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Host-based Intrusion Detection Systems (HIDS) automatically detect events that indicate compromise by adversarial applications.

HIDS are generally formulated as analyses of sequences of system events such as bash commands or system calls. Anomaly-
based approaches to HIDS leverage models of normal (aka baseline) system behavior to detect and report abnormal events,

and have the advantage of being able to detect novel attacks. In this paper we develop a new method for anomaly-based HIDS

using deep learning predictions of sequence-to-sequence behavior in system calls. Our proposed method, called the 𝐴𝐿𝐴𝐷

algorithm, aggregates predictions at the application level to detect anomalies. We investigate the use of several deep learning

architectures, including WaveNet and several recurrent networks. We show that 𝐴𝐿𝐴𝐷 empowered with deep learning

significantly outperforms previous approaches. We train and evaluate our models using an existing dataset, ADFA-LD, and a

new dataset of our own construction, PLAID. As deep learning models are black box in nature we use an alternate approach,

allotaxonographs, to characterize and understand differences in baseline vs. attack sequences in HIDS datasets such as PLAID.

CCS Concepts: • Security and privacy → Intrusion detection systems; • Computing methodologies → Neural net-
works; Ensemble methods.

Additional Key Words and Phrases: Host-Based Intrusion Detection Systems; Deep Learning; System Calls

1 INTRODUCTION
In this work we improve the state of the art for Host-based Intrusion Detection Systems (HIDS) utilizing anomaly-
detection. Intrusion Detection Systems (IDS) aim to automatically detect events indicating system compromise by

malicious adversaries. Due to the growing importance of security threats, this problem has received considerable

attention both in academic research [30] and from industry [53, 54, 57]. HIDS are a class of Intrusion Detection

Systems (IDS) that monitor a computer system’s internals and interfaces to detect intrusions. Systems that

utilize anomaly-detection model normal system behavior and report abnormal events. The primary alternative to

anomaly-based IDSs is signature-based. Signature based approaches operate similarly to a virus scanner: they

report events matching the signature of a known attack. For example, the MITRE ATT&CK Framework [55]
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is a set of signatures, expressed as rules for detecting intrusions, that can be used to flag events for further

examination. Unlike signature-based approaches, anomaly-based approaches can detect novel attacks, as they are

identifying changes in behavior rather than a specific attack.

Network-based Intrusion Detection Systems (NIDS), the primarily alternative to HIDS, examine network events

(i.e. traffic between hosts), rather than events occurring on a single host, and are thus distinct from HIDS. NIDS

have traditionally been simpler to deploy than HIDS, since they do not require modifying individual hosts.

However, as important services increasingly migrate to the cloud—where the network is under the control

of the cloud provider—deploying a network-based approach for intrusion detection is often not feasible. The

relative importance of HIDS research in the intrusion detection space is therefore increasing with the use of

cloud computing. We chose to focus on anomaly-based HIDS to create systems compatible with modern cloud

deployments that can protect against zero-day attacks.

Automated methods for HIDS are generally formulated as analyses of sequences of system events such as bash

commands or system calls [30]. System calls are the interface for userspace programs to request services from

the operating system’s kernel, such as starting a new process or reading a file. In HIDS research, system call

sequences are used as a proxy for understanding the behavior of a running program—we assume that a malicious

program will produce a very different pattern of system calls than baseline execution of a benign program. We

focus on the use of machine learning to distinguish between malicious and baseline behavior in sequences of

system calls.

1.1 Problem Statement & Contributions
Previouswork has developedHIDS that operate on individual traces of system call sequences [21, 34] using publicly

available datasets [10, 29, 41, 42]. Some of these prior works are also based on anomaly detection [8, 13, 58–61].

All of these works consider system call traces generated by an individual process; however, modern applications

often use multiple processes, and modern attacks can impact one or more of these processes. Furthermore, existing

system call corpora used to develop these HIDS are limited and outdated. Thus, the problems we address are

how to modernize anomaly-based HIDS by incorporating analysis of multi-process applications, how to develop

algorithms and evaluation methods more relevant to modern systems and attacks, and overall how to achieve

more accurate detection of modern attacks.

We address these problems as follows. First, we present a novel approach for building HIDS based on unsuper-

vised deep learning. State-of-the-art in this domain demonstrates that models based on Long Short Term Memory

(LSTM) [21], and Gated Recurrent Unit (GRU) [34] architectures outperform prior SVM-based approaches and

hence are the most promising technology in this space. The key technical contribution of our approach is an

application-level classifier, called 𝐴𝐿𝐴𝐷 (Application-Level Anomaly Detection), to distinguish between baseline

and malicious behavior. 𝐴𝐿𝐴𝐷 groups system call sequences by program—rather than by process, as was done in
previous work [21, 34]. 𝐴𝐿𝐴𝐷 is simple to implement, and in our experiments produces a statistically significant

improvement in classification compared to previous work. We describe the 𝐴𝐿𝐴𝐷 approach in Section 4.5.

Second, we collect and release a new dataset of system call sequences, with modern attacks on multi-process

applications, used to support the development of our approach and validate our results. Our new dataset, called

PLAID, contains sequences from six modern exploits and penetration techniques as well as a large collection

from normal operation. We discuss the creation of PLAID in Section 3.

The third main contribution of our paper is the application and evaluation of modern sequence-to-sequence

neural network architectures for anomaly detection. In Section 4, we compare a state-of-the-art architecture,

WaveNet [43], with replications of the LSTMs and GRUs used in prior work, using both 𝐴𝐿𝐴𝐷 and the trace-level

classifiers developed in previous work. We demonstrate our results on PLAID as well as the Australian Defence

Force Academy Linux Dataset (ADFA-LD) [10], used by several closely related works [21, 34]. We completed 540
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training and evaluation trials over combinations of dataset, model, and replicate. To our knowledge this is the

largest comparison of deep learning models used in HIDS to date. We provide open source repositories for all

datasets and code
1
to facilitate reproducibility.

In addition, we address a common critique of deep learning, that it is “black-box”, in the sense that it structurally

obfuscates model details and does not provide practitioners with insights about why it works. We show in

Section 7, that recent techniques in corpora “divergence” visualization can still provide useful insights into

datasets. Specifically, we explore our new dataset along with the popular ADFA-LD to observe differences

between normal and malicious sequences. This helps to explain the effectiveness of anomaly detection in this

application.

In summary, our primary contributions are as follows:

(1) Application Level Anomaly Detection (ALAD), a new classifier for groups of system call sequences.

(2) PLAID, a new dataset of modern system call sequences and attacks.

(3) A comparison of modern sequence-to-sequence neural network architectures for anomaly detection.

(4) The use of rank-turbulence divergence to visualize differences in system-call 𝑛-grams.

Note that (3) also subsumes a comparison with historical work, since [21, 34] already demonstrated superiority

of deep learning approaches as compared to other historical approaches.

