s =◦ s′, π2( f (s)) = π2( f (s′))}.

All state transformers must be complete in the following sense for this definition to be coherent:

Definition 5.3. A state transformer f is complete iff for all s1, s2 where s1 =◦ s2 we have f (s1) is
defined iff f (s2) is defined.

A control then satisfies explicit integrity for some state iff no state can be excluded from observing
the high integrity events generated by the extracted state transformer.

Definition 5.4. A control c satisfies explicit integrity for state s, iff 〈c, s〉→∗f κ′ implies that for any s′ and
s′′, if s′ =◦ s′′ then we have s′′ ∈ pe(s′, f ). A control c satisfies explicit integrity iff for any s, c satisfies
explicit integrity for s.

We can now consider explicit integrity in the presence of endorsement in the style of gradual release
[32]. We assume that there exists a set of integrity events Een ⊆ E that are generated when endorsements
occur. Explicit attacker power is only allowed to change for such events.

Definition 5.5. A control c satisfies explicit integrity modulo endorsement for state s iff 〈c, s〉 →∗f
κ′

α−→∗gκ′′ and α /∈ Een
∗ imply that pe(s, f ) = pe(s, g ∗ f ).

5.2. An Instantiation with FJtaint

In this section, we instantiate explicit integrity for FJtaint. Because audit logging and retrospective
features are irrelevant to the technical development in this Section, we omit them and elide FJtaint con-
figurations to just expressions e, and take log to be the identity function.

First, we define the required interface specified in Section 5.1, beginning with the definition of ex-
tracted state transformers for all features. These are extracted from the definition of →– notably, the
extracted state transformers for conditional expressions inline conditional branching, disregarding the
actual T or F value of the guard, and eliminating the effects of indirect flow from state transformation
functions.

Definition 5.6. The state transformers for FJtaint are composed of commands of the form selectf for all
fields f (selection), callC.m for all class, method pairs C.m (method dispatch), return (method return),
endorse (endorsement), check (successful taint check within an SSO), sequence (sequencing), and ifT
and ifF (branch inlining). The behavior of these fundamental extracted state transformers are defined in
Figure 13.
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fieldsPhos(CT)(C) = C f fi ∈ f
selectfi (E[new C(v).fi]) = (E[vi], ε)

mbodyPhos(CT)(m,C) = x,e C.m 6∈ LibMeths

callC.m(E[new C(v).m(u)]) = (E[C.m(e[new C(v)/this][u/x])], ε)

return(E[C.m(v)]) = (E[v], ε)
C.m ∈ LibMeths new C(v1).m(u1)

ε−→
∗

v

callC.m(E[new C(v1).m(u1)]) = (E[v], ε)

u.check(v)→∗ v
check(E[u.check(v)]) = (E[v], iev(v))

u.endorse(v)→∗ v′

endorse(E[u.endorse(v)]) = (E[v′], eev(v′))
ifT(E[if v then e1 else e2]) = (E[e1], ε)

ifF(E[if v then e1 else e2]) = (E[e2], ε) sequence(E[v;e]) = (E[e], ε)

Fig. 13. Fundamental State Transformers Extracted from α→.

com(E[new C(v).f]) = selectf com(E[new C(v).m(u)]) = callC.m m 6∈ {check,endorse}

com(E[u.check(v)]) = check com(E[u.endorse(v)]) = endorse com(E[C.m(v)]) = return

com(E[if T then e1 else e2]) = ifT com(E[if F then e1 else e2]) = ifF

Fig. 14. Definition of com for FJtaint.

Our treatment of library methods, check, and endorse bear discussion since they consider these in
an atomic, “big step” manner. As noted in Section 3.2.2, when taint is propagated by library methods,
for efficiency or implementation convenience it may be the case that taint propagation is not correctly
applied until computed results are returned. This includes check and endorse, since technically
these are library methods as per the definition in Section 3.1.6. Thus we specify that the extracted state
transformer of any library method treat it atomically with respect to internal computations. In addition
to check and endorse, for library methods where no security related events can occur we define a class of
state transformers callC.m for C.m ∈ LibMeths. This definition will also significantly simplify our proofs,
and is irrelevant from a formal perspective since this definition yields the same observable events that a
strict “small-step” definition of state transformers would for a given top-level program in the image of
Phos.

Next, we define com, state, and 〈·, ·〉 for FJtaint. The command associated with a particular configura-
tion e can be determined from its redex. We take the state of a configuration e to just be e itself, and
combining a command and a state to obtain a configuration requires that the given command matches
the form of the redex in the state– i.e. compatibility of the command and the state.

