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Abstract Staging is a powerful language construct that allows a program at one stage
of evaluation to manipulate and specialize a program to be executed at a later stage.
We propose a new staged language calculus, 〈ML〉, which extends the programmability
of staged languages in two directions. First, 〈ML〉 supports dynamic type specializa-
tion: types can be dynamically constructed, abstracted, and passed as arguments, while
preserving decidable typechecking via a System F≤-style semantics combined with a
restricted form of λω-style runtime type construction. With dynamic type specializa-
tion the data structure layout of a program can be optimized via staging. Second, 〈ML〉
works in a context where different stages of computation are executed in different pro-
cess spaces, a property we term staged process separation. Programs at different stages
can directly communicate program data in 〈ML〉 via a built-in serialization discipline.
The language 〈ML〉 is endowed with a metatheory including type preservation, type
safety, and decidability as demonstrated constructively by a sound type checking al-
gorithm. While our language design is general, we are particularly interested in future
applications of staging in resource-constrained and embedded systems: these systems
have limited space for code and data, as well as limited CPU time, and specializing code
for the particular deployment at hand can improve efficiency in all of these dimensions.
The combination of dynamic type specialization and staging across processes greatly
increases the utility of staged programming in these domains. We illustrate this via
wireless sensor network programming examples.
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1 Introduction

There is a rich history of explicit, principled support for dynamic program generation
and execution in programming languages [56,54,15,49,6,42,41,9,55]. Such systems are
said to support program staging, where program code is admitted as a data type, and
features are provided for the generalization, composition, and specialization of code-
as-data, and also to execute code-as-data.

Program staging has been effective as a means to formalize and implement features
such as macros [20,30], and to increase the efficiency, programmability, and reliability
of systems involving code generation, such as compiler compilers [45]. In this paper we
present the language 〈ML〉, an extension of a core ML calculus with explicit support
for program staging. The design of 〈ML〉 draws motivations from real-world deploy-
ment of embedded systems, in particular wireless sensor networks (WSNs). Our main
contribution is to offer a flexible yet type-safe solution to achieve dynamic type special-
ization: a program at one stage can compose and specialize the types occurring in the
code of the next stage. In subsequent discussion we illustrate why type specialization
is important in the WSN application space. In this space there is also a need for other
features not offered by previous systems, namely separation of staged runs by process
boundaries and protocols for type-safe data passing between stages. Due to the novelty
and complexity of these features, the exploration in this paper is foundational and
carried out in an ML-style setting.

1.1 Type Specialization

The need for type specialization in staged programming is illustrated by a common use
of macros, which are a simple form of staged computation [20,30]. In particular, it is
common to use C conditional macros in type definitions, such as

# ifdef v typedef T {...} else typedef T {...}

Here two needs are expressed by macro users: 1) the macro stage should specialize type
T, to be used at the C code execution stage and 2) T at the macro stage is dynamically
constructed, here with a conditional expression. The challenging problem here is type
safety of staged execution in the presence of type specialization: if T is used in the rest
of the C program, can we guarantee the C program after macro expansion will not
produce a type error? Existing work in staged programming either does not support
rich type specialization [56,54,15,49], or does so in a manner that is not statically type
safe [36].

We address the first need by supporting type genericity on staged types in 〈ML〉.
The language allows specialization of the types of declared variables through bounded
parametric polymorphism à la System F≤. As in System F≤, type bounds represent the
static upper bound of a type parameter, while runtime instantiations of the parameter
can in fact subtype the given upper bound. The F≤ combination of both subtyping
and polymorphism is what is needed here – the supertype bound of F≤ quantification
allows code to be written over a type which is partly generic and partly fixed: the fixed
bound allows the type to be constructively used under the quantifier, and the generic
aspect allows it to still be flexibly instantiated.

To address the second need, we support a weak form of type computation. This
functionality is expressed in pure form as λω– the edge of the λ cube [2] where types
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depend on types, and type constructors are endowed with a semantics that is essentially
a simply typed λ calculus. Other type theories such as the Calculus of Constructions
[12] and Martin-Löf type theory [37] subsume the full expressivity of λω, but here
we propose a simpler, first-order form of type construction that is adequate for the
application space of interest and yields a more manageable metatheory.

