
Specifying Distributed Trust Management in LolliMon

Jeff Polakow
Harvey Mudd College
jpolakow@cs.hmc.edu

Christian Skalka
University of Vermont
skalka@cs.uvm.edu

Abstract
We propose the monadic linear logic programming language Lol-
liMon as a new foundation for the specification of distributed trust
management systems, particularly the RT framework. LolliMon
possesses features that make it well-suited to this application, in-
cluding rigorous logical foundations, an expressive formula lan-
guage, strong typing, and saturation as a proof resolution strategy.
We specify certificate chain discovery in full RT for authorization
in a distributed environment where certificates may be stored non-
locally and selective retrieval is necessary. The uniform LolliMon
specification of authorization and certificate chain discovery eases
formal reasoning about the system, and scales to a rich collection of
trust management features. The executable LolliMon specification
also serves as a prototype implementation.

Categories and Subject DescriptorsC.2.0 [Computer Networks]:
General—Security and protection

General Terms Security, Languages, Theory

Keywords Distributed Authorization, Trust Management Logic

1. Introduction
Distributed trust management supports resource protection in mod-
ern distributed computing environments. Trust management sys-
tems provide a framework to express security policies, provide ac-
tors with a means to establish trust relations across machine bound-
aries, and formalize the semantics of authorization. Trust manage-
ment systems such as SPKI/SDSI [23] and RT [17] are especially
suited to modern distributed computing environments, since they
establish security in decentralized settings, where collaborations
between actors are loose and dynamic.

Decentralization in trust management systems is partly obtained
by usingcertificates, which are issued to individual entities in the
system, allowing them to establish trustcredentialsin some par-
ticular domain, independent of a central authority. While authenti-
cation of certificates is a prerequisite for establishing credentials,
authentication is orthogonal to authorization decisions, which are
deductions based solely on credentials and local policy. But in a
distributed environment, certificates to establish credentials rele-
vant to any given decision may be spread across multiple machines,
so authorization in these systems also requires retrieval of rele-
vant certificates. The entire problem is referred to asdistributed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLAS’06 June 10, 2006, Ottawa, Ontario, Canada.
Copyright c© 2006 ACM 1-59593-374-3/06/0006. . . $5.00.

certificate chain discovery[18]. It is distinguished from the easier
sub-problem ofchain discovery[6, 14], in that the latter is only
concerned with the implementation of authorization in a local cre-
dential environment, not with algorithms for interleaving non-local
certificate retrieval and authorization steps.

1.1 Abstractions of Certificate Chain Discovery

Because a potentially enormous number of certificates may exist
on disparate machines in a distributed environment, the trick is to
be selective about retrieving certificates. One strategy is to let the
frontiers of partially constructed authorization decisions inform the
direction of retrieval. For example, trust relations can be formalized
as edges in a graph, so that reachability implies authorization for a
resource; hence, certificate chain discovery can be specified as a
graph reconstruction algorithm, where future search proceeds from
frontier nodes [18].

A drawback of the graph-theoretic abstraction of certificate
chain discovery is that while it is adequate to represent simple trust
relations, it is not scalable to more advanced features of trust man-
agement systems, e.g. delegation credentials, role attribute con-
straints, and threshold policies as in RT. Alternatively, program-
ming logics such as Datalog or Prolog can be used to specify these
features [18]. In a programming logic setting, credentials and pol-
icy are expressed as formulas, and authorization is specified as
proof search. However, the restricted Horn-clause predicate lan-
guages of Datalog and Prolog prevent modeling the interleaving
of retrieval and authorization phases of certificate chain discovery.
Rather, these approaches treat only local authorization in a set of
credential facts givena priori. Hence, certificate chain discovery in
the full RT framework is an open problem.

While some scheme for re-compiling and re-running a Horn-
clause logic program in a fact base extended by fresh certificate
discovery would work, the approach is unappealing in several re-
spects. For one, it does not provide a uniform model for rigorous
verification of the algorithm. For another, it does not provide a natu-
ral means for memoizing partial solutions during discovery phases–
since the proof search is restarted at each authorization phase, par-
tial proofs constructed in previous phases are discarded.

1.2 A Logical Approach

The limitations of Prolog and Datalog do not necessarily under-
mine the usefulness of logic as an abstraction for RT certificate
chain discovery. Rather, we argue that a programming logic with a
more expressive formula language is needed to capture the logic of
discovery, as well as the core authorization semantics. In this pa-
per, we propose the use of the LolliMon linear logic programming
language [19] as a new foundation for certificate chain discovery in
RT. We show that LolliMon possesses a good mixture of features
and proof strategies, including hypothetical goals, linear assump-
tions, and forward-chaining proof search, to allow clean integra-
tion of authorization checking and credential retrieval for certifi-
cate chain discovery. Furthermore, logic serves as an understand-

able specification of authorization semantics, and the rich formal
theory underlying linear logic provides powerful tools for verify-
ing properties of the model. While previous work has provided a
graph-theoretic specification of certificate chain discovery for only
the most basic variant of the RT framework [18], we believe our
model is the first that scales to the full RT framework. In addition
to a powerful specification language, using LolliMon also gives us
a free prototype implementation which can serve as the basis for a
future realistic implementation effort. Source code for the specifi-
cation is available online [22].

1.3 Paper Outline

The remainder of the paper is organized as follows. In Sect. 2, we
give a brief summary of RT and LolliMon. In Sect. 3, we define
forward and backward chaining specifications of RT0, which are
proven equivalent. In Sect. 4, we show how LolliMon can be used
to specify certificate chain discovery. These specifications are then
extended to other RT variants in Sect. 5. We conclude with remarks
on future work in Sect. 6.

2. Background: RT and LolliMon
In this section we provide a brief summary of the RT trust manage-
ment system and the LolliMon language. Citations direct the reader
to more detailed accounts in the literature.

2.1 The RT Framework

The RT trust management framework is thoroughly motivated and
characterized by Li and Mitchell [17]. The framework is a family
of languages, each of which is a variation on a core system called
RT0. In RT0, individual actors, or principals, are calledEntities
and are defined by public keys. We letA,B,C,D,E range over
entities. Each entityA can create an arbitrary number ofRoles in a
namespace local to the entity, denotedA.r. TheRoleExpressions
of RT0, denotedf , are either entities or roles or constructed from
other role expressions bylinking and intersection, as described
below. To define a role an entity issues credentials that specify
the role’s membership. Some of these credentials may be a part
of private policy; others may be signed by the issuer and made
publicly available. The overall membership of a role is taken as
the memberships specified by all the defining credentials.

RT0 provides four credential forms,ortypes:

Type 1.A.r ←− E
This form asserts that entityE is a member of roleA.r.

Type 2.A.r ←− B.s
This form asserts that all members of roleB.s are mem-
bers of roleA.r. Credentials of this form can be used to
delegate control over the membership of a role to another
entity.

Type 3.A.r ←− B.s.t
This form asserts that for each memberE of B.s, all
members of roleE.t are members of roleA.r. Creden-
tials of this form allow linking to non-local namespaces;
observe thatE need not be known byA. The expression
B.s.t is called alinked role.