Definition 5.7. We define state(e) = e and define com as in Figure 14. We define 〈·, ·〉 as in Figure 15.

These definitions clearly satisfy the model requirements.

Lemma 5.1. For any FJtaint configuration κ, we have 〈com(κ), state(κ)〉 = κ.

Trust equivalence and state transformation. Now we define trust equivalence =◦ on FJtaint expressions
as required. This definition requires structural conformance of related states (expressions), and requires
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〈selectf,E[new C(v).f]〉 = E[new C(v).f] 〈callC.m,E[new C(v).m(u)]〉 = E[new C(v).m(u)] 〈return,E[C.m(v)]〉 = E[C.m(v)]

〈check,E[u.check(v)]〉 = E[u.check(v)] 〈endorse,E[u.endorse(v)]〉 = E[u.endorse(v)]

〈ifT,E[if v then e1 else e2]〉 = E[if v then e1 else e2] 〈ifF,E[if v then e1 else e2]〉 = E[if v then e1 else e2]

Fig. 15. Definition of 〈·, ·〉 for FJtaint

x =~ x ν =◦ ν ν1 =∗ ν2 Op(e) =~ Op(e)
e1 =~ e2

e1.f =~ e2.f

e1,e1 =~ e2,e2

e1.m(e1) =~ e2.m(e2)

e1 =~ e2

C.m(e1) =~ C.m(e2)

e1 =~ e2

new C(t,e1) =~ new C(t,e2)

C ∈ BaseTypes

new C(•, ν1) =◦ new C(•, ν2)
e1 =~ e′1 e2 =~ e′2

e1;e2 =~ e′1;e
′
2

e11 =~ e21 · · · e1n =~ e2n

e11 · · ·e1n =~ e21 · · ·e2n

e1 =~ e′1 e2 =~ e′2 e3 =~ e′3
if e1 then e2 else e3 =~ if e′1 then e

′
2 else e

′
3

Fig. 16. Definition of Trust Equivalence and Shape Conformance Relations on Expressions

agreement of base values except in the case of tainted base objects. Aside from satisfying the model
definition, the definition of trust equivalence will be crucial in our proof of explicit integrity modulo
endorsement, as it defines the necessary inductive invariant on extracted state transformations for this
result.

Also, since endorsement may allow trust equivalent states to transform into non-structural equivalence,
to satisfy the completeness requirement of Definition 5.3 we need to show that transformation preserves
a weaker structural conformance relation =∗ on states (expressions). These relations are very similar
with =∗ strictly weaker than =◦, and in proofs we will generally consider them together. Hence we
define the metavariable =~ to range over =∗ and =◦.

Definition 5.8. The trust equivalence =◦ and shape conformance =∗ relations on expressions are de-
fined as the least relations inductively satisfying the rules in Figure 16, where =~ is a metavariable that
ranges over =◦ and =∗.

5.2.1. Sanity Conditions on Library Methods
We define two sanity conditions for library methods: not undertainting and not overtainting. The for-

mer condition is required in the implementation in order to meet explicit integrity modulo endorsement,
whereas the latter is a good practice in the implementation of taint analysis tools. Hereafter we will
assume that library methods are not undertainting.

Definition 5.9. We say C.m ∈ LibMeths is not undertainting iff for all v1, u1, v2, u2 where:

v1,u1 =◦ v2,u2 callC.m(new C(v1).m(u1)) = (v1, ε) callC.m(new C(v2).m(u2)) = (v2, ε)

we have v1 =◦ v2.
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For example, String.concat is not undertainting if the taint propagation policy is defined as in
Section 3.2.2 where the taint of a concatenated string is the meet of its operands’ taints, but it would be
e.g. if its results were always untainted.

Not overtainting refines the precision of taint tracking with respect to a given state. Intuitively, a
library method that only directly depends on its high integrity inputs is not overtainting if its results are
untainted.

Definition 5.10. We say C.m ∈ LibMeths is not overtainting with respect to input v1,u1 iff for all v2, u2
where:

v1,u1 =◦ v2,u2 callC.m(new C(v1).m(u1)) = (v1, ε) callC.m(new C(v2).m(u2)) = (v2, ε)

if v1 = v2 then v1 = new D(◦,v) for some v.