This novel combination of System F≤ and a restricted λω (which we will informally
call λ−ω ) can be used to support type specialization for staged programming. Further-
more, leveraging these constructs yields a well-founded system that is amenable to
metatheoretic analysis, and we will illustrate both type safety for and decidability
(constructively) of 〈ML〉. In addition to practical relevance, there is a theoretical con-
tribution here in how we show System F≤ and λ−ω can be combined into a single Turing
complete language with a decidable type checking property. This is analogous to other
systems which have considered leveraging other edges of the λ-cube (e.g. λP , a.k.a.
dependent types) for practical programming [59,10,4,19].

Our type specialization technique is critical for WSNs. WSNs are composed of a po-
tentially large number of sensor nodes (so-called motes) of limited resources connected
to one or more hubs – larger computers running e.g. Linux. Type specialization allows
WSN hubs to dynamically refine node address sizes and other mote data structures
to minimize their memory footprint. This reduces message sizes, leading to bandwidth
reduction during communications [48]. The example in Sec. 7 below illustrates this
point in detail.

1.2 Staging Deployment Steps with Process Separation

A major contrast of 〈ML〉 with existing staged languages such as MetaML [56] is the
intended application space. We consciously align stages in 〈ML〉 with steps in the
deployment cycle of a multi-tier architecture: each stage is an independent process
that deploys the successive stage. Unlike macro systems which are also independent
processes (the macros expand at compile-time and the program runs at run-time), we
aim for a more generalized framework where the earlier stages can keep running and
help monitor/stop/optimize/redeploy later stages. We believe this more general view
has widespread applicability across different modes of deployment, but has yet to be
popularized. In order to focus on this concept, we will hereafter term it staged process
separation, or SPS.

We here build on observations of previous authors [53,29,51] that staged program-
ing is a useful tool to aid in the construction of resource-bounded systems. These pre-
vious papers show the application of staged computation to both embedded systems
programming and to custom circuit specification. As was pointed out previously [53],
while resources may be highly constrained on the embedded device, the stage which
constructs such resource-bounded programs need not be constrained. So, the larger the
amount of computation that can be put in the first stage the more resource-friendly it
will be for code deployed on embedded systems.We believe that WSN applications can
be a prime beneficiary of staging features that realize this notion of process separation.
The typical sensor network deployment occurs in two stages, with the first stage run-
ning on the hub controlling the deployment of mote code at the second stage [26,21,35,
36]. The hub stage can specialize/deploy/stop/monitor/redeploy the mote stage, and
each of these operations has important utility. For example, since each mote is highly
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power-, memory-, and speed-limited, the specialization of mote behavior by the hub
can yield crucial performance improvements.

Our 〈ML〉 model is related to MetaML [56], but it is fundamentally different be-
cause our SPS requirement is directly at odds with MetaML’s support for cross-stage
persistence (CSP). CSP is a MetaML feature that allows values to migrate freely be-
tween stages through standard function abstraction and application. This is highly
problematic in a multi-tiered embedded system with mutable state, since sharing mem-
ory between processes/stages is not feasible – and embedded systems languages make
heavy use of mutation and state. Our type system is constructed in a manner that
implicitly rules out the possibility of CSP. At the same time, we do allow composition
and specialization of stateful code by allowing values to be explicitly “lifted” between
stages in a principled manner via a form of data serialization (a.k.a. marshaling). Our
need for SPS is reflected is not unique, in that there are other settings where staging is
used to implement deployment cycles across independent processes running on differ-
ent hardware [49,53,29]. Although 〈ML〉 has a functional core and is therefore different
than many production languages for embedded systems and WSNs such as nesC [21],
the current exploration establishes a sound theoretical foundation that is applicable to
other paradigms, and plan to study this in future work as discussed in Sec. 9.

1.3 The Structure of the Paper

The work presented here is foundational. While our ultimate goal is in fact to port these
ideas to realistic languages for programming embedded systems, our current goal is to
explore them in a theoretical setting comprising a simple core calculus and associated
metatheory. We are especially concerned with establishing type safety and decidability
results in the core language model given the novel interaction of staging with λω−
and System F≤-style featuresOur language, type theory, and metatheory are presented
in Sec. 2 through 5. We then define a type checking algorithm that is demonstrably
sound with respect to the type theory specification in Sec. 6. To illustrate how our
proposed system can support WSN applications programming we present and discuss
an extended WSN example in Sec. 7, exploring the bandwidth reduction via address
minimization mentioned above.