2 BACKGROUND & RELATED WORK
Intrusion detection systems (IDS) aim to automatically detect events indicating system compromise by malicious

adversaries and have been studied since at least 1980 [4]. Liu and Lang provide a comprehensive taxonomy of the

systems developed since then. IDS are typically classified according to their sources of data and detection methods.

Network- vs. host-based intrusion detection. There are two major categories of data sources. Network-based

intrusion detection systems (NIDS) are deployed at the network level, and detect intrusions by examining network

traffic. Host-based intrusion detection systems (HIDS), which are the subject of this work, are deployed on a

single host and detect intrusions by examining events on that individual host. NIDS have traditionally received

more attention (e.g. [3, 17, 25, 35, 36, 40, 46, 47, 49, 66, 68, 70–73]) because they are easier to deploy, more efficient,

and capable of detecting threats across multiple hosts. HIDS have the advantage of being deployable in a cloud

setting, in which the cloud provider controls the network infrastructure, and are capable of detecting intrusions

that do not produce abnormal network traffic. Our work focuses on HIDS.

Data & datasets. Our work is focused on detecting intrusions using sequences of system calls. System calls are

the interface for userspace programs to request services from the operating system’s kernel, such as starting a

new process or reading a file. Forrest et al. first proposed using these sequences to detect intrusions, by collecting

information about “normal” patterns of system calls and detecting system call sequences that deviate from these

patterns. Datasets of system call sequences include both baseline and attack sequences. Baseline sequences are

collected from programs running normally; attack sequences are collected from compromised programs behaving

abnormally (e.g. while an exploit is being used to attack the program).

Datasets of system call sequences are difficult to construct; as a result, most work in this area is evaluated on

just four datasets:

• The DARPA Intrusion Detection Dataset [29] (1998/1999)

• The KDD 99 Dataset [42] (1999)

• The UNM System Call Dataset [41] (1998)

• The ADFA-LD Dataset [10] (2012)

1
https://gitlab.com/jhring/uvm_ids
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Unfortunately, the DARPA, KDD, and UNM datasets are too old to be of practical use as representative of modern

host processes and attacks [37]. The ADFA-LD (Australian Defence Force Academy Linux Dataset [10]) dataset was

specifically designed to address limitations of previously-collected datasets. In particular, they captured system

call traces on a server running a modern operating system (Linux) with realistic workloads (e.g. web browsing

and word processing), and attack sequences generated via real vulnerabilities in commonly-used software. For

these reasons, the ADFA-LD dataset is often used for HIDS research, and previous work has demonstrated that

this realism translates into a much more challenging learning task, suggesting that realistic datasets are vital for

designing systems for practical deployment.

Nonetheless, the ADFA-LD dataset has a number of shortcomings. Since its release in 2012, typical workloads

on Linux servers have changed, so the dataset is no longer reflective of typical server behavior. The dataset was

captured on an i386 host, which though common at the time are rare in modern production environments. This is

important because the system calls used by i386 and x86_64 systems differ substantially which makes it difficult

to directly compare or integrate ADFA-LD traces with those collected on modern systems. Finally, the normal

traces appear to be more reflective of a workstation, rather than server environment and are underspecified.

Each attack sequence is labeled with the process which generated it, but the baseline sequences are not similarly

labeled—so it is impossible to know what program was used to generate each sequence.

Signature- vs. anomaly-based methods. As mentioned earlier, there are two major methods of detection in

HIDS research: signature-based methods and anomaly-based methods. Signature-based methods are commonly

used to detect malware [5, 6, 63]; though they may also be used to detect known patterns of behavior that

indicate an intrusion [36, 38]. These methods typically have low false-positive rates and are efficient, but they

can only detect known attacks. Anomaly-based methods detect abnormal behavior by comparing against a

model of normal behavior; they have higher false positive rates, but are capable of detecting brand-new attacks.

Anomaly-based methods have been applied both to sequences of system calls and to other kinds of intrusion

detection [8, 13, 58–61]. Our work focuses on anomaly-based intrusion detection.

IDS based on machine learning. A number of machine learning-based intrusion detection systems have been

proposed by other authors. Liu and Lang provide a survey of these results. Machine learning approaches based

on supervised learning (e.g. [2, 36, 38]) correspond to signature-based intrusion detection: they use labeled

training data including both baseline behavior and attacks to train classifiers that distinguish between the

two. These approaches cannot detect new kinds of attacks. Approaches based on unsupervised learning (e.g.

[9, 14, 15, 19, 21, 24, 34, 67]) correspond to anomaly-based intrusion detection: they train models of baseline

behavior using unlabeled training data containing only baseline behavior. Our work focuses on the use of

unsupervised deep learning to perform anomaly-based intrusion detection on system call sequences. Previous

work in this area has used both traditional (“shallow”) machine learning and deep learning to build models of

benign system call sequences. For example, approaches based on Hidden Markov Models [15, 19, 24] and support

vector machines (SVM) [14, 67] have both been proposed. These methods worked well on datasets collected

in the 1990’s but performed poorly on the more recent ADFA-LD [10]. In particular, methods that discard the

ordering information in system call sequences, including clustering and ”bag of system calls” approaches achieve

reasonable accuracy on legacy datasets but fail on ADFA-LDḊue to this recent approaches focus on techniques

that leverage ordering information, of which deep-learning has been shown to be the most promising. Kim

et al. compared a long short-term memory (LSTM) model which 𝑘-nearest neighbor and 𝑘-means clustering

achieving state-of-the-art performance with the LSTM. Chawla et al. use a combined convolutional / recurrent

(CNN / RNN) architecture, and obtain similar performance LSTMs with less training time. These deep-learning

based approaches represent the state-of-the-art in anomaly-based HIDS, and we use them for comparison in our

empirical evaluation.
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Visualisation. Various visualization techniques have been used to aid human analysts and users in identifying

suspicious activities and emerging threats in the cyber-security realm [11, 62]. Recent work in the field of

Complex Systems provides analytical methods and corresponding visualizations for comparing various states of a

system [12]. These advances have not previously been applied in the cyber-security domain though the divergent

nature of attack vs baseline system call sequences is a natural fit for the application.

3 THE PLAID DATASET
As with all machine learning techniques for IDS, our approach to training and testing models for HIDS relies

on corpora of events, in our case system calls. Since we are developing an anomaly detection system, training

corpora must contain baseline and attack data as described above in Sections 1 and 2. Given the shortcomings of

ADFA-LD discussed in Section 2 we developed a new dataset, named PLAID, with modern system calls, and a

richer, more current set of attacks. The PLAID Lab Artificial Intrusion Dataset is an open source dataset intended

to support the work described here, and to support research in the broader community. PLAID features modern

exploits carried out against a contemporary Linux server deployment, and is publicly available [50].

3.1 Host Configuration
Ubuntu 18.04 LTS [32] was selected as the host Operating System (OS) for PLAID. Ubuntu is a secure modern

Linux distribution, and the most popular choice of OS for use on public clouds such as AWS and Microsoft Azure.