Type 4.A.r ←− B1.r1 ∩ · · · ∩Bn.rn
This form asserts that each entity that is a member of all
role expression formsB1.r1, . . . , Bn.rn is also a member
of roleA.r. The expressionB1.r1 ∩ · · · ∩Bn.rn is called
an intersection role.

Authorization is then cast as a role membership decision: an access
target is represented as some roleA.r, and authorization for some

entity B succeeds iffB is provably a member ofA.r. In such
a decision, we callA.r the governing role. Authorization always
assumes some given finite set of credentials, denotedC. We use
Entities(C) to represent the entities used in a particular set of
credentialsC, and similarlyRoleNames(C), Roles(C), etc.

EXAMPLE 2.1. Given the following credentials:

A.r1 ←− B.r2.r3 ∩ C.r4 B.r2 ←− E E.r3 ←− D

C.r4 ←− E.r3

Then, writingA ∈ B.r to denote thatA is a member ofB.r, we
can deduce:

E ∈ B.r2 D ∈ E.r3 D ∈ C.r4 D ∈ A.r1

2.2 Monadic Linear Logic Programming in LolliMon

LolliMon [19] is a new linear logic programming language, that
cleanly combines backward chaining execution, aka top-down
proof search, with forward chaining execution, aka bottom-up
proof search. This integration is achieved via a monadic formula
constructor which safely encapsulates forward chaining compu-
tations inside of backward chaining computations. In addition to
a monad, LolliMon features typed, higher-order terms, and con-
tains the full complement of intuitionistic linear logic connectives.
The logic underlying LolliMon is based on the Concurrent Logi-
cal Framework (CLF) [24]. LolliMon’s operational semantics (i.e.
proof search strategy) and several interesting example programs are
discussed in detail by Ĺopez et al. [19]. For reference, Appendix 7
contains a complete presentation of the logic underlying LolliMon.

LolliMon has two main computation modes, backward chaining
and forward chaining. Backward chaining computation is the stan-
dard Prolog operational semantics; proof search is directed by the
shape of the goal, and atomic goals are analogous to function calls.
Like Prolog, LolliMon’s backward chaining proof search is depth
first and subject to the usual looping behavior. Forward chaining
computation, on the other hand, is similar to bottom-up logic pro-
gramming semantics. Rather than being goal directed, the compu-
tation proceeds in a series of steps in which formulas are deduced
from, and then added to, the current context until a fixed point, aka
saturation, is reached (i.e. no change can be made in the context).
LolliMon makes backward chaining the primary execution mode;
every LolliMon execution starts, and ends, in backward chaining
mode. The system switches to forward chaining mode upon en-
countering a monadic goal of the form{S}, whereS is a formula.
After forward chaining finishes, the system reverts to backward
chaining mode to solve goalS.

The primary difference between linear logic programming and
more standard logic programming is that the former does not allow
weakening or contraction in proof contexts, as is the case for the
unrestricted proof contexts of Prolog and Datalog. That is, in the
spirit of linear logic [9], facts are like resources, that are consumed
when used in the proof of a judgement– the same linear fact can-
not be used more than once in the proof. LolliMon conservatively
extends the language Lolli, and the reader is directed to Hodas and
Miller [10] for background on the basics of linear logic program-
ming.

In LolliMon, both linear and unrestricted proof contexts are
available, as is unrestricted logical implication⊃. Linear connec-
tives−◦ and⊗ can be thought of as linear analogues of unrestricted
implication and conjunction∧, respectively. LolliMon uses the fol-
lowing concrete syntax:

−◦ = -o ◦− = o- ⊃ = => ⊂ = <=

⊗ = , > = top

Another distinction of LolliMon is that its predicate clauses
are not restricted to a Horn clause form, but are more general
linear logic formulas as defined in Appendix 7. In particular, this
means that hypothetical goalsS => S are allowed. In fact, the
LolliMon form (Q,R) => S is syntactic sugar forQ => R => S.
The relevance of this will be discussed in Sect. 4, and in general
subtleties of the language will be discussed as they become relevant
in the remaining text.

3. RT Authorization Semantics in LolliMon
In this section we give a LolliMon specification of RT0. We begin
with the encoding of credentials and policies, as well as a backward
chaining definition of authorization that provides an intuitive speci-
fication of RT0 semantics in familiar Horn-clause form. This speci-
fication also draws a clear connection with the original RT0 seman-
tics proposed by Li and Mitchell [17]. We observe shortcomings of
backward chaining due to non-termination issues, and define a log-
ically equivalent forward chaining specification that resolves these
issues.

3.1 Credentials and Role Membership Encoding

We use the type language of LolliMon to specify the types of
entities, role names, androle expressionswithin the logic:

entity : type role name : type

role expr : type

On this basis, entities, role, linked roles, and intersection roles are
encoded by application of particular constructors (where-> is the
usual function type constructor):

^ : entity -> role_expr.

role : entity -> role_name -> role_expr.

linked_role : entity -> role_name ->
role_name -> role_expr.

inter : list role_expr -> role_expr.

RT entity expressions are then encoded by the functionJ·K as
follows, whereÂ and r̂ are the conventional encodings of entity
and role names; we will generally just rewrite identifiers with all-
lowercase ascii:

JAK = (^ Â) JA.rK = role Â r̂

JA.r1.r2K = linked role Â r̂1 r̂2

Jf1 ∩ · · · ∩ fnK = inter (Jf1K::· · · ::JfnK::nil)
The cons (::) and empty list (nil) constructors are provided in
LolliMon for the built-in list datatype.

As for credentials, we depart from Li and Mitchell [16] where
credentials are represented as Horn clauses with subgoals. Rather,
we represent credentials in a knowledge base as atoms. As is shown
in Sect. 4, we implement chain discovery via hypothetical subgoals,
with retrieved credentials as the condition. The representation of
credentials as atoms allows these hypotheses to be first-order, con-
tributing to the simplicity of the specification and efficiency of the
implementation. Thus:

credential : entity -> role name -> role expr -> o.

with the encoding extended to credentials as follows:

JA.r ←− fK = credential Â r̂ JfK.

We let JCK denote the obvious extension ofJ· · ·K to sets of cre-
dentials. In the type ofcredential, the symbolo represents the
built-in LolliMon predicate type.

EXAMPLE 3.1. Given:
a : entity. b : entity. r0 : role name.

r1 : role name. r2 : role name.

The linked roleA.r1.r2 is denoted bylinked role a r1 r2, and
the credentialB.r0 ←− A.r1.r2 is represented as the atom:

credential b r0 (linked role a r1 r2).

Given these constructions, the predicateismem is defined as fol-
lows. Other than the trivial modification necessary to treat creden-
tials as atoms, this semantics is identical to that defined by Li and
Mitchell [16].

ismem : role_expr -> entity -> o.

ismem (role A R) B <= credential A R (^ B).

ismem (role A R0) D <=
credential A R0 (role B R1),
ismem (role B R1) D.

ismem (role A R0) E <=
credential A R0 (linked_role B R1 R2),
ismem (role B R1) D,
ismem (role D R2) E.

ismem (role A R) E <=
credential A R (inter Res),
ismems Res E.