5.3. Extended Example

Assume given a class table CT containing sanitizer and SSO methods Sec.sanitize and
Sec.secureMeth which are identity function for the sake of brevity, i.e.:

mbodyCT (Sec,sanitize) = x,x mbodyCT (Sec,secureMeth) = x,x

and let mbodyCT (main,TopLevel) = attack,e where e is:

if attack.eq(new String(′′foo′′)) then
new Sec().secureMeth(attack)

else
new Sec().secureMeth(new Sec().sanitize(attack))

Note that this is an example of a program that is unsafe by our definition, since a tainted value can
flow directly into an SSO, though it is noninterfering modulo endorsement since that value can only
be new String(′′foo′′) (similar to the example at the beginning of this Section). However, Phos
will place a check that will ensure blocking of unsafe executions. We note that the execution of
Phos(p(new String(′′foo′′))) up to the point it gets stuck within Sec.check is associated with
the following state transformer f :

f = sequence ∗ return ∗ callSec.log ∗ callSec.secureMeth ∗ ifT ∗ callString.eq

Observe that π2( f (Phos(p(a)))) = ε for any a, trivially satisfying the requirements of explicit integrity
modulo endorsement. Crucially, note that a need not be the string ′′foo′′ in order for f (Phos(p(a))) to
be defined– even though the program Phos(p(a)) would not take the T branch through the conditional
during actual execution, it is “forced” that way by f . This is central to the definition of explicit attacker
power with respect to Phos(p(new String(′′foo′′)) and f .

In contrast, the state transformer associated with the actual execution of Phos(p(new String(s)))
for s 6= ′′foo′′ up to the point it gets endorsed by String.endorse within Sec.sanitize is:

g = endorse ∗ callSec.sanitize ∗ ifF ∗ callString.eq
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We note that:

π2(g(Phos(p(new String(s′))))) = eev(new String(s′))

for all s′. Furthermore, continued execution of Phos(p(new String(s))) is associated with the follow-
ing function h which takes the program through the successful check of the sanitized object:

h = check ∗ sequence ∗ return ∗ callSec.log ∗ callSec.secureMeth

We note that:

π2(h ∗ g(Phos(p(new String(s′))))) = eev(new String(s′)), iev(new String(s′))

for all s′. Finally, we observe that:

pe(Phos(p(a)), g) = pe(Phos(p(a)), h ∗ g) = {Phos(p(a))}

for all a, satisfying the requirements of explicit integrity modulo endorsement.
Since f and h ∗ g represent all possible control flow paths through the program that can generate

events, it is evident that Phos(p(a)) satisfies explicit integrity modulo endorsement for all a.

5.4. Enforcement of Explicit Integrity Modulo Endorsement by Phos

Our general strategy is to show that non-endorsement events do not change attacker power as required
by the definition of explicit integrity modulo endorsement. The complete proof details are given in our
Technical Report [14].

Theorem 5.1. If e is in the image of Phos, then it enjoys explicit integrity modulo endorsement.

Proof. (Sketch) Proof by contradiction. If it does not enjoy explicit integrity modulo endorsement, then
explicit attacker power is refined, i.e., different integrity events can be generated starting from trust
equivalent states. This contradicts with an intermediary result reflecting on the preservation of integrity
events by state transformers being applied on trust equivalent states. ut

6. An Implementation of Phos in OpenMRS

In Section 1.1 we discussed an XSS vulnerability in the OpenMRS system (corrected in the cur-
rent version) that inspired our interest in an in-depth taint analysis to better track data flow into secure
operations and to enforce some level of sanitization. To explore and evaluate our proposed methods in
practice, we have developed an automated analysis for OpenMRS by direct modification of the Phosphor
system [5]. Our modification supports dynamic integrity taint analysis both prospectively and retrospec-
tively. Our implementation is based on the formal model developed in previous sections, which enjoys a
correctness guarantee. In this Section we describe our implementation and our evaluation of it.
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6.1. Modifications to Phosphor

Out of the box, Phosphor provides a binary taint labeling scheme, with no support for endorsement.
Users specify their security policy by identifying high integrity sinks, which are then automatically
instrumented at the bytecode level with checks for low integrity inputs, by a combination of program
rewriting and runtime mechanisms. Thus, to implement our in-depth taint analysis specification we
needed to generalize the taint labeling scheme, add an endorsement mechanism, and add support for
audit logging to the existing Phosphor codebase. This yielded our Phos implementation, as distinct from
Phosphor.