Commonly used remote administrative services FTP and SSH [69] were installed through Ubuntu’s default

package manager and enabled with their default configurations. Redis Version 4.0.14 [52] an open source in-

memory data structure store was manually installed on the host and configured to allow connections on the

local network. A malicious client side executable [64] was placed on the machine, simulating a successful social

engineering attack. Nginx Version 1.14.0 [48] and php-fpm Version 7.1.33 [18] were installed on the host and

configured to serve a basic website, a common deployment of the world’s most popular web server [33].

This host configuration represents a reasonable approximation of a modern production Linux server offering

remote access, high performance data storage, and web hosting.

3.2 Network Setup
Our experiment testbed consists of three Virtual Machines (VMs): our host, an attack machine, and a router. The

attack VM is an instance of Kali 2019 [28], a Linux distribution designed for penetration testing. We connected

our attack and host VMs on a local network through a bare-bones instance of Ubuntu 18.04 LTS serving as a

router. All three VMs were run using VirtualBox Version 6.1 [44] on a single physical machine. Detailed setup

instructions of VM network configuration are available on the project GitLab [50].

3.3 Attack Overview
Our host machine was exploited from six different attack vectors.

(1) The Redis attack [39] exploits a vulnerability in the “extension” functionality provided in the Redis

in-memory database to execute arbitrary code. An exploit for the vulnerability was developed in 2018 and

is available in Metasploit.

(2) The PHP-FPM attack [26] (CVE-2019-11043) exploits a vulnerability present in the combination of nginx

and php-fpm to execute arbitrary code. An exploit for this vulnerability was developed in 2019 and is

available on GitHub.

(3) The privilege escalation attack [65] (CVE-2016-5195, also called DirtyCow) uses a malicious CSE that

exploits a vulnerability in the Linux kernel to obtain a shell with root privileges.
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(4) The brute-force attacks [27] represent the use of a traditional brute-force password-cracking application

(Hydra) to discover users’ passwords over SSH and FTP.

3.4 Data Collection
System call traces were generated by starting the target application with strace—a userspace utility capable of

monitoring interactions between processes and the Linux kernel. Each exploit was run and monitored for ten

trials, fully restarting all affected services between each trial. The result of each trial is a series of files containing

system calls for example: execve brk access access openat fstat mmap close. . . Each individual file

corresponds to a single process of the program’s execution and is labeled with the process id.

Since the intended use of this dataset is the development of anomaly-based IDSs, we require baseline data

approximating normal operation. This baseline dataset was generated by monitoring a wide variety of common

operations on the host with no active attacks in progress. Specific items in the set of common operations were

chosen for two reasons. The first is to be representative of the wide range of computational tasks performed

in modern day enterprise environments. The second is to achieve a high degree of behavioral overlap with the

previously described attacks. The chosen baseline operations are:

• Transfer of files to and from the host using FTP

• Host access via SSH and modification of configuration files

• Simulation of web traffic using Apache Bench

• Redis interactions

• Download files from the internet with curl

• Execution of rustup, the Rust programming language install script [23]

• PHP and Redis test suites

• Compilation of small and large programs

• Deployment of small programs that involve: reading from disk, non-trivial computation, and standard IO

We encode meta-information in the directory structure in the same manner as the ADFA dataset. The generated

data was split into two top level directories- attack and baseline. Inside the attack directory is a subdirectory for

each trial labeled with the exploit and trial ID. These subdirectories contain all collected system call trace files

from the corresponding exploit trial. Similarly, the baseline directory contains a subdirectory for each baseline

operation. These subdirectories contain all collected system call traces associated with the baseline operation.

4 DEEP LEARNING MODELS AND THE ALAD ALGORITHM
In this section we describe the ALAD algorithm, the underlying deep learning models it uses, and our evaluation

and experimental methods. We also explicitly state our research hypotheses, as Hypotheses 1 and 2 below. We

return to these hypotheses in Section 6 and discuss how our experimental results support or refute them.

4.1 Method Overview and Definitions
Our approach to anomaly-based intrusion detection is a two stage process similar to that of Kim et al. but differs

substantially in implementation. We implement a full detection pipeline consisting of two main stages. The first

stage models the system call language using deep neural networks trained exclusively on baseline data. The

second stage performs anomaly prediction using the model(s) from the first stage as well as an anomaly classifier.

4.1.1 Trace Probability. The first stage in our pipeline is a system call language model, which specifies the

probability distribution for the next system call in a sequence given all prior system calls in that sequence. If

we have a system call trace 𝑡 = 𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛 , we can calculate the probability of the sequence occurring with
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equation 1.

𝑝 (𝑡) =
𝑛∏
𝑖=1

𝑝 (𝑥𝑖 |𝑥1:𝑖−1) (1)

Recall that each event 𝑥𝑖 is a system call as described in Section 3. Models trained exclusively with baseline data

estimate this probability distribution for a host’s normal operation. Thus, we can formally define a modelM as a

mapping from traces 𝑡 to a probability (real number) value. Details of the neural network architectures used, and

their training methodologies can be found in Sections Sections 4.2 and 4.4 respectively.

4.1.2 Trace-Level Anomaly Detection (𝑇𝐿𝐴𝐷). The second stage in our pipeline uses the probabilities generated

by the first stage to classify a trace as baseline or anomaly. Specifically, a modelM trained on baseline sequences

can be used to classify a trace 𝑡 as anomalistic if it has low probability. Taking the negative log of M(𝑡) (its
negative log-likelihood) results in low values if 𝑡 is not anomalistic, and high values if it is. A standard approach

(e.g. [21]) to anomaly detection sets a threshold 𝜃 and classifies a trace 𝑡 as anomalistic if its negative log-likelihood

exceeds the threshold. Formally, trace-level anomaly detection (𝑇𝐿𝐴𝐷) is defined as follows, given a modelM
and threshold 𝜃 :

𝑇𝐿𝐴𝐷 (𝑡) =
{
1 if − log(M(𝑡)) > 𝜃

0 otherwise

4.1.3 Application-Level Anomaly Detection (𝐴𝐿𝐴𝐷). A drawback of 𝑇𝐿𝐴𝐷 is that it considers only a single

process at a time, whereas attacks typically target applications and can impact multiple processes. We propose

an algorithm that aggregates predictions for all processes associated with an application. As discussed above

in Section 3, process traces are endowed with application meta-information in corpora, which we can use to

group traces into sets A as described below in Section 4.5. Furthermore, there is nothing special about this

meta-information, in particular it is easily available to any system in practice. These sets A can be provided as

input to our 𝐴𝐿𝐴𝐷 algorithm to predict whether an application is benign or malicious. Formally:

𝐴𝐿𝐴𝐷 (A) = let {𝑡1, . . . , 𝑡𝑛} = A

let𝑚 = median(−logM(𝑡1), . . . ,−logM(𝑡𝑛))
1 if𝑚 > 𝜃 otherwise 0

Figure 1 illustrates our complete pipeline using 𝐴𝐿𝐴𝐷 .