The auxiliary predicateismems iterates through the list of roles
provided in an intersection role.

ismems : list role_expr -> entity -> o.

ismems nil B.

ismems ((role A R)::Res) B <=
ismem (role A R) B,
ismems Res B.

Role membership is then formally based on theismem predicate,
as follows.

DEFINITION 3.1. Let Σ contain the specification ofismem above.
Given credentialsC, an entityA is a member of a roleB.r iff
Σ, JCK; · ⇒ ismem JB.rK Â is derivable.

3.2 The Forward Specification

A significant problem with the backward specification is that due to
the top-down implementation of non-monadic formulae, cyclic cre-
dentials cause non-termination. For example, a credential set con-
tainingA.r ←− B.r andB.r ←− A.r could causeismem to di-
verge. One approach to this problem would be to extend LolliMon
with tabling, just as XSB [11] has been proposed as a foundation
for SDSI/SPKI [14]. Instead, we exploit the monad in LolliMon to
switch to a bottom-up proof search strategy, ensuring termination
of our specification in the presence of cyclic constraints. To this
end, we redefineismem as follows (whereismems is unchanged
from above).

credential A R (^ B) => {!ismem (role A R) B}.

credential A R0 (role B R1),
ismem (role B R1) D =>
{!ismem (role A R0) D}.

credential A R0 (linked_role B R1 R2),

ismem (role B R1) D,
ismem (role D R2) E =>
{!ismem (role A R0) E}.

credential A R (inter Res),
ismems Res B =>
{!ismem (role A R) B}.

Note the use of the unrestricted modality (!), allowing weakening
and contraction over deducedismem atoms; without it, deduced
ismem atoms would be treated as linear atoms by default. This
definition is logically equivalent to the backward specification, as
we subsequently demonstrate; the only difference is that the heads
of clauses are encapsulated within the monad, forcing the clauses
to be used for forward chaining. Definition 3.1 is easily modified to
accommodate this specification.

DEFINITION 3.2. LetΣ′ contain the specification ofismem above.
Given credentialsC, an entityA is a member of a roleB.r iff
Σ′, JCK; · ⇒ {ismem JB.rK Â} is derivable.

3.3 The Proof Context as Partial Solution

As the proof process proceeds, forward chaining proof search will
addismem atoms to the proof context. In this way, the proof con-
text maintains and extends a partial solution of theismem predi-
cate. An advantage of this implementation feature is that the con-
text can be cached for reuse over multipleismem queries so the
same atoms need not be re-computed. For example, the query
Σ′, JCK; · ⇒ {ismem JA.rK B̂, ismem JC.rK D̂} will compute
the ismem atoms fromJCK once, and then check the two specific
queries. Another advantage has to do with chain discovery, as will
be discussed in Sect. 4.

EXAMPLE 3.2. Given the definitions in Example 3.1, assume also
the existence of the following entities and (cyclic) credentials:

c : entity. d : entity.

credential a r1 (^ c). credential a r2 (role c r2).

credential c r2 (^ d). credential c r2 (role a r2).

Then the queryΣ′,Γ; · ⇒ {ismem (role a r2) d} will suc-
ceed, whereΓ contains the preceding credentials, since the fol-
lowing unrestricted assertions will first be deduced by the forward
chainingismem clauses:

ismem (role a r2) d.

ismem (role c r2) d. ismem (role a r1) c.

3.4 Equivalence of Specifications

We now demonstrate that the backward and forward chaining ver-
sions of ismem are logically equivalent. Subsequently, we will
base our implementation of RT on the forward chaining version
of ismem. This theorem establishes the core of correctness for our
chain discovery technique with regard to the RT specification, and
illustrates the tools for formal reasoning available in LolliMon.
Proofs are given in the Appendix 8. We formally state equivalence
of the two specifications as follows:

DEFINITION 3.3. Let Σ′ contain the monadic, forward chaining
version ofismem, let Σ contain the non-monadic, backward chain-
ing version ofismem, and assumeΓC contains credential asser-
tions, i.e. atoms of the formcred a r e for somea, r, and e.
Then equivalence of specifications is characterized by the relation:

Σ′,ΓC ; · ⇒ {ismem (role A R) B}
iff

Σ,ΓC ; · ⇒ ismem (role A R) B

We begin by showing the first direction of the equivalence,
starting with a key lemma stating that a forward chaining derivation
of ismem using the monadic specification implies the existence of a
backwards chaining derivation using the original specification. The
key to this lemma is the assumption that everyismem atom used
by the forward chaining derivation is itself derivable with the usual
specification.

LEMMA 3.1. Let ΓC contain credential assertions, letΓ contain
ismem (role A R) B atoms, and assume that for all:

(ismem (role A’ R’) B’) ∈ Γ

we have:

Σ,ΓC ; · ⇒ ismem (role A’ R’) B’

Then the following properties hold:

1. If Σ′,ΓC ,Γ; · → ismem (role A R) B then Σ,ΓC ; · ⇒
ismem (role A R) B

2. If Σ′,ΓC ,Γ; · ⇒ ismems Res B then Σ,ΓC ; · ⇒
ismems Res B

We note that the Proof of part 1 does not rely on induction. In order
to deal with the intersection case, we need to simultaneously prove
thatismems can be derived by both specifications.

We may now state and directly prove the first part of the equiv-
alence.

THEOREM 3.1. LettingΓC contain credential assertions, if:

Σ′,ΓC ; · ⇒ {ismem (role A R) B}

then alsoΣ,ΓC ; · ⇒ ismem (role A R) B.

Proof. By inversion on the given derivation and an appeal to
Lemma 3.1.

We next proceed with the second part of our equivalence. Again
we prove an auxiliary lemma that establishes the crux of the result.
This lemma essentially shows that a backwards chaining derivation
can be “substituted” for a hypothesis in a forward chaining deriva-
tion.

LEMMA 3.2. LettingΓC contain credential assertions andΓ con-
tain ismem (role A R) B atoms, if both of the following hold:

Σ,ΓC ; · ⇒ ismem (role A R) B

Σ′,ΓC ,Γ, ismem (role A R) B; · → S

then so doesΣ′,ΓC ,Γ; · → S.

We may now show the second direction of the equivalence.

THEOREM 3.2. LettingΓC contain credential assertions, if:

Σ,ΓC ; · ⇒ ismem (role A R) B

then alsoΣ′,ΓC ; · ⇒ {ismem (role A R) B}.

4. Distributed Certificate Chain Discovery
In a distributed setting, RT authorization for some resource might
rely on a set of credentials, not all of which may be on hand. Any
realistic implementation must provide not just a means for proving
role membership based on a set of credentials, but also a means
of deciding which certificates may be needed to complete autho-
rization, for collecting them, and for integrating them as creden-
tials into the proof procedure. Hence, our LolliMon specification
must capture this extra functionality. It is hard to see how certifi-
cate retrieval phases could be integrated with role membership in-
ferencing steps in Prolog or Datalog, due to their restricted formula
languages [18]. However, the more expressive formula language of

LolliMon provides the necessary abstractions. Intuitively, our tech-
nique for interleaving certificate collection and inferencing will be
achieved as follows: to prove an authorization goal, we must ei-
ther prove membership viaismem, or show that the condition of
additional certificate discovery entails authorization. The latter en-
tailment is easily framed as aconditional subgoal.