2 The Core Language

In this Section we define and discuss the core 〈ML〉 syntax and dynamic semantics. At
certain points in the text we will refer to the type system, e.g. when discussing type
casting, but we delay our full presentation of it until Sec. 3. The calculus introduced in
this section is purely functional, but we will extend it with mutation and state in Sec. 4.
We assume some familiarity with the basic concepts of staged programming; readers
with no background may want to consult e.g. [50] for background and examples.

2.1 Core 〈ML〉 Syntax and Semantics

The 〈ML〉 language syntax is defined in Fig. 1, including values v, expressions e, eval-
uation contexts E, types τ , type coercions ∆, and type environments Γ . Discussion of
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x ∈ V ⊂ V, t ∈ T
v ::= c | x | λx : τ.e | Λt 4 τ.e | 〈e〉 | τ values
e ::= v | (τ)e | e e | tlet t 4 τ = e in e | let x = e in e | run e | lift e expressions
E ::= [ ] | Ee | vE | tlet t 4 τ = E in e | let x = E in e | evaluation contexts

(E)e | (v)E | run E | lift E
σ, τ ::= t | γ | type[τ ] | 〈·τ ·〉 | Πt 4 τ.τ | ∃t 4 τ.τ | τ → τ | > types
∆ ::= ∅ | ∆; t 4 τ type coercions
Γ ::= ∅ | Γ ;x : τ type environments

Fig. 1 〈ML〉 Term and Type Syntax

RConst
δ(c, v) = e

c v → e

RApp
(λx : τ.e)v → e[v/x]

RLet
let x = v in e→ e[v/x]

RTLet
tlet t 4 τ = τ ′ in e→ e[τ ′/t]

RAppΠ
(Λt 4 τ.e)τ ′ → e[τ ′/t]

RCast
v : τ

(τ)v → v

RRun
e→? v

run 〈e〉 → v

RLift
lift v → 〈v〉

RContext
e→ e′

E[e]→ E[e′]

Fig. 2 〈ML〉 Core Operational Semantics

expression forms directly related to type genericity, including type abstraction Λt 4 τ.e,
a “type let” tlet, type-as-terms, and type casting are discussed in Sec. 3. Our initial
focus is on the three basic expression forms for staged computation. The form 〈e〉 rep-
resents the code e, which is treated as a first-class value. The form run e evaluates e
to code and then runs that code, in its own process space. The form lift e evaluates e
to a value, and turns that value into code, i.e. “lifts” it to a later stage. We omit the
“escape” operator, realized for example as ~e in MetaML, a design choice we discuss
in more detail below.

Central to the prevention of CSP is our definition of term substitution. Substi-
tution should ensure “stage conformity,” i.e. we can only substitute code into code,
and code stage levels should be coordinated in substitution. To achieve this we define
〈e〉[〈e′〉/x] = 〈e[e′/x]〉, and make 〈e〉[e′/x] be undefined if e′ is not code. This defini-
tion forces free variables in 〈e′〉 to be instantiated with code only. Term substitution is
completely defined in Fig. 3.

The operational semantics of 〈ML〉 are then defined in Fig. 2 in terms of substitu-
tions, as a small-step reduction relation→. This relation is defined in a mutually recur-
sive fashion with its reflexive, transitive closure denoted→?. Note that the RRun rule
models process separation by treating the running of code as a separate and complete
evaluation process; the need for separation will become more clear when we consider
mutation and state in Sec. 4. The semantics of casting are predicated on a notion of
typing defined in the following section.
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x[e′/x] = e′

y[e′/x] = y if x 6= y
c[e′/x] = c

〈e〉[〈e′〉/x] = 〈e[e′/x]〉
〈e〉[〈e′〉/x] = 〈e〉 if x 6∈ fv(e)