4.1.4 Research Hypotheses. With the above definitions in place, we can now state our explicit research hypotheses

as follows.

Hypothesis 1. WaveNet will outperform the LSTM and combined CNN/RNN architectures used in prior work [9,
21].

Hypothesis 2. 𝐴𝐿𝐴𝐷 will outperform 𝑇𝐿𝐴𝐷 as an IDS mechanism.

We discuss the performance metrics and evaluation methodology for both 𝑇𝐿𝐴𝐷 and 𝐴𝐿𝐴𝐷 in Section 4.5. In

Section 5 we compare the performance of several models from each architecture (WaveNet, LSTM, CNN/RNN)

and show how 𝐴𝐿𝐴𝐷 yields significant performance improvements compared to 𝑇𝐿𝐴𝐷 .

4.2 Model Architectures
Intrusion detection is a less-explored application for the machine learning community, though many advances in

the field are relevant. In particular, if we formulate the anomaly-based IDS as sequence-to-sequence learning

problem, then we can leverage cutting-edge techniques from an active area of research in the deep learning

community. We investigate and compare several models that are adapted from recent deep learning research.
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Fig. 1. An illustration of our entire pipeline. Starting on the left is a testing split consisting of attack (red) and baseline (blue)
system call traces. These are submitted to a model of normal behavior- the model is a result of training exclusively on baseline
traces. The model is first used to obtain the probability of occurrence of each process trace in our test set. Then we use trace
metadata to group trace probabilities by application. Finally, we test the aggregation (median) of these grouped probabilities
against a threshold 𝜃 resulting in a classification for each program.

All models used in this work feature the same high level layout. The integer encoded system calls are fed into

a learned embedding layer. The embedding layer is followed by one of the architectures described above which

outputs a probability distribution over system calls at each time step.

Our first candidate model is the WaveNet architecture [43], an audio generation model developed by Google

DeepMind. WaveNet can serve as a drop-in replacement for LSTM-based architectures, which are commonly

used on sequence-to-sequence problems. WaveNet employs discrete convolutions to capture context information

and inform predictions, rather than the recurrent connections seen in LSTMs. This allows WaveNet to achieve

superior performance with shorter training time as compared to LSTM-based architectures.

Our second and third candidates replicate the architectures from two prior approaches performing anomaly

detection on ADFA-LD. They are an LSTM language architecture from Kim et al., and the combined CNN/RNN

architecture from Chawla et al.. The LSTM architecture is simply a variable number of LSTM layers followed by

dropout leading into a dense layer. The combined CNN/RNNmodel features multiple one dimension convolutional

layers stacked on top of a GRU followed by a dense layer.

We implemented these architectures in Python using TensorFlow version 2.1 [1] and provide our source code

on GitLab [50].

4.3 Data
We constructed separate training, testing and validation subsets for both ADFA-LD and PLAID. A separate dense

integer encoding was used for each dataset as they were generated on machines using different instruction set

architectures. The testing sets feature a 1:1 ratio of attack and normal traces while the training and validation

sets contain exclusively normal traces.

4.3.1 ADFA-LD. The ADFA-LD data directory consists of three folders: attack, training and validation. Respec-

tively, these contain 746, 833, and 4,373 system call traces of varying lengths. The 175 unique system calls in
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ADFA-LD originally represented by a sparse integer encoding are refactored into a dense encoding for computa-

tional efficiency. The training and validation folders contain traces of normal operation while the attack folder

features all attack traces.

We use this data to construct our own training, testing, and validation splits as follows. The ADFA training and

validation folders are merged, consolidating all normal traces. Our test set was created by combining the attack

sequences with 746 randomly selected normal sequences resulting in a 1:1 ratio of attack and normal sequences.

The unused normal traces were then randomly split into training and validation sets with an 80:20 ratio resulting

in 3,567 sequences selected for training and 892 for validation. Note that the original ADFA data split is not used

in this paper and all further references to training, testing and validation refer to our own data splits.

4.3.2 PLAID. Pre-processing of the PLAID dataset was done similarly. PLAID consists of two top-level directories,

attack and normal, named for the type of traces they contain. A total of 1,494 traces with a length less than 8

or greater than 4,495 were discarded. The remaining traces consisting of 228 unique system calls were encoded

with a dense integer representation. These bounds correspond to the smallest and largest sequences present in

ADFA-LD. The test set is constructed by combining all 1,145 remaining attack sequences with an equal number

of randomly selected normal traces. The remaining unused normal traces are then randomly split into training

and validation sets with an 80:20 ratio resulting in 29,626 sequences selected for training and 7,407 for validation.

4.3.3 Complexity. We note that size of these datasets may seem small for deep learning applications; this

observation however fails to consider the size of the overall landscape. There are 𝑘𝑛 possible system call traces of

length 𝑛, where 𝑘 is the vocabulary size of system calls. The Linux kernel currently features over 300 unique

system calls resulting in over 27 million possibilities for traces of length three. With a length of 4,495 the landscape

for the largest traces under consideration is much larger than the number of floating-point operations the universe

could have performed thus far [31]. Given the complex landscape of system call traces, it is unsurprising that

deep learning is required to achieve state-of-the-art performance.

4.4 Model Training & Configuration
For each architecture described in Section 4.2, we build three models with differing hyper-parameters to be used

in an ensemble. The models, written𝑀𝑖 for 𝑖 ∈ {0, 1, 2} and𝑀 ∈ {CNN/RNN, LSTM, WaveNet}, are ordered by

increasing number of parameters.

Selecting optimal hyper-parameters is a notoriously difficult task due to the large search space and computa-

tional cost of exploration. We used a Gaussian process optimizer to inform the search, aiding in the selection of

hyper-parameters for our WaveNet models [56]. Ultimately we selected three WaveNet configurations all with 8

WaveNet blocks and no regularization. The models differed only by the number of filters in each convolutional

layer which were 128, 256, and 512 respectively.

For the replicated architectures we used the hyper-parameters specified in their respective papers. For the

LSTM architecture this was a single LSTM layer with 200 cells, a single LSTM layer with 400 cells, and two LSTM

layers with 400 cells. The CNN/RNN models differed in both the number of 1D convolutions 6, 7, 8 and number

of GRU units 200, 500, 600 respectively. The number of filters in each convolutional layer was set to mach it’s

WaveNet counterpart as the value was unspecified in the original work.