4.1 Certificates as Linear Assertions

It is essential to keep in mind the distinction between certificates
and credentials. The former, retrieved during discovery, are used to
establish the latter for authorization inference steps. In particular,
credentials may be used multiple times to establish a role member-
ship, as the credentialE.r3 ←− D must be used twice to establish
thatD ∈ A.r1 in Example 2.1. In contrast, discovery of any par-
ticular certificate should occur only once, to ensure both efficiency
and termination. We enforce this by modeling certificates as lin-
earentry atoms. Since authorization uses the linear context, this
means that any particular certificate entry can only be discovered
once in an authorization proof. For example, the credential in Ex-
ample 3.1 would be established by the following certificate:

#linear entry b r0 (linked_role a r1 r2).

While certificates would be stored on non-local machines in a
distributed system, the details of retrieving non-local entries are
abstracted in our model by linear hypothesis consumption1.

As detailed in section 4.3, the task of determining which cer-
tificates to retrieve is handled by a predicateseed, which returns
a credential to start a credential chain, and some forward chaining
credential clauses which add new links to an existing credential
chain. In this presentation, retrieval is determined by the entity be-
ing authorized and the governing role, as discussed below. The type
signature and mode of theseed predicate are:

seed : role_expr -> entity ->
entity -> role_name -> role_expr -> o.

seed +Re +E -E’ -Rn’ -Re’.

The definition ofseed will be specified later as part of the defini-
tions of discovery schemes.

4.2 Certificate Chaining via Conditional Subgoals

In logic, the proof of an implicationA ⇒ B is obtained by as-
sumingA as a fact, and then provingB. This well-known rule of
inference can nicely specify the interleaving of retrieval and au-
thorization in certificate chain discovery. That is, ifA describes
the condition of credential retrieval, andB describes the condition
of successful authorization, thenA ⇒ B describes successful au-
thorization after a credential retrieval. Guided by this insight, our
specification of discovery leverages the ability to express hypothet-
ical goals in LolliMon. Hypothetical goals allows new facts to be
introduced into the proof environment as part of the logical spec-
ification. Not only does this allow for a faithful specification of
discovery within the logic, but also a natural means to memoize
partial authorization solutions between authorization and retrieval
phases.

We define the authorization predicateauth as follows, such
that auth R A succeeds ifismem R A holds, or if the condition
of additional certificate retrieval allows successful authorization.

auth : role_expr -> entity -> o.

auth R A o- ismem R A, top.
auth R A o-

1 Every successfulentry subgoal consumes a linearentry and marks the
retrieval of a remote entry.

seed R A B Rb RE,
(credential B Rb RE => {auth R A}).

Note thatseed is given the role expressions involved in the au-
thorization query, to determine the holder of the retrieved entry. The
predicateauth is defined in terms of linear entailmento-, since dis-
covery is predicated on linear assertions in the linear context. The
first clause specifies that authorization succeeds ifismem succeeds
in the current credential context. The finaltop subgoal is neces-
sary to clean up any unused linear assumptions, i.e. not every dis-
tributed certificate need be retrieved. The second clause allows for
the discovery of new credentials, and allows proof of authorization
under the condition of newly discovered credentials, via the con-
ditional subgoal(credential B Rb RE => {auth R A}). The
postcondition is monadic, to eagerly drive forward-chaining infer-
ence in the implementation, e.g. for subsequentismem subgoals, as
well as discovery, as discussed below.

4.3 Directed Chain Discovery

Additional clauses for the predicatecredential implement chain
discovery. In effect, introducing acredential atom into the proof
context via the conditional subgoal defined above “kick starts” the
discovery process, with additionalcredentials added to the proof
context by subsequent deductions.

The definition ofcredential is orthogonal with respect to the
definition of authorization, so different discovery techniques can
be used without any need to redefine authorization. However, since
authorization integrates discovery, discovery of certificates is inter-
leaved in the proof search. In effect, this means that authorization
does not need to be “restarted” every time a new credential is dis-
covered. As discussed in Sect. 3.3, this is because the proof con-
text will maintain validismem assertions as they’re deduced during
forward-chaining proof search, effectively memoizing the solution
between discovery phases.

In chain discovery, efficiency is usually obtained by mini-
mizing the number of credentials used to reconstruct a proof of
authorization– the credential “chain” [6, 14]. In distributed chain
discovery, selective use of credentials is even more important, since
non-local certificate retrieval is computationally expensive, and the
distributed environment can contain a potentially enormous num-
ber of them.

Another important factor in distributed chain discovery is the
convention for credential storage, since this will determine how
relevant credentialsA.r ←− f can be found. Li et al. [18] envi-
sion two scenarios. In one, credentials are stored with credential
subjects– that is, entitiesB occurring inf . In another, credentials
are stored with the issuer– that is,A. The original terminology
refers to the former as forward chain discovery, and the latter as
backward chain discovery, but to avoid confusion with LolliMon
proof direction terminology, we instead call themsubject-driven
andissuer-drivendiscovery. In the remainder of this section we re-
figure the discovery techniques for each scenario in LolliMon. We
note that as in Li at al.’s approach [18], subject- and issuer-driven
techniques can be composed to obtainbidirectionaldiscovery.

4.3.1 Subject-Driven Discovery

Given an authorization query of the formauth JA.rK B̂, subject-
driven discovery starts by obtaining an entry of the formC.s ←−
B, which by convention is held byB. Subsequent credential dis-
covery is then driven by building a chain of credentials in the
subject-to-issuer direction. Hence, we defineseed as follows:

seed R A B Rb (^ A) o- entry B Rb (^ A).

Note thatseed ignoresR in this scheme, since certificates are re-
trieved in a subject-driven manner; and that successful retrieval
consumes a linear certificate entry. We also define the following

credential clauses. Note especially that entry retrieval is always
determined by existingcredential andismem information, al-
lowing selective certificate retrieval:

credential A Ra Re,
entry B Rb (role A Ra) -o
{!credential B Rb (role A Ra)}.

credential A Ra Re,
entry B Rb (inter Res),
subject Res A Ra -o
{!credential B Rb (inter Res)}.

credential A Ra Re,
entry B Rb (^ A) -o
{!credential B Rb (^ A)}.

credential A Ra Re,
ismem (role D R) A,
entry B Rb (linked_role D R Ra) -o
{!credential B Rb (linked_role D R Ra)}.

where(subject Jf1 ∩ · · · ∩ fnK JA.rK) succeeds iff∃0 < i ≤
n.fi = A.r:

subject ((role A Ra)::Res) A Ra.
subject (X::Res) A Ra <= subject Res A Ra.