((τ)e)[e′/x] = ((τ)e[e′/x])
(lift e)[e′/x] = lift e[e′/x]
(run e)[e′/x] = run e[e′/x]
(e1e2)[e′/x] = (e1[e′/x])(e2[e′/x])

(λx : τ.e)[e′/x] = λx : τ.e
(λy : τ.e)[e′/x] = λy : τ.e[e′/x] if x 6= y
(Λt 4 τ.e)[e′/x] = Λt 4 τ.(e[e′/x])

(let x = e1 in e2)[e′/x] = let x = e1[e′/x] in e2
(let x′ = e1 in e2)[e′/x] = let x′ = e1[e′/x] in e2[e′/x] if x 6= x′

(tlet t 4 τ = e1 in e2)[e′/x] = tlet t 4 τ = e1[e′/x] in e2[e′/x]
τ [e′/x] = τ

t[τ/t] = τ
t′[τ/t] = t′ if t 6= t′

γ[τ/t] = γ
type[τ ′][τ/t] = type[τ ′[τ/t]]
〈·τ ′·〉[τ/t] = 〈·τ ′[τ/t]·〉

(Πt′ 4 σ.τ ′)[τ/t] = Πt′ 4 σ[τ/t].τ ′[τ/t] if t 6= t′

(Πt 4 σ.τ ′)[τ/t] = Πt 4 σ[τ/t].τ ′

x[τ/t] = x
c[τ/t] = c
〈e〉[τ/t] = 〈e[τ/t]〉

((τ)e)[τ/t] = ((τ)e[τ/t])
(lift e)[τ/t] = lift e[τ/t]
(run e)[τ/t] = run e[τ/t]
(e1e2)[τ/t] = (e1[τ/t])(e2[τ/t])

(λy : τ.e)[τ/t] = λy : τ [τ/t].e[τ/t]
(Λt 4 τ ′.e)[τ/t] = Λt 4 τ ′[τ/t].(e)
(Λt′ 4 τ ′.e)[τ/t] = Λt′ 4 τ ′[τ/t].(e[τ/t]) if t 6= t′

(let x = e1 in e2)[τ/t] = let x = e1[τ/t] in e2[τ/t]
(tlet t 4 τ ′ = e1 in e2)[τ/t] = tlet t 4 τ ′[τ/t] = e1[τ/t] in e2
(tlet t′ 4 τ ′ = e1 in e2)[τ/t] = tlet t′ 4 τ ′[τ/t] = e1[τ/t] in e2[τ/t] if t 6= t′

Fig. 3 Term and Type Substitutions in 〈ML〉

2.1.1 User-Defined Constants

The language 〈ML〉 may be extended with user-defined constants c. Any functional
constants must be accompanied by specification of their semantics via the function δ.
For example, suppose it is desired to add numerical constants to the language, including
8-bit integers, 16-bit integers, and real numbers, and including arithmetic functions abs

for taking the absolute value of integer constants and floor for taking the floor of real
numbers. Formally, given i8 ∈ Z28 , i

16 ∈ Z216 , and n ∈ R, we may define c as follows:

c ::= i8 | i16 | n | abs | floor

The functional constants are endowed with an appropriate interpretation as follows:

δ(abs, i16) = |i16| δ(floor , n) = bnc
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Since Z28 ⊆ Z216 ⊆ R, the function floor is defined on any sort of numeric constant,
while abs is defined only on integral constants in Z216 .

2.2 Discussion

For the convenience of our discussion, all examples below only consider two stages,
which we call the meta stage and the object stage, following standard terminology in
meta programming. 〈ML〉 in fact supports arbitrary stages.

Comparison with MetaML-style staging The MetaML bracket expression 〈e〉 and exe-
cution expression run e are directly reflected in 〈ML〉. The canonical MetaML example
of a staged list membership testing function, member , can be written in 〈ML〉 as in
Fig. 4(a). The gist of this example is that first-stage execution of member applica-
tions yields a piece of code where membership tests are inlined rather than executed
in recursive calls, which is typically more efficient.