We trained all of our models using the Adam optimizer [22] with a learning rate of 0.0001. Gradient clipping

with a maximum norm of 5 was applied to ensure training stability [45]. Models were trained for a fixed number

of epochs, 300 and 30 for ADFA-LD and PLAID respectively with a batch size of 32. A differing number of training

epochs were selected for ADFA-LD and PLAID as the latter contains over eight times for training data. By using

both a fixed number of training epochs and batch size for all models we ensured they received the same number

of gradient updates allowing for a fair architecture comparison. Sparse categorical cross-entropy was used as the
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Params. Training Time

(h:m:s)

Eval. Time

(s)

AUC𝑇𝐿𝐴𝐷 FPR𝑇𝐿𝐴𝐷

(TPR = 1)

AUC 𝐴𝐿𝐴𝐷 FPR 𝐴𝐿𝐴𝐷

(TPR = 1)

ADFA

CNN/RNN0 552096 1:41:55 ± 2:29 29.6 ± 0.9 0.785 ± 0.006 0.843 ± 0.030 0.981† ± 0.003 0.085† ± 0.014

CNN/RNN1 2528472 2:48:15 ± 2:14 29.5 ± 0.8 0.802 ± 0.005 0.863 ± 0.076 0.985† ± 0.002 0.112† ± 0.037

CNN/RNN2 7841280 4:53:42 ± 3:25 33.1 ± 4.9 0.800 ± 0.007 0.887 ± 0.082 0.986† ± 0.002 0.120† ± 0.055

LSTM0 391376 1:43:23 ± 2:56 27.0 ± 0.8 0.726 ± 0.013 0.962 ± 0.068 0.924† ± 0.013 0.255† ± 0.060

LSTM1 1422576 2:50:30 ± 3:08 27.3 ± 0.9 0.759 ± 0.017 0.873 ± 0.070 0.964† ± 0.015 0.118† ± 0.044

LSTM2 2704176 4:36:27 ± 5:05 45.8 ± 0.5 0.793 ± 0.005 0.795 ± 0.009 0.983† ± 0.002 0.074† ± 0.010

WaveNet0 1111664 1:19:33 ± 0:48 39.3 ± 3.7 0.815 ± 0.004 0.795 ± 0.050 0.986† ± 0.001 0.144† ± 0.062

WaveNet1 4346736 2:58:54 ± 0:59 38.5 ± 3.3 0.830 ± 0.007 0.827 ± 0.038 0.993† ± 0.001 0.036† ± 0.008

WaveNet2 17206640 8:15:56 ± 3:22 45.9 ± 6.8 0.828 ± 0.017 0.837 ± 0.047 0.993† ± 0.004 0.048† ± 0.065

PLAID

CNN/RNN0 569533 1:02:58 ± 1:06 45.7 ± 7.4 0.854 ± 0.024 0.719 ± 0.209 0.980† ± 0.009 0.220† ± 0.189

CNN/RNN1 2561809 1:41:30 ± 1:36 47.2 ± 3.9 0.844 ± 0.030 0.625 ± 0.147 0.970† ± 0.017 0.248† ± 0.199

CNN/RNN2 7879917 2:54:41 ± 2:06 48.9 ± 5.4 0.810 ± 0.029 0.683 ± 0.143 0.945† ± 0.039 0.312† ± 0.161

LSTM0 412629 1:01:48 ± 1:34 39.2 ± 4.0 0.886 ± 0.008 0.543 ± 0.096 0.985† ± 0.004 0.185† ± 0.056

LSTM1 1465029 1:41:17 ± 2:33 39.1 ± 6.0 0.883 ± 0.060 0.572 ± 0.136 0.968† ± 0.097 0.254† ± 0.169

LSTM2 2746629 2:42:03 ± 3:28 67.7 ± 4.8 0.889 ± 0.011 0.459 ± 0.117 0.985† ± 0.006 0.198† ± 0.135

WaveNet0 1120409 0:51:48 ± 0:41 68.4 ± 13.8 0.796 ± 0.036 0.661 ± 0.143 0.936† ± 0.046 0.428† ± 0.241

WaveNet1 4362265 1:51:19 ± 0:55 79.4 ± 15.1 0.772 ± 0.024 0.711 ± 0.172 0.915† ± 0.039 0.558 ± 0.202

WaveNet2 17235737 5:01:33 ± 2:35 93.2 ± 20.3 0.798 ± 0.079 0.660 ± 0.142 0.922† ± 0.125 0.523 ± 0.296

Table 1. Accuracy comparison: 𝐴𝐿𝐴𝐷 vs. 𝑇𝐿𝐴𝐷 . We note that our proposed classification methodology (ALAD) results in
a significantly higher AUC for all models under consideration. All models were trained and evaluated on a NVIDIA Tesla
V100 with 32GB VRAM provided by the Vermont Advanced Computing Core. Training and performance metrics above are
reported as the mean of thirty trials ± one standard deviation. In total this table summarizes the results of 540 training and
evaluation trials. Total training time for the 540 models, not including hyper-parameter tuning, was over 62 days. We the
relative efficiency of WaveNet whose smallest configuration had the fastest training time despite having over twice the
parameters of the smallest model. 𝐴𝐿𝐴𝐷 performance metrics marked with † are statistically distinct (two-sided t-test, p <
0.001) from their 𝑇𝐿𝐴𝐷 counterpart. Evaluation time is how long it took the model to output the probability distribution for
all sequences in the test set. Bolded results are the best in their respective column, and dataset combination.

loss function for all models. The number of parameters, training time, and other summary information for each

model is detailed in Table 1.

4.5 ID Classifier Evaluation
We completed 540 evaluation trials over combinations of dataset, model, and replicate. The nine model configu-

rations outlined in Section 4.4 were trained and evaluated for thirty replication trials on both ADFA-LD, and

PLAID. Our evaluation compares the 𝐴𝐿𝐴𝐷 and 𝑇𝐿𝐴𝐷 classification algorithms using these underlying models.

Both PLAID and ADFA-LD group traces by attack trial, allowing us to aggregate traces at the application level.

The ADFA-LD baseline data does not include program grouping information, so we randomly sampled synthetic

programs of equal size from the normal portion of the test set. For sake of consistency, we use the same process

on PLAID.

In practice, we bootstrapped the baseline groups with thirty trials for each replicate model. This mitigates

statistical errors from the random sampling, such as selection of an unrepresentative grouping. Thus, the single

value result is the mean of the bootstrapped operations.