Proving correctness of credential chain discovery is a matter of re-
lating the algorithm with the specification [18, 5]. To prove sound-
ness of discovery, we demonstrate that successful chain discovery
via auth entails valid role membership viaismem, where the lat-
ter is proved in an environment wherecredentials discovered
during authorization are assumed (that is, localized). To this end,
we make the following definition, which allows us to make a tight
bound on theentrys retrieved during authorization. For the pur-
poses of the definition, we make a trivial modification toauth: we
removetop from the first clause and move it to queries, so that any
authorization query is of the formauth R A,top.

DEFINITION 4.1. Let Σ′ be as given in Definition 3.3, letΓdisc
containauth and credential clauses as defined above, and let
∆entry contain linearentrys. Suppose the queryauth R A,top
is successful, i.e.Σ′,Γdisc; ∆entry ⇒ auth R A,top is deriv-
able. Then theentries consumed by authorizationis the multiset∆
such that∆entry = ∆,∆′ andΣ′,Γdisc; ∆⇒ auth R A.

Soundness can then be demonstrated as follows. Note that it is
easy to show that any consumedentry will generate a correspond-
ing credential that can be used in anismem proof.

THEOREM 4.1. SupposeΣ′,Γdisc; ∆entry ⇒ auth R A,top is
derivable and∆ are the entries consumed by authorization, where
∆ = entry A1 R1 Re1,..., entry An Rn Ren. Let:

ΓC = credential A1 R1 Re1,...,credential An Rn Ren

ThenΣ′,ΓC ; · ⇒ {ismem R A} is derivable.

In a similar vein, a completeness result can be formulated as fol-
lows.

THEOREM 4.2. Suppose:

ΓC = credential A R1 Re1, . . . , credential A Rn Ren

is the smallest credential set such thatΣ′,ΓC ; · ⇒ {ismem R A}
is derivable. ThenΣ′,Γdisc; ∆ ⇒ auth R A is derivable, where
∆ = entry A R1 Re1, . . . , entry A Rn Ren.

4.3.2 Issuer-Driven Discovery

Issuer-driven discovery works under the assumption that creden-
tials A.r ←− f are stored with credential issuers. Hence, given
an authorization query of the formauth JA.rK B̂, issuer-driven
discovery starts by obtaining an entry that defines the roleA.r,
which by convention are held byA. Subsequent credential discov-
ery is then driven by building a chain of credentials in the issuer-
to-subject direction. Hence, we defineseed as follows:

seed (role A R) B A R Re o- entry A R Re.

Note that in this issuer-driven version ofseed the subjectB is ig-
nored, in contrast to the subject-driven version in Sect. 4.3.1, where
the issuer is ignored. We also define the followingcredential
clauses. Observe that entry retrieval is always determined by exist-
ing credential andismem information, allowing selective certifi-
cate retrieval:

credential A Ra (role B Rb),
entry B Rb RE -o
{!credential B Rb RE}.

credential A Ra (linked_role B Rb R2),
entry B Rb RE -o
{!credential B Rb RE}.

credential A Ra (linked_role B Rb Rc),
ismem (role B Rb) C,
entry C Rc RE -o
{!credential C Rc RE}.

credential A R (inter Res) -o
{!expand Res}.

expand (role A Ra::Res),
entry A Ra RE -o
{!credential A Ra RE, !expand Res}.

Correctness of issuer-driven discovery is proven in a manner simi-
lar to correctness of subject-driven discovery.

5. RT Framework Variations
In this section we specify both the authorization semantics and dis-
tributed chain discovery algorithms for variations on the basic RT
system proposed by Li and Mitchell [17]. While the authorization
semantics specifications are modeled on a previous Datalog specifi-
cation of RT [17], the distributed certificate discovery specification
is the first that applies to all variants in the RT framework.

5.1 Adding Constraints: RT1 and RT2

The systems RT1 and RT2 extend RT withconstrained role name
parameters. In RT1, rather than being simply identifiers, role names
can be parameterized by atomic data values such as integers and
date/times, which can optionally be constrained to be in some range
of values. Recalling Example 3 from Li and Mitchell [17], we
could state the policy that “the founding alumni of State University
include those who received a degreeX in some yearY between
1955 and 1958” as follows:

StateU .foundingAlumni (1)
←−

StateU .diploma(X ,Y : [1955 ..1958])

In RT2, parameters may include entities optionally constrained to
be in some role. Recalling example 4 from Li and Mitchell [17],
we could state the policy that “Alpha company allows members of

a project team to read documents of the project” as follows:

Alpha.file(read ,X :Alpha.documents(Y)) (2)
←−

Alpha.team(Y)

We can specify this behavior in LolliMon by defining a new param-
eter constraint type, and modifying the type signature of credentials
to include (possible empty) lists of constraints on parameters.

pconstraint : type.

credential : entity -> role_name ->
role_expr -> list pconstraint -> o.

We illustrate the encoding with three sorts of constraints– integer
ranges, entity role membership, and a means of constraining an
entity parameter to be the subject entity under consideration in a
role membership decision (this in the original RT1 terminology):

intc : int -> int -> int -> pconstraint.
osetc : entity -> role_expr -> pconstraint.
thisc : entity -> pconstraint.

These constraints are endowed with a straightforward interpreta-
tion:

interp nil D.
interp (intc X B T::Ps) D <=

leq B X,
leq X T,
interp Ps D.

interp (osetc E Re::Ps) D <=
ismem Re E,
interp Ps D.

interp (thisc D::Ps) D <= interp Ps D.

The forward-chaining LolliMon specification ofismem is then ob-
tained by requiring credential constraints to be satisfied in the in-
terpretation; given the obvious definition ofleq as≤ on integers2,
the linked role case would be defined as follows:

credential A R0 (linked_role B R1 R2) Cs,
ismem (role B R1) D,
ismem (role D R2) E,
interp Cs E =>
{!ismem (role A R0) E}.

And so on for the other forms.
LolliMon also has the benefit of a type system, that automat-

ically enforces well-typedness of parameterized role names, un-
like encodings in Datalog or Prolog. Also, variables can occur in
arbitrary positions in LolliMon assertions, allowing formulae that
would be “unsafe” and disallowed in Datalog. This in turn allows a
first-order representation of credential discovery in the presence of
constrained credential parameters, illustrated as follows. We illus-
trate this with the following example encoding, not safely express-
ible in Datalog.

EXAMPLE 5.1. Credential (2) defined above can be encoded as
follows:

alpha : entity.
file_ac : entity -> entity -> role_name.
read : entity.
team : entity -> role_name.
documents : entity -> role_name.
credential

alpha (file_ac read X) (role alpha (team Y))
(osetc X (role alpha (documents Y))::nil).

2 The current LolliMon prototype only provides> and=.

Specifying certificate discovery for RT1 is straightforward, es-
sentially requiring a simple modification ofentrys to accom-
modate constraints in the same manner ascredentials. How-
ever, theosetc constraints that are characteristic of RT2 pose a
greater challenge. Firstly, any discoveredosetc constraints must
be treated as new authorization goals supported by their own cre-
dential chains. Thus we define acnstrDisc predicate, that iter-
ates throughpconstraint lists and triggers credential retrieval for
osetc constraints. The relevant clause is as follows:

cnstrDisc (osetc E Re::Cs) -o
{auth Re E, cnstrDisc Cs}.