The code so produced is also specialized in that membership tests are partly instan-
tiated. The ability to specialize code is very useful for resource-constrained platforms,
such as wireless sensor networks. In this particular usage, we imagine that the meta
stage is on the hub that creates code to deploy and run on the sensors, and the ob-
ject stage is the sensor node execution environment. For example, suppose each sensor
node needs to test membership of the result of some value vsense over a fixed list of say
[0, 1]. Rather than invoking a standard membership function at each sensor node and
incurring the run-time overhead of recursion and if . . . then . . . else, we can execute the
program in Fig. 4(a) on the hub, a computer with fewer resource constraints. What
will be deployed to individual sensor nodes is only the argument of the run expression,
member 〈vsense〉 [0, 1], which will be evaluated on the hub to:

〈vsense = 0 || vsense = 1 || false〉

However, there is a drawback to this approach in a 〈ML〉 context: the expression
vsense must be closed, and so can’t reference variables in the larger program context.
Function member ′ in Fig. 4(b) gives a different version of code specialization showing
how this problem can be alleviated in 〈ML〉. Note how any parameter within an object-
level expression must be made explicit with a λ-binding in 〈ML〉. This is essentially
because the MetaML “escape” operator is not available in 〈ML〉 as we discuss more
below.

Value Migration via Lift and Run The semantics of 〈ML〉’s substitution-based term
reduction itself disallows CSP; for example the (untypeable) term (λx : uint.〈x〉)3 is
stuck since 3 cannot be substituted into the code 〈x〉. But on the other hand it is often
necessary to allow migration of values across stages to allow the computation of a value
that is then “glued” into the program-as-data. For our purposes lifting a value from the
meta to the object language and running object code from the meta level are sufficient
and indeed function as duals. For example in Fig. 4, the expression lift (hd l) lifts the
value of the meta-stage to the object-stage, which subsequently can be compared with
a value in that stage (x = h).

In this foundational presentation our object and meta-stage languages have identi-
cal syntax for simplicity, but it is likely that a production language will want to restrict
the syntax allowed on motes. In such a case the lift function would be restricted to
only support lifting of meta-code which was also typeable at the object stage.
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member : 〈·int·〉 → int list→ 〈·bool·〉
member x l =

if l = nil then 〈false〉 else
let h = lift (hd l) in
let tl = member x (tail l) in

〈x = h||tl〉
run(member 〈vsense〉 [0, 1])

(a)

member ′ : int list→ 〈·int→ bool·〉
member ′ x l =

if l = nil then 〈λx : int. false〉 else
let h = lift (hd l) in
let tl = member ′ (tail l) in

〈λx : int. x = h||tl x〉
let memunroll = member ′[0, 1] in

run(〈. . .memunroll vsense . . .〉)

(b)

Fig. 4 〈ML〉 Definitions of member and member ′

A Simple Model with No Escape MetaML has an escape expression ~e that can “de-
mote” e from the object stage back to the meta stage. For instance, rather than writing:

〈x = h || tl〉

as in Fig. 4, MetaML programmers would equivalently write:

<~x = ~h || ~tl>

This syntactic comparison shows how we implicitly view any free variable in a code
block as a meta-variable ranging over code, in contrast with the MetaML convention
of viewing such variables as being at the object level unless explicitly escaped with ~.
In the 〈ML〉 syntax of implicitly escaping variables such as x/h/tl above, the escape
operator becomes less important; a MetaML expression 〈C[~e]〉 can often be re-written
as 〈ML〉 expression (λx.〈C[x]〉)(e) where C is a program context. The only case where
this rewriting fails is when e contains free variables at the object (not meta) level that
should be captured by the code in C; in 〈ML〉 those free object variables must be
explicitly parameterized with λ-abstraction and later passed explicit arguments. The
member and member ′ examples directly illustrate this point: the member example was
taken from Section 6 of [56] and directly translated to 〈ML〉. In MetaML, it is in fact
possible to use member itself inside a larger program since the code passed to the first
argument may contain a free variable. Consider the following example from [56]:

<λx.~(member<x> [1, 2, 3])>

The 〈ML〉 simulacrum of this would be:

(let m = member′[1, 2, 3] in 〈λx.m x〉)

Although MetaML escape enhances programmability, it leads to significant com-
plexities for static type checking [42,9,55]. A canonical example is <λx.~(e<x>)>.
Consider the case where expression e contained code run <x> – the type system
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must statically prevent execution of open expressions such as this, but the solutions
that have been applied are not elegant since it is a context-sensitive property.