By varying the threshold value 𝜃 we obtained Receiver Operating Characteristic (ROC) curve for our classifiers—

a common means of evaluating binary classification systems. The x-axis of the curve shows the false positive rate
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AUC𝑇𝐿𝐴𝐷 FPR𝑇𝐿𝐴𝐷

(TPR = 1)

AUC 𝐴𝐿𝐴𝐷 FPR 𝐴𝐿𝐴𝐷

(TPR = 1)

ADFA

Avg. CNN/RNN 0.800 ± 0.004 0.842 ± 0.030 0.985† ± 0.002 0.125† ± 0.027

ReLU. CNN/RNN 0.800 ± 0.004 0.847 ± 0.041 0.985† ± 0.002 0.131† ± 0.041

Avg. LSTM 0.765 ± 0.006 0.903 ± 0.079 0.966† ± 0.006 0.228† ± 0.030

ReLU. LSTM 0.766 ± 0.005 0.903 ± 0.079 0.966† ± 0.006 0.231† ± 0.029

Avg. WaveNet 0.870 ± 0.008 0.712 ± 0.071 0.998† ± 0.001 0.026† ± 0.005

ReLU. WaveNet 0.871 ± 0.008 0.692 ± 0.079 0.998† ± 0.001 0.027† ± 0.005

Hybrid0 0.800 ± 0.005 0.661 ± 0.023 0.975† ± 0.004 0.153† ± 0.030

ReLU. Hybrid0 0.801 ± 0.005 0.543 ± 0.050 0.976† ± 0.003 0.150† ± 0.030

Hybrid1 0.820 ± 0.009 0.609 ± 0.017 0.981† ± 0.007 0.098† ± 0.039

ReLU. Hybrid1 0.822 ± 0.009 0.504 ± 0.019 0.981† ± 0.007 0.100† ± 0.037

Hybrid2 0.847 ± 0.005 0.547 ± 0.029 0.990† ± 0.002 0.047† ± 0.008

ReLU. Hybrid2 0.848 ± 0.005 0.485 ± 0.034 0.990† ± 0.002 0.047† ± 0.008

PLAID

Avg. CNN/RNN 0.919 ± 0.012 0.499 ± 0.058 0.993† ± 0.004 0.119† ± 0.042

ReLU. CNN/RNN 0.919 ± 0.012 0.481 ± 0.050 0.994† ± 0.004 0.127† ± 0.051

Avg. LSTM 0.929 ± 0.020 0.394 ± 0.103 0.994† ± 0.009 0.099† ± 0.141

ReLU. LSTM 0.930 ± 0.012 0.380 ± 0.098 0.995† ± 0.006 0.098† ± 0.140

Avg. WaveNet 0.884 ± 0.055 0.559 ± 0.124 0.977† ± 0.055 0.197† ± 0.135

ReLU. WaveNet 0.886 ± 0.047 0.531 ± 0.058 0.978† ± 0.047 0.190† ± 0.098

Hybrid0 0.929 ± 0.003 0.477 ± 0.076 0.996† ± 0.001 0.063† ± 0.046

ReLU. Hybrid0 0.929 ± 0.003 0.466 ± 0.066 0.996† ± 0.001 0.065† ± 0.046

Hybrid1 0.922 ± 0.037 0.512 ± 0.118 0.989† ± 0.034 0.113† ± 0.165

ReLU. Hybrid1 0.923 ± 0.030 0.485 ± 0.066 0.990† ± 0.026 0.103† ± 0.125

Hybrid2 0.914 ± 0.054 0.479 ± 0.120 0.986† ± 0.050 0.092† ± 0.117

ReLU. Hybrid2 0.915 ± 0.049 0.459 ± 0.067 0.986† ± 0.048 0.089† ± 0.102

Table 2. Performance metrics for all ensembles under consideration. We note that 𝐴𝐿𝐴𝐷 results in a significantly higher
AUC for all ensembles under consideration. Homogeneous ensembles, designated by architecture, contain all three model
configurations from that architecture. Heterogeneous ensembles, termed hybrid, contain the the model from each architecture
at the given configuration level. Performance metrics above are reported as the mean of thirty trials ± one standard deviation.
𝐴𝐿𝐴𝐷 performance metrics marked with † are statistically distinct (two-sided t-test, p < 0.001) from their𝑇𝐿𝐴𝐷 counterpart.
Bolded results are the best in their respective column, and dataset combination.

while the y-axis shows the true positive rate. In this case, the curve visualizes the trade-off between detection

and false alarm rate. We summarize the performance of a model into a single value using the Area Under Curve

(AUC) metric. In addition, we report the False Positive Rate (FPR) where the True Positive Rate (TPR) is one. The

reported value for a given metric such as AUC (discussed below in Section 5) is the mean of all 30 replicate trials.

For 𝐴𝐿𝐴𝐷 the reported AUC is the mean of 900 operations- thirty replicate trials each with thirty bootstrap

groupings.

Finally, we also consider the same evaluation strategies for ensembles. We consider two ensemble types: a

simple averaging, and the ReLU ensemble method from Kim et al.. An ensemble of each type was constructed

for each architecture and configuration level, resulting in 12 total ensembles. All ensembles consist of three

models—either the three configurations from a given architecture, or the three different base models with the

same configuration index.
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(a) ADFA 𝑇𝐿𝐴𝐷 (b) ADFA 𝐴𝐿𝐴𝐷

(c) PLAID 𝑇𝐿𝐴𝐷 (d) PLAID 𝐴𝐿𝐴𝐷

Fig. 2. ROC curves for the highest performing single model from each architecture along with the highest performing
ensemble on ADFA (top) and PLAID (Bottom). Models were evaluated using both the TLAD(left) and 𝐴𝐿𝐴𝐷(right). ROC
curves show the mean and standard deviation for thirty trials. The legend reports the mean AUC and its standard deviation.
For all models 𝐴𝐿𝐴𝐷significantly improved performance.

5 RESULTS
We present performance metrics, namely ROC AUC and FPR at complete detection for all models, in Table 1.

Separate columns exist for both metrics over each combination of model, dataset, and classifier method. These

metrics are reported as the mean of the thirty replicate trials ± one standard deviation. In all cases 𝐴𝐿𝐴𝐷

significantly increased AUC (two-sided t-test, p-val < 0.001) when compared to TLAD. We also observe a

significant reduction in the FPR at complete detection in the vast majority of cases. WaveNet proved to be the

strongest performer on ADFA while LSTM models had the strongest performance on PLAID.
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(a) CNN/RNN (b) LSTM

(c) WaveNet (d) Hybrid

Fig. 3. Figures 3a to 3c feature ROC curves for all trained models as well as homogenous ensembles on ADFA. Figure 3d shows
the ROC heterogeneous ensembles constructed from model of all three architectures for each hyper-parameter configuration.
ROC curves show the mean and standard deviation for thirty trials using 𝑇𝐿𝐴𝐷 . The legend reports the mean AUC and its
standard deviation. We note that the LSTM and CNN/RNN ensembles under-performed some of their constituents while the
WaveNet ensembles performed better.

In Figure 4.5 we show ROC curves for the highest performing model from each architecture, and the single

best ensemble. We present our performance metrics for all 12 ensembles in Table 2. The traditional 𝑇𝐿𝐴𝐷 is

shown on the left, and our proposed 𝐴𝐿𝐴𝐷 is on the right. We note the higher ROC curves when using 𝐴𝐿𝐴𝐷

showing the lower false positive rates at all levels of detection. Of additional interest is that there is no clear

winner in terms of model architecture or even model size. Models tended to have a higher performance on PLAID

compared to ADFA-LD at the trace level, except WaveNet.
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(a) CNN/RNN (b) LSTM

(c) WaveNet (d) Hybrid

Fig. 4. Figures 4a to 4c feature ROC curves for all trained models as well as homogenous ensembles on PLAID. Figure 4d
shows the ROC heterogeneous ensembles constructed from model of all three architectures for each hyper-parameter
configuration. ROC curves show the mean and standard deviation for thirty trials using 𝑇𝐿𝐴𝐷 . The legend reports the mean
AUC and its standard deviation.