Furthermore, note that in the Example 5.1 encoding of creden-
tial (2) the variablesX andY are universally quantified. When dis-
covering this credential as part of a chain, thecredential predi-
cate will instantiateX andY, but only to “fit it into the chain”. Post-
discovery, the credential should still be usable with full generality.
Thus, we define a predicate(test C D) that onlytestswhether a
credentialC can be instantiated to a particular formD. These speci-
fications are composed for type 2 credentials as follows:

credential A Ra (role B Rb) Cs1,
entry Cred,
test Cred (credential B Rb RE Cs2) -o
{!Cred, cnstrDisc Cs1}.

The remaining clauses are defined in a similar manner [22].
We observe that when solvingosetc constraints, it is necessary
to proceed in an issuer-driven manner, since the subject is arbitrary
(e.g.X in Example 5.1).

5.2 Delegation: RTD

The ability to Delegate rights from one entity to another is an
important feature of trust management systems. In RT, this means
the ability of an entity to delegate role membership “activations”,
which are weaker than role memberships. The system RTD adds
delegation credentials to the language, which are of the form:

B1
D as A.r−−−−−→ B2

This says thatB1 has delegated its activation of the membership of
D inA.r toB2. Intuitively, an entity can activate its own role mem-
berships, or the activations that have been delegated to it by a dele-
gation chain. A request for a resourcereq is encoded as a delegation
of the desired role activation from the requester to the request. For
example, if theRegistrar has delegatedCompSci .Enroll mem-
bership toRyan for the purpose of enrolling in CS courses, he can
make a request for enrollmentenroll req by issuing:

Ryan
Registrar as CompSci.Enroll−−−−−−−−−−−−−−−−−→ enroll req (1)

In LolliMon, we encode delegations via a predicate of the appro-
priate type:

delegation :
entity -> entity -> role_expr -> entity -> o.

Validity of role activations is defined via a forward chaining predi-
catefor role B D R which holds iffB can activate the member-
ship ofD in R. Here we give some representative clauses; a complete
definition would also includefor role clauses for type 3 (linked
role) and type 4 (intersection role) credentials:

for_role : entity -> entity -> role_expr -> o.

delegation B1 D (role A R) B2,
for_role B1 D (role A R) =>
{!for_role B2 D (role A R)}.

credential A R (^ B) =>
{!for_role B B (role A R)}.

credential A R0 (role B R1),
for_role D E (role B R1) =>
{!for_role D E (role A R0)}.

The ability to activate one’s own role membership is equivalent to
role membership, hence:

ismem R A <= for_role A A R.

In RTD, delegation credentials are assumed to be submitted
along with a request for a resource, and so do not need to be re-
trieved. Therefore, the crux of authorization is to prove the under-
lying role membership for the desired activation, which can be es-
tablished via previously discussed techniques. To wit:

auth : entity -> entity -> role_expr -> o.

auth A B R o- for_role A B R, top.
auth A B R o-
seed R B D Rd RE,
(credential D Rd RE => {auth A B R}).

where seed and credential are as defined in the subject-
driven, issuer-driven, or bidirectional schemes previously defined
in Sect. 4. Any authorization query can then be phrased as a hypo-
thetical goal, where the preconditions are the delegation certificates
issued along with the request.

EXAMPLE 5.2. The example query expressed in delegation certifi-
cate (1) above can be formalized in LolliMon as follows. The mem-
bership ofRegistrar in CompSci .Enroll is established by the fol-
lowing certificate entry:

#linear entry compsci enroll (^ registrar)

while the authorization query is a conditional goal, where the
conditions are the request delegation, and the delegation of the
Registrar’s relevant role activation to Ryan:

delegation registrar registrar
(role compsci enroll) ryan,

delegation ryan registrar
(role compsci enroll) enroll_req

=> auth enroll_req registrar (role compsci enroll).

6. Conclusion
We now conclude with some remarks on related and future work.

6.1 Related Work

The LolliMon language, developed by López et al. [19], is based
on ideas originally developed in the concurrent logical frame-
work [24]; this work focused on the logic definition, not its ap-
plication to trust management. Abadi [2] developed a semantics for
SDSI based on propositional logic extended with axioms for SDSI
namespaces. Similarly, Howell and Kotz [12] based a semantics
for SPKI on the logic of authentication [1]. However, this work is
only concerned with the authorization semantics SPKI/SDSI, not
certificate retrieval. Clarke et al. [6] explored a local chain discov-
ery problem for SPKI/SDSI, but it is based on a rewriting strategy,
not logic programming. Li [14] proposed tabled logic program-
ming, specifically XSB [11], as an alternate logical foundation for
SDSI/SPKI, as well as an implementation language for chain dis-
covery.

Li and Mitchell [17] used constraint Datalog as a logical foun-
dation for specification of the RT framework, and studied the com-
plexity of constraint Datalog in this application, as well as in its

application to the KeyNote trust management system [4]. But like
the logic-based characterizations of SPKI/SDSI discussed above,
this work is focused on the semantics of authorization, not dis-
tributed chain discovery. Li et al. [18] addressed this latter problem
for RT0, but not in a logical framework, rather within an alternate
set-theoretic semantics. Delegation Logic [15] is an application-
specific logic for trust management, that provides a specification
and implementation of a language with expressivity similar to RT.
However, adaptation of their chain discovery technique to dis-
tributed settings is left as future work.

Koshutanski and Massacci [13] developed a framework for cer-
tificate chain discovery where authorization is characterized as de-
duction and certificate retrieval is characterized as abduction. In
contrast to our approach, they propose a scheme whereby autho-
rization can be stopped and restarted between abduction phases,
and these may be implemented as completely separate compo-
nents. They leave the actual definitions of deduction and abduc-
tion abstract. Their approach to certificate retrieval is based on
application-specific sets of rules; unlike the approach discussed
here, where future discovery is directed by partial authorization so-
lutions, there is not necessarily a formal relation between the rules
that specify abduction and policies for deduction. However, their
approach to retrieval is promising and could augment our tech-
nique.

Proof carrying authorization (PCA) is a highly expressive dis-
tributed authorization system based on higher-order logic [3]. The
system is implemented in the logical framework Twelf [21]. PCA
is more powerful and complex than RT, with strong similarities to
proof carrying code [20], and is intended for client-server interac-
tions.

6.2 Future Work

An immediate direction for future work is to implement certificate
chain discovery on the foundations described here. While the spec-
ification in this paper provides the first approximation of an im-
plementation, since it is executable LolliMon code [22] and the
forward chaining specification terminates, a number of issues re-
main. For example, a realistic architecture would require adopting
a wire-format representation of entries, developing credential sign-
ing schemes, and defining and verifying protocols for query sub-
mission and credential retrieval.

A more theoretical direction for future work is an efficiency
analysis of the LolliMon implementation of chain discovery. We
believe we can develop complexity analysis techniques for Lol-
liMon by building off of those for bottom-up logic programming [7,
8].