The WSN examples we have studied have not revealed any expressivity constraints
using the escape-free 〈ML〉 syntax, so we opt here to leave it out for simplicity. Thus
we obtain a simple and elegant type system, even when mutable state is added (state
is a particularly pernicious problem for the interpretation of escape, the expression e
in the above example could stash <x> on the heap and allow it to escape its binding
context).

3 Types and Type Specialization

In this Section we focus on the 〈ML〉 type system, again beginning with formalities
then moving on to higher level discussion. Briefly, our goal is to support type genericity
as discussed in Sec. 1.1, and to statically disallow CSP. We delay our definition of
type validity and associated metatheory until Sec. 5, aiming first to provide a basic
understanding of the system.

3.1 Types in Terms

As discussed in Sec. 1.1, type specialization is essential for our envisioned application
space. This specialization has two dimensions: first, we should be able to specialize the
types of procedures, and second, we should be able to dynamically construct types of
programs based on runtime conditions.

For the first purpose we posit a form of bounded type abstraction, denoted Λt 4 τ.e;
the application of this form to a type value may result in type specialization of e. We
use a bound on the abstraction to provide a closer type approximation (hence better
static optimization of code) in the body of the abstraction.

For the second purpose we introduce types as values, and a tlet construct, which
supports a limited form of statically well-typed (type safe) type computation a la
λω. Note that our System F≤-style type abstraction Λt 4 τ.e and application forms
e τ are too restrictive to encode an analog of the usual term encoding of let: syntax
tlet t 4 τ = e in e′ would be analogously encoded as (Λt 4 τ.e′) e, but type application
in our theory is restricted so that the argument e must in fact be a concrete type τ .
Without this restriction the static type system would be undecidable, since e may not
terminate. Our primitive tlet syntax has no such restriction and allows type variables
to be bound to the results of arbitrary computations.

Further technical discussion of type computations and static typing thereof is pre-
sented in Sec. 3.3.1. We have discussed the usefulness of related forms in Sec. 1.1, and
examples in Sec. 3.4 and Sec. 7 will further illustrate them. To simplify later defini-
tions and results we take both Λ- and tlet-bound variables as names for their de Bruijn
indices, requiring possible α-conversion of any given program to yield distinct bound
type variable names at each binder.

3.2 Type Forms and Subtyping

As usual we must define a different type form for each class of values in our language. In
addition to a Π type form for type abstractions, we have standard term function type
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TopS
∆ ` τ 4 >

ReflS
∆ ` τ 4 τ

ConstS
γ 4ax γ

′

∆ ` γ 4 γ′

CoerceS
∆(t) = τ

∆ ` t 4 τ

CodeS
∆ ` τ1 4 τ2

∆ ` 〈·τ1·〉 4 〈·τ2·〉

TransS
∆ ` τ1 4 τ2 ∆ ` τ2 4 τ3

∆ ` τ1 4 τ3

FnS
∆ ` τ ′1 4 τ1 ∆ ` τ2 4 τ ′2
∆ ` τ1 → τ2 4 τ ′1 → τ ′2

TypeS
∆ ` τ 4 τ ′

∆ ` type[τ ] 4 type[τ ′]

PiS
∆; t 4 τ0 ` τ 4 τ ′

∆ ` (Πt 4 τ0.τ) 4 (Πt 4 τ0.τ
′)

ExistsS
∆; t 4 τ ` τ ′ 4 τ ′′

∆ ` (∃t 4 τ.τ ′) 4 (∃t 4 τ.τ ′′)

Fig. 5 Subtyping Rules

forms τ → τ and base types γ for user-defined constants. The user-defined function ty

maps constants c to their associated type γ. We also introduce a type form type[τ ],
that represents the type of dynamically constructed type values. Intuitively, type[τ ]
represents the set of all types that are subtypes of τ , considered as values. Since we
consider code a value, type-of-code has a denotation 〈·τ ·〉, where τ is the type of value
that will be returned if the code is run.