Figures 3 and 4 show ROC curves for all models and ensembles on ADFA-LD and PLAID respectively using

𝑇𝐿𝐴𝐷 . We use an identical evaluation methodology to Kim et al. and Chawla et al. at the trace level, so we

would expect model performance to be similar to the original work despite the differing data splits and training

methodology. This was the case for our CNN/RNN models which had AUCs similar to their originally reported

values. We failed to replicate the high performance at the trace level of Kim et al., but our smaller LSTM model

performed similar to the LSTM model used in Chawla et al.. We did see a performance improvement from the use

of ensembles and note that the ReLU ensemble was the top performer for both datasets, beating out the averaging
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Fig. 5. Validation loss compared to performance for all models on the ADFA dataset. Typically, one expects lower validation
loss to correspond with higher performance. Here we see no strong correlation between validation loss and performance.
We note that anomaly detection results in a special case as the training task (system call prediction), is not same as the
evaluation task (attack classification).

and hybrid ensembles. Despite this we were unable to replicate the strong performance of the ReLU ensemble

shown in Kim et al. and note that its performance is virtually indistinguishable from the averaging ensemble.

In Figure 5 we compare validation loss at the final epoch to model performance as measured by the ROC AUC

score. One might expect a lower validation loss to correspond with a higher ROC AUC score, however we do not

observe this empirically.

In summary, 𝐴𝐿𝐴𝐷 resulted in a significant AUC improvement for all models on all architectures and datasets

under consideration. This improvement comes at virtually no additional computational overhead, compared to

𝑇𝐿𝐴𝐷 .

6 DISCUSSION

6.1 Hypotheses
Testing our first of two hypotheses formulated in Section 4.1.4, namely that WaveNet would be the top performing

architecture, produced mixed results. On ADFA, the dataset on which all models were tuned, WaveNet was indeed

the top performer, supporting our hypothesis. However, WaveNet was the poorest performer on PLAID. There

are two plausible explications for this behavior: WaveNet models may have over fit to the training data, or the

architecture could be more sensitive to tuning.

Our second hypothesis, namely that 𝐴𝐿𝐴𝐷 would yield superior performance compared to 𝑇𝐿𝐴𝐷 , was fully

supported by our analysis. For all models and datasets under consideration there was a statistically significant

(two-sided t-test, p-val < 0.001) improvement under 𝐴𝐿𝐴𝐷 . We speculated that this is due to the fact that some

attack traces may in fact be benign. This is an unavoidable artifact of the collection methodology. The attack set

contains all traces, each representing a distinct process, of a program during a successful attack. The effects of a
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modern attack are seen across multiple processes[10]. Precisely identifying the affected processes would require

knowing exactly what system calls would have been issued in the absence of an attack.

6.2 Practical Concerns & Use Cases
The information in Tables 1 and 2 allows practitioners considering a deep learning IDS deployment to make

informed decisions about the trade-offs between detection, false alarms, and computational cost. These tables

show the primary drawback of deep learning powered IDS, long training and non-trivial evaluation times.

For real-time detection the time and computational requirements may be too expensive for some applications.

However, in addition to real-time detection, IDSs may also be used in a retrospective analysis. In a retrospective

analysis IDSs may be used to identify which systems or applications were affected; helping analysts identify the

impact of a breach or informing their search.

While PLAID improves upon ADFA-LD there is still a need for more comprehensive datasets. To be effective

IDSs must be trained on baseline data reflective of their host. To meet this requirement practitioners must train

the systems they wish to deploy on data collected locally. Additionally, the system must be (at least partially)

retrained when any significant changes occur, such as the deployment of a new application.

6.3 Implementation Decisions
A deployment of any form of anomaly detection requires practitioners to select a threshold 𝜃 . This is an obstacle

for practitioners as there is no way to know a priori the estimated probability the model will assign an attack

sequence. Fortunately, there are two informed methods through which practitioners may select this value. First,

one may use results on an existing corpus such as PLAID or ADFA. Second, one could utilize baseline sequences

from their own production system; selecting a threshold that results in FPR they are able to handle. Of course,

while neither of these choices guarantee complete detection they provide a means to achieve strong performance

with an anomaly-based IDS. There is no wrong choice for a threshold value, only trade-offs between detection

and false alarms.

Model selection is yet another obstacle for practitioners deploying a deep learning powered IDS. Typically, in

deep learning one performs this task by selecting the model with the lowest validation loss. Unfortunately, we

observed no strong correlation between AUC and validation loss. For this reason we recommend practitioners

select their models based on their performance on reference datasets such as PLAID and ADFA. Additionally, this

result underscores the need for researchers to continue to expand upon existing datasets.

Surprisingly, while we did see improvement from the use of ensemble, the effect was small compared to the

performance achieved by the highest performing models. Additionally, while the ReLU ensembles outperformed

their average ensemble counterparts, performance gains were marginal. As the creation of an ensemble requires

duplicating training and evaluation costs, we believe it to be not worth the effort for this application.

7 VISUALIZING DIFFERENCES BETWEEN BASELINE AND ATTACKS
While deep learning is an effective ML approach in many applications, it suffers from its “black box”, unin-

terpretable nature. Although methods are being developed to interpret deep learning models, they fall short,

especially for insights into high-stakes decision making [51]. This is not necessarily an argument against the use

of deep learning for HIDS since ML models are often just one component of a “observe, orient, decide, act” loop

in security operation centers that also incorporate human analysts. However, interpreting data and predictive

features in data is often critical for security practitioners. Instead of leveraging ML models for computational

insights, we argue that other techniques can be leveraged, orthogonal to model development.

Two recently proposed techniques are “allotaxonometry” and “rank-turbulence divergence” [12]. These highly

general methods leverage information-theoretic techniques for visualizing differences in datasets with complex
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Fig. 6. Comparison of system call rankings between attack and baseline traces in PLAID. Note that some of the most
frequently utilized system calls, read and close, are among the largest contributors to divergence.
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structure, such as natural language text, baby names, and mortality cause databases. These techniques are

especially relevant in our application space, since anomaly-based HIDS rely on the fact that significant differences

exist between normal and malicious operations. Quantifying such differences not only sheds light on features

potentially exploited by models, but also potentially new types of analysis. In this Section we explore the

differences between attack and normal traces for both datasets used in this study, using allotaxonometry and

rank-turbulence divergence.

In figure 6 we display the differences between attack and normal uni-grams using an allotaxonograph. This

instrument features a rank-turbulence histogram on the left, and a rank-turbulence divergence shift on the right.