Another topic of interest is the efficiency and flexibility of re-
trieval techniques. Since credential retrieval requires network com-
munication, it is a significant source of expense in the authorization
procedure. The subject-driven, issuer-driven, and bidirectional dis-
covery techniques discussed in Sect. 4 are not necessarily optimal.
An abduction-based retrieval method [13] is markedly different, re-
lying on rules provided in conjunction with authorization policies.

References
[1] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A calculus

for access control in distributed systems.ACM Transactions on
Programming Languages and Systems, 15(4):706–734, 1993.

[2] Martin Abadi. On SDSI’s linked local name spaces.Journal of
Computer Security, 6(1-2):3–21, 1998.

[3] Lujo Bauer, Michael A. Schneider, and Edward W. Felten. A general
and flexible access-control system for the web. InProceedings of the
11th USENIX Security Symposium, 2002.

[4] Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos D.
Keromytis. RFC-2704: The KeyNote Trust-Management System
Version 2. IETF, September 1999.

[5] Peter Chapin, Christian Skalka, and X. Sean Wang. Risk assessment
in distributed authorization. InProceedings of the ACM Workshop on
Formal Methods in Security Engineering, 2005. To Appear.

[6] Dwaine Clarke, Jean-Emile Elien, Carl Ellison, Matt Fredette,
Alexander Morcos, and Ronald L. Rivest. Certificate chain discovery
in SPKI/SDSI.Journal of Computer Security, 9(4):285–322, 2001.

[7] Harald Ganzinger and David A. McAllester. A new meta-complexity
theorem for bottom-up logic programs. In Rajeev Goré, Alexander
Leitsch, and Tobias Nipkow, editors,IJCAR, volume 2083 ofLecture
Notes in Computer Science, pages 514–528. Springer, 2001.

[8] Harald Ganzinger and David A. McAllester. Logical algorithms.
In Peter J. Stuckey, editor,ICLP, volume 2401 ofLecture Notes in
Computer Science, pages 209–223. Springer, 2002.

[9] J.-Y. Girard. Linear logic: Its syntax and semantics. In J.-Y. Girard,
Y. Lafont, and L. Regnier, editors,Advances in Linear Logic (Proc.
of the Workshop on Linear Logic, Cornell University, June 1993).
Cambridge University Press, 1995.

[10] Joshua S. Hodas and Dale Miller. Logic programming in a fragment of
intuitionistic linear logic. InPapers presented at the IEEE symposium
on Logic in computer science, pages 327–365, Orlando, FL, USA,
1994. Academic Press, Inc.

[11] XSB home page.http://xsb.sourceforge.net.

[12] Jon Howell and David Kotz. A formal semantics for SPKI. Technical
Report 2000-363, Dartmouth College, 2000.

[13] H. Koshutanski and F. Massacci. An access control framework for
business processes for web services. InProceedings of the ACM
Workshop on XML Security, 2003.

[14] Ninghui Li. Local names in SPKI/SDSI. InPCSFW: Proceedings of
The 13th Computer Security Foundations Workshop. IEEE Computer
Society Press, 2000.

[15] Ninghui Li, Benjamin N. Grosof, and Joan Feigenbaum. Delegation
Logic: A logic-based approach to distributed authorization.ACM
Transaction on Information and System Security (TISSEC), February
2003. To appear.

[16] Ninghui Li and John C. Mitchell. Datalog with constraints: A
foundation for trust management languages. InProceedings of the
Fifth International Symposium on Practical Aspects of Declarative
Languages, January 2003.

[17] Ninghui Li and John C. Mitchell. RT: A role-based trust-management
framework. InProceedings of the Third DARPA Information
Survivability Conference and Exposition, pages 201–212. IEEE
Computer Society Press, April 2003.

[18] Ninghui Li, William H. Winsborough, and John C. Mitchell.
Distributed chain discovery in trust management.Journal of
Computer Security, 11(1):35–86, February 2003.

[19] Pablo Ĺopez, Frank Pfenning, Jeff Polakow, and Kevin Watkins.
Monadic concurrent linear logic programming. InPPDP ’05:
Proceedings of the 7th ACM SIGPLAN international conference
on Principles and practice of declarative programming, pages 35–46,
New York, NY, USA, 2005. ACM Press.

[20] George C. Necula. Proof-carrying code. InProceedings of the 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Langauges (POPL ’97), pages 106–119, Paris, January 1997.

[21] Frank Pfenning and Carsten Schürmann. System description: Twelf
— A meta-logical framework for deductive systems. In H. Ganzinger,
editor,Proceedings of the 16th International Conference on Auto-
mated Deduction (CADE-16), pages 202–206, Trento, Italy, 1999.
Springer-Verlag LNAI 1632.

[22] Jeff Polakow and Christian Skalka. A LolliMon specification of RT,
2006.http://www.cs.uvm.edu/~skalka/lollimon/rt.

[23] R. Rivest and B. Lampson. SDSI — a simple distributed security

infrastructure, 1996.http://citeseer.lcs.mit.edu/article/
rivest96sdsi.html.

[24] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker.
A concurrent logical framework: The propositional fragment. In
S. Berardi, M. Coppo, and F. Damiani, editors,Types for Proofs
and Programs, pages 355–377. Springer-Verlag LNCS 3085, 2004.
Revised selected papers from theThird International Workshop on
Types for Proofs and Programs, Torino, Italy, April 2003.

7. LolliMon Summary
This appendix contains a complete formal presentation of the logic
underlying LolliMon.
FORMULA LANGUAGE:

A ::= P | > | A1 &A2 |
A1 −◦A2 | A1 ⊃ A2 | ∀x:τ.A | {S}

S ::= A | !A | 1 | S1 ⊗ S2 | ∃x:τ.S

PROOFCONTEXTS:
Γ ::= · | Γ, A Unrestricted Context
∆ ::= · | ∆, A Linear Context
Ψ ::= · | S,Ψ Pattern Context

SEQUENT FORMS:

Γ; ∆⇒ A Right inversion
Γ; ∆;A >> P Left focusing
Γ; ∆ >> S Right focusing
Γ; ∆→ S Forward chaining
Γ; ∆;A > S Monadic left focusing
Γ; ∆; Ψ→ S Left inversion

RIGHT INVERSION RULES:
Γ, A; ∆;A >> P

Γ, A; ∆⇒ P
uhyp

Γ; ∆;A >> P

Γ; ∆, A⇒ P
lhyp

Γ; ∆→ S

Γ; ∆⇒ {S}{}R Γ; ∆⇒ >>R
Γ, A; ∆⇒ B

Γ; ∆⇒ A ⊃ B⊃R

Γ; ∆, A⇒ B

Γ; ∆⇒ A−◦B−◦R
Γ; ∆⇒ A Γ; ∆⇒ B

Γ; ∆⇒ A&B
&R

Γ; ∆⇒ [a/x]A

Γ; ∆⇒ ∀x:τ.A
∀R

LEFT FOCUSINGRULES:

Γ; ·;P >> P
atm

Γ; ∆;B >> P Γ; · ⇒ A

Γ; ∆;A ⊃ B >> P
⊃L

Γ; ∆1;B >> P Γ; ∆2 ⇒ A

Γ; ∆1,∆2;A−◦B >> P
−◦L

Γ; ∆; [t/x]A >> P

Γ; ∆;∀x:τ.A >> P
∀L

Γ; ∆;A >> P

Γ; ∆;A&B >> P
&L1

Γ; ∆;B >> P

Γ; ∆;A&B >> P
&L2

FORWARD CHAINING RULES:
Γ, A; ∆;A > S

Γ, A; ∆→ S
uhyp′

Γ; ∆;A > S

Γ; ∆, A→ S
lhyp′

Γ; ∆ >> S

Γ; ∆→ S
>>→

MONADIC LEFT FOCUSINGRULES:

Γ; ∆;S′ → S

Γ; ∆; {S′} > S
{}L

Γ; ∆;B > S Γ; · ⇒ A

Γ; ∆;A ⊃ B > S
⊃′L

Γ; ∆1;B > S Γ; ∆2 ⇒ A

Γ; ∆1,∆2;A−◦B > S
−◦′L

Γ; ∆;A > S

Γ; ∆;A&B > S
&′L1

Γ; ∆;B > S

Γ; ∆;A&B > S
&′L2

Γ; ∆; [t/x]A > S

Γ; ∆;∀x:τ.A > S
∀′L

LEFT INVERSION RULES:
Γ; ∆, A; Ψ→ S

Γ; ∆;A,Ψ→ S
async

Γ; ∆→ S

Γ; ∆; · → S
→→

Γ; ∆; Ψ→ S

Γ; ∆; 1,Ψ→ S
1L

Γ; ∆;S1, S2,Ψ→ S

Γ; ∆;S1 ⊗ S2,Ψ→ S
⊗L

Γ; ∆; [a/x]S′,Ψ→ S

Γ; ∆;∃x:τ.S′,Ψ→ S
∃L

Γ, A; ∆; Ψ→ S

Γ; ∆; !A,Ψ→ S
!
L

RIGHT FOCUSINGRULES:

Γ; ∆⇒ A

Γ; ∆ >> A
⇒>>

Γ; · ⇒ A

Γ; · >> !A
!R

Γ; · >> 1
1R

Γ; ∆1 >> S1 Γ; ∆2 >> S2

Γ; ∆1,∆2 >> S1 ⊗ S2
⊗R

Γ; ∆ >> [t/x]S

Γ; ∆ >> ∃x:τ.S
∃R

8. Equivalence of Specifications
Here we give proofs for various results stated in Sect. 3.4. We first
establish some basic properties about LolliMon proofs which will
be useful in the succeeding proofs.

LEMMA 8.1.

1. If Γ, P ; · → S then Γ; ·; {!P} > S.
2. Γ, P ; · ⇒ P
3. Γ, P ; · → P

We now proceed to the proofs for Sect. 3.4.

PROOF OFLEMMA 3.1.

Part 1. By inspection of the given derivation making use of the assump-
tion on Γ. There are exactly 5 cases to consider, one for each
clause inΣ′ plus one more for the case whereΓ already con-
tains the conclusion.

case: Σ′,ΓC ,Γ; ·; ismem’ role > ismem (role A R) B
Σ′,ΓC ,Γ; · ⇒ cred A R (role A’ R’) and also
Σ′,ΓC ,Γ; · ⇒ ismem (role A’ R’) B by inversion,
cred A R (role A’ R’) ∈ ΓC by inversion,
Σ,ΓC ; · ⇒ cred A R (role A’ R’) by lemma 8.1,
ismem (role A’ R’) B ∈ Γ by inversion (note clauses
in Σ′ are all monadic and not applicable),
Σ,ΓC ; · ⇒ ismem (role A’ R’) B by assumption,
Σ,ΓC ; ·; ismem role >> ismem (role A R) B by⊃L,
Σ,ΓC ; · ⇒ ismem (role A R) B by uhyp
where

ismem role = ismem (role A’ R’) B ⊃
cred A R (role A’ R’) ⊃
ismem (role A R) B

ismem’ role = ismem (role A’ R’) B ⊃
cred A R (role A’ R’) ⊃
{!ismem (role A R) B}

Part 2. By structural induction on the given derivation making use of
the assumption onΓ.

case: Σ′,ΓC ,Γ; ·; ismems cons >> ismems (role A R::Res) B
Σ′,ΓC ,Γ; · ⇒ ismem (role A R) B andΣ′,ΓC ,Γ; · ⇒
ismems Res B by inversion,
ismem (role A R) B ∈ Γ by inversion (note clauses in
Σ′ are all monadic and not applicable),
Σ,ΓC ; · ⇒ ismem (role A R) B by assumption,
Σ,ΓC ; · ⇒ ismems Res B by induction hypothesis
Σ,ΓC ; ·; ismems cons >> ismems (role A R::Res) B
by⊃L,
Σ,ΓC ; · ⇒ ismems (role A R::Res) B by uhyp
where

ismems cons = ismem (role A R) B ⊃
ismems Res B ⊃
ismems (role A R::Res) B

ut

PROOF OF THEOREM 3.1. By inversion on the given derivation
and an appeal to lemma 3.1. ut

PROOF OFLEMMA 3.2. By structural induction on the first given
derivation. There are 4 cases to consider, one for each clause inΣ.

case: Σ,ΓC ; ·; ismem role >> ismem (role A R) B and
Σ′,ΓC ,Γ, ismem (role A R) B; · → S
then
Σ,ΓC ; · ⇒ cred A R (role A’ R’) and Σ,ΓC ; · ⇒
ismem (role A’ R’) B by inversion,
cred A R (role A’ R’) ∈ ΓC by inversion,
Σ′,ΓC ,Γ; · ⇒ cred A R (role A’ R’) by lemma 8.1,
Σ′,ΓC ,Γ; ·; {!ismem (role A R) B} > S by lemma 8.1,
and lettingA = {!ismem (role A R) B} we have
Σ′,ΓC ,Γ, ismem (role A’ R’) B; ·;A > S by weaken-
ing,
Σ′,ΓC ,Γ, ismem (role A’ R’) B; ·; ismem’ role > S
by⊃′L,
Σ′,ΓC ,Γ, ismem (role A’ R’) B; · → S by uhyp’,
Σ′,ΓC ,Γ; · → S by induction hypothesis
where

ismem role = ismem (role A’ R’) B ⊃
cred A R (role A’ R’) ⊃
ismem (role A R) B

ismem’ role = ismem (role A’ R’) B ⊃
cred A R (role A’ R’) ⊃
{!ismem (role A R) B}

Note that the intersection case is just a generalization of the above
case where all the roles in the intersection are weakened into the
forward chaining hypotheses at once. ut

PROOF OFTHEOREM 3.2. Direct from lemma 8.1 and lemma 3.2
as follows:

Σ,ΓC ; · ⇒ ismem (role A R) B by assumption.
Σ′,ΓC , ismem (role A R) B; · → ismem (role A R) B
by lemma 8.1.
Σ′,ΓC ; · → ismem (role A R) B by lemma 3.2.
Σ′,ΓC ; · ⇒ {ismem (role A R) B} by {}R.

ut