Phosphor distinguishes only between two types of data– tainted and untainted. To support a gener-
alized labeling scheme, in Phos we added to the Phosphor Taint class definition a field containing a
TaintLevel enumeration. This latter type is endowed with a partial ordering that is specified by the
programmer via an underlying graph definition, and join and meet operations. In our implementation
we support the taint label lattice defined in Section 3.2 but this could be easily changed to accom-
modate others. We also define an endorse operation that takes the join of the input taint label and
MaybeTainted as in this paper. Since Phosphor itself adds a Taint object to all program objects,
these modifications are propagated through the system by the existing codebase.

As for ordinary Phosphor, in Phos we allow specification of secure sinks, however the rewriting algo-
rithm adds instrumentation for audit logging of values at or below a specified taint level that reach any
sink (MaybeTainted in our case). The following information is logged in such a case: the function
name of any sink that had a tainted variable pass through it, the taint level of any sunken tainted variable,
the value of sunken variables, and a stack trace of the thread when a tainted variable was sunk. Much of
this information was already being collected in the unmodified Phosphor.

We also allow specification of a set of sanitizers in the same manner as secure sink specification,
i.e. specific methods are identified in an initial configuration file provided when rewriting a program.
These methods will have return values endorsed via insertion of that method. Thus the end product
functions the same as the system specified in Section 4– an input set of SSOs and Sanitizers are provided,
along with a program for instrumentation, and the program is rewritten with instrumentation to support
SPtaint and LStaint. Our Phos implementation also supports a specification of low integrity sources at
arbitrary taint levels. The implementation is available on a public GitHub [51], as well as our Phos-
instrumented version of OpenMRS.

6.2. OpenMRS Sources, Sinks, and Sanitizers

To apply Phos to OpenMRS, it is necessary to identify sources, sinks, and sanitizers in the system.
Since our concern is mainly defense against injection and XSS attacks, we focused on database inter-
actions. OpenMRS in its current form uses the popular Hibernate ORM framework as a database API,
which supports two ways of interacting with databases– via persistent relationally mapped object sav-
ing/loading, and via queries. We limited the scope of our work to focus on queries based on data in
memory rather than persistent data, since the latter would require persistence of taint information and
hence a far more complex implementation task.

The lists of sources, sinks, and sanitizers we identified in OpenMRS are provided in our implementa-
tion on GitHub [51]. Our method for identifying sinks and sanitizers was to leverage our knowledge of
the Hibernate API. Specifically, to identify sinks, we searched the OpenMRS codebase for methods that
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Fig. 17. Phos instrumentation timing overhead for OpenMRS for actions (left) and page loads (right). Numbers on the x-axis
identify particular actions and page loads, and the y-axis is completion time in seconds.

employ Hibernate database write functionality. To identify sanitizers, we searched the OpenMRS code-
base for methods that employ Hibernate sanitization functionality. The list of sources was determined by
searching for methods that use javax.servlet functionality for recovering data from POST requests.

Another subtle but important detail of our integration of Phos with OpenMRS is that in OpenMRS, the
arguments for the sinks are not necessarily tainted themselves, but rather are objects containing tainted
member variables. Therefore, we also modified Phosphor to not only check sink arguments for a taint,
but also argument member variables.

6.3. Implementation Evaluation

To evaluate our instrumentation of OpenMRS with Phos, we developed an automated testing method
to evaluate correctness of the implementation, as well as timing and memory overhead. However, to
understand our evaluation, certain details need to be explained.

Phosphor Initialization Overhead. When instrumenting Java classes with Phosphor, one can either run
the software manually, specifying all of the source files to the program, or Phosphor can automatically
detect and instrument uninstrumented code as the program runs. The latter option was chosen for this
project due to the nature of OpenMRS and the onerous overhead of manual instrumentation.

As a consequence of instrumenting Java classes dynamically, an instrumentation overhead occurs
as new uninstrumented source code is discovered. Thus, an initial run through a Phosphor-modified
OpenMRS would be slower than consecutive runs, which was indeed observed by testing– the initial run
of a particular method typically took about twice as long as subsequent runs.

Since our main concern in evaluation was to compare the overhead of instrumented vs. unmodified
OpenMRS, and initialization overhead is arguably amortized to insignificance over long use sessions,
the results we report here are only for pre-initialized testing runs. However we do note this additional
overhead with the use of Phosphor’s dynamic instrumentation feature.
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Fig. 18. Phosphor instrumentation memory overhead. The x-axis denotes the fraction completion of a test run, and the y-axis
denotes memory used in MB.

Actions and Page Loads. The OpenMRS system has a web-based user interface, so we can partition its
functionality into two major categories. The first is called action functionality, which results from sub-
mitting a form. Since form submission introduces tainted data that is potentially sanitized and destined
for a secure sink, we can expect actions to incur overhead in instrumented OpenMRS and so are clearly
important to consider.