We compute the relative rate of usage for each uni-gram in the baseline and attack sequences separately, then

order system calls using tied-rank. Ranks for system calls that are found in one distribution but not the other are

replaced with the maximum rank of the joint distribution. The 2D histogram on the left displays the distribution

of uni-grams found in the baseline and attack sequences as well as the overlap between the two distributions.

System calls on the left side of the histogram are often used in the baseline sequences, whereas system calls that

are highlighted on the right side of the histogram are often used in attack sequences. System calls which are used

in both systems equivalently can be seen in the middle.

Of particular interest is that commonly used system calls (e.g., open, close, and times) display relatively high

rank-turbulence divergence in both datasets. This is in contrast to natural language where rankings of the most

common words tend to be stable across corpora [12]. Additionally, the most dangerous system calls [7] are not

top contributors to divergence. This suggests that focusing exclusively on dangerous system calls could result

in failures to detect intrusions. Additional allotaxonographs of uni through tri grams of both datasets are in

Appendix A. We also contrast the raw frequencies of system calls found in baseline and attack traces for both

datasets in Appendix B.

In figure 7 we show that system call usage roughly follows an exponential rank frequency distribution. The rank

frequency system call bi and tri-grams appears to approximate a power-law with an exponential cutoff in the tail.

Natural language corpora tend to be and stay power-law like for uni- through tri-grams with the tail starting to

flatten [20]. Thus, system call corpora become more power-law, while not quite reaching a power-law distribution

while natural language corpora continue to follow a power-law distribution. Additional rank frequency plots for

bi and trigrams are located in Appendix B. In all of these figures we clearly see substantial differences between

attack and normal system call distributions.

8 CONCLUSION
In this paper we developed new methods for host-based intrusion detection systems (HIDS). Our fundamental

approach to intrusion detection is to develop models for predicting “normal” aka baseline behavior, and then

leveraging those models to detect malicious behavior as anomalistic. This approach has the benefit of being able

to detect novel attacks, as well as known ones. We used deep learning models to achieve high levels of prediction

performance.

Our work makes four primary contributions in the area of HIDS research. First, we collected and publicly

released PLAID, a new system-call dataset for developing and evaluating IDS. Second, we developed 𝐴𝐿𝐴𝐷

(Application-Level Anomaly Detection), a new classification method for anomaly-based IDS. Third, we presented

the largest comparison to date of deep learning architectures applied to this domain. Fourth, we explored new

visualization methods, based on information-theoretic corpus divergence measures, for exploring HIDS datasets.

Evaluating the performance of advanced methods, such as alternative deep learning models, requires compre-

hensive benchmarking that cannot be accomplished with the use of a single dataset. In our own architecture

comparison, the use of either PLAID or ADFA-LD independently might lead to a conclusive answer that is different
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Fig. 7. Rank frequency plots of system calls for attack and baseline traces in ADFA-LD (left) and PLAID (right). Fit lines were
obtained using Huber regression. Observe that system call usage roughly follows an exponential rank frequency distribution.
This is differs from natural language where word frequencies follow a power law distribution [20].

from the relatively inconclusive results that we observed during a comprehensive evaluation. By introducing

PLAID, we hope to empower the community to better evaluate new and existing HIDS models.

𝐴𝐿𝐴𝐷 offered significantly better performance than𝑇𝐿𝐴𝐷 regardless of the selected deep learning architecture

or training dataset. This indicates that the inclusion of a relatively minimal piece of meta-data, application-level

labels, can greatly impact IDS performance. The consistent benefit of 𝐴𝐿𝐴𝐷 begs the question, what other data

or meta-data elements should be considered when constructing HIDS?

The results of our architecture search were fairly inconclusive with respect to classification performance, with

WaveNet performing best on ADFA-LD and the LSTM model performing best on PLAID. However, WaveNet

required approximately 60% less training time to converge on both ADFA-LD and PLAID when compared with

similarly sized LSTM and GRU models. Thus, practitioners looking to train deep learning empowered HIDS

quickly or scale up to massive data sets may prefer architectures composed primarily of convolutions over those

composed of recurrent layers.

In our application of allotaxonographs to ADFA-LD and PLAID we identified clear differences between system

calls created by baseline and malicious behavior. These differences may lead to additional insights into datasets

why deep learning models out perform traditional machine learning models for HIDS. Future work should

continue to investigate quantitative methods for corpus divergence in order to improve the interpretability of

HIDS.

Overall, our results represent a significant improvement in the state-of-the-art in anomaly-based HIDS. We

provide a useful new dataset for the broader HIDS research community, and a blueprint for developing deep

learning empowered HIDS by presenting clear evaluation methodologies and reproducible results. Finally, we

highlight opportunities for adapting these tools to particular domains.
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Fig. 8. Comparison of system call rankings between attack and baseline traces in ADFA-LD. Note that some of the most
frequently utilized system calls, poll and read, are among the largest contributors to divergence. Of additional interest is
that the most dangerous system calls are not top contributors to divergence.
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Fig. 9. Comparison of system call bi-gram rankings between attack and baseline traces in ADFA-LD. Similar to uni-grams
frequent bi-grams remain top contributors to divergence. We see a larger portion of bi-grams appearing only in one split
compared to uni-grams.
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Fig. 10. Comparison of system call bi-gram rankings between attack and baseline traces in PLAID. Similar to uni-grams
frequent bi-grams remain top contributors to divergence. We see a larger portion of bi-grams appearing only in one split
compared to uni-grams.
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Fig. 11. Comparison of system call tri-gram rankings between attack and baseline traces in ADFA-LD. A slightly larger
portion of tri-grams are present only in one set compared to bi-grams. This suggests that longer 𝑛-grams help to differentiate
between sets.
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Fig. 12. Comparison of system call tri-gram rankings between attack and baseline traces in PLAID. A slightly larger portion of
tri-grams are present only in one set compared to bi-grams. This suggests that longer 𝑛-grams help to differentiate between
sets.
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B SYSTEM CALL FREQUENCIES

Fig. 13. Rank frequency plots of system call bi (top) abd tri (bottom) grams for attack and baseline traces in ADFA-LD (left)
and PLAID (right). The rank frequency appears to approximate a power-law with an exponential cutoff in the tail. Natural
language corpora tend to be and stay power-law like for uni through tri-grams with the tail starting to flatten. In contrast to
system call corpora which become more power law like.
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Fig. 14. Comparison of system call usage between baseline and attack traces in ADFA-LD. System calls are in monotonically
non-increasing order base on their frequency in baseline traces. Notice that usages of individual system calls differ significantly
between sets.
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Fig. 15. Comparison of system call usage between baseline and attack traces in PLAID. System calls are in monotonically non-
increasing order base on their frequency in baseline traces. Notice that usages of individual system calls differ significantly
between sets. Of additional interest is the amount of clock_gettime calls in the attack split.
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