OpenMRS also offers the potential for page loads, where users navigate between pages in the system
by clicking links (but not submitting data). Since the underlying code is also instrumented in these
situations, and continues to track taint, some overhead can also be observed. Thus we also evaluated
overhead associated with page loads.

6.3.1. Experiments and Results
To evaluate Phos-instrumented OpenMRS, we developed a script that iterated over 42 actions, and

over 121 page loads, recording timing and memory use, that we call a test run. We did a test run over
unmodified OpenMRS to establish a baseline, and also did a test run over OpenMRS instrumented with
our implementation of Phos. Finally, to evaluate how much our modifications impact Phosphor overhead,
we did an actions-only test run over OpenMRS instrumented with pre-initialized unmodified Phosphor.

An initial concern of our evaluation was determining whether the system worked correctly, and
whether data reaching sinks was maybe tainted, indicating sanitization, as well as being logged properly.
We confirmed this, and did not discover instances of unsanitized data reaching sinks. Subsequently, we
considered timing and memory consumption.

Timing. Our timing results are summarized in Table 1. Here we show the average time to complete each
action and page load for the unmodified OpenMRS baseline, as well as OpenMRS instrumented with
our implementation of Phos, and OpenMRS instrumented with pre-initialized unmodified Phosphor.
These results demonstrate that instrumentation imposes a bit less than 3x overhead, while average times
for completion are not onerous. Furthermore, our comparison of Phos and Phosphor shows that our
modifications to did not add significant overhead to the taint analysis.

Figure 17 shows more detailed results, comparing times for the OpenMRS baseline and the Phos-
instrumented version for each action (left graph) and page load (right graph). These results show that
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Table 1
Average timing and overhead for unmodified OpenMRS (baseline), versus instrumented with Phosphor and with Phos.

Actions Loads
Avg (secs) Overhead Avg (secs) Overhead

OpenMRS Baseline .236 - .567 -
OpenMRS + Phosphor .614 261% - -

OpenMRS + Phos .670 284% .636 112%

timing overhead is fairly consistent, albeit with some significant anomalies. In particular, overhead for
the instrumented version spiked on the dataExport.list action, which is action number 23 in the
graph. It is unclear what caused this anomaly, but appears to be an artifact of the Phosphor implementa-
tion (not our modifications).

Memory. Figure 18 shows baseline memory consumption during test runs of unmodified OpenMRS,
versus OpenMRS instrumented with pre-initialized unmodified Phosphor. As these results demonstrate,
while instrumentation does impose memory overhead, the impact on performance is not practically
significant.

7. Conclusion

In this paper we considered integrity taint analysis in a pure object-oriented language model. Our se-
curity model accounts for sanitization methods that may be incomplete, a known problem in practice and
one inspired by our study of the OpenMRS medical records software system. We proposed an in-depth
security mechanism based on combining prospective measures (to support access control) and retro-
spective measures (to support auditing and accountability) that address incomplete sanitization. More
precisely, we propose treating the results of sanitization as “partially” endorsed, or “maybe tainted”, and
allow maybe tainted values to be used in security sensitive operations but record such events in the audit
log.

We developed a uniform security policy of dynamic integrity taint analysis that specifies both prospec-
tive and retrospective measures, separate from code. The specification is defined in terms of a logical in-
terpretation of program traces and leverages techniques from information algebra, allowing prospective
and retrospective measures to be characterized in a uniform and integrated manner. Since the specifica-
tion is defined separate from code, we use it to establish provable correctness conditions for a rewriting
algorithm that instruments in-depth integrity taint analysis. A rewriting approach supports development
of tools that can be applied to legacy code without modifying language implementations.

Although our specification of dynamic integrity taint analysis with endorsement establishes correct-
ness conditions for implementations, it is still operational in nature. We therefore developed the hy-
perproperty of explicit integrity modulo endorsement to characterize the security property of integrity
taint analysis in a non-operational manner. It is important to note that this formulation was not simply
the dualization of previous formulations of explicit secrecy [10], since these formulations address only
low-level code with unstructured data. We subsequently demonstrated that the image of our rewriting
algorithm enjoys this security property.
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Since our broader goal is to support well-founded practical tools for hardening software, we developed
an instrumented version of OpenMRS that integrates our in-depth taint analysis formally specified in
our model. Results from our evaluation of this implementation suggest that it is correct and practically
feasible. We have made the implementation available on a public GitHub [51].
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