Additionally, we introduce an existential type form for typing tlet expression forms.
Elimination and introduction rules for this form will ensure the ∃-bound variables are
“eigenvariables”, i.e. they are distinct outside their scope. This allows “hiding” the
static type of the tlet-bound value whose type is inherently dynamic. Without use of
existentials there is no possibility on having a tlet upper bound contain a dynamic
type anywhere, so existentials are critical to make the type theory more complete.
The ∃ types here do not have the full logical power of an existential: arbitrary types
τ cannot be abstracted as “∃t”, because our need for ∃ is modest – it only serves to
support proper extrusion of tlet-bound type variables. ∃ types are discussed in more
detail upon presentation of the type judgement rules in Sec. 3.3.1. Both ∃ and Π types
are defined to be equivalent up to α-renaming.

We define the subtyping relation ∆ ` τ 4 τ ′ in Fig. 5; it is predicated on type
coercions ∆. Intuitively, a coercion ∆ defines upper bounds on a set of type variables.
We require that these bounds are not recursive, i.e. for any t ∈ dom(∆) it is not the
case that t ∈ fv(∆(t)). Any coercion induces a set of subtyping relations; the relation
is mostly standard except for covariant extension of subtyping to type and code types.

Definition 1 A coercion ∆ is a function from type variables to types. We write ∆; t 4
τ to denote the coercion that maps t to τ but agrees with ∆ on all other points. We
write ∆⊕ t 4 τ to denote ∆; t 4 τ where t ∈ Dom(∆) implies ∆(t) = τ .

In general, we will require that coercions and subtyping judgements be closed in the
following sense:

Definition 2 Let ftv be a function returning the free type variables in a type or
expression. A coercion ∆ is closed iff for all t ∈ Dom(∆) it is the case that ftv(∆(t)) ⊆
Dom(∆). A subtyping judgement ∆ ` τ1 4 τ2 is closed iff ftv(τ1, τ2) ⊆ dom(∆).

The reader will note that constraints on Π- and ∃-bound type variables must be
equivalent to compare these forms via the subtyping relation defined in Fig. 5. This
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restriction is imposed to support decidability of typing in the presence of bounded
polymorphism; it is well-known that allowing variance of type variable constraints in
this relation renders subtyping undecidable [22].

Subtyping user-defined constant types γ is accomplished via an axiomatized relation
4ax , also user-defined. Note that the induced relation ∅ ` γ1 4 γ2 is a finite lattice,
which is decidable – trivially so for practical purposes, since user-defined types γ will
not typically be great in number.

3.3 Type Judgements and Validity

Type judgements in our system are of the form Γ,∆ ` e : τ , where Γ is defined as
follows.

Definition 3 An environment Γ is a function from term variables to types. We write
Γ ;x : τ to denote the environment that maps x to τ but agrees with Γ on all other
points. We write Γ ⊕ x : τ to denote Γ ;x : τ where x ∈ Dom(Γ ) implies Γ (x) = τ .

NB there is a distinction between “plain” environment extension, denoted “;”, versus
“strict” extension where a new domain element is added, denoted “⊕”. The same sym-
bols are also used to denote coercion extension in the same manner as defined above.
Consistency in the typing rules requires that type and term variables are not redefined
at certain points, hence the need to specify strict extension.

Derivability of type judgements is defined in terms of the type derivation rules in
Fig. 6. This discipline disallows CSP, in particular the Code rule ensures that variables
occurring within code are implicitly treated as code values at the same or greater stage;
for this purpose we inductively define

〈·∅·〉 = ∅
〈·Γ ;x : τ ·〉 = 〈·Γ ·〉;x : 〈·τ ·〉

A weakening rule Weaken is included to be used in conjunction with the Code rule:
we wish to allow term variables to occur outside of code brackets within their scope.

Note that application of type abstraction in the AppΠ rule results in a type substi-
tution. Unlike term substitution, CSP of types should be allowed, since once evaluated
types are purely declarative entities and should be able to migrate across stage levels.
This is reflected in the definition of type substitutions defined in Sec. 2.

We impose sanity conditions on the structure of type judgements, ensuring that any
type variables appearing in a judgement are defined, i.e. that the judgement is closed.
This restriction ensures closure of subtyping judgements occurring in type derivations,
and later will simplify the presentation of algorithmic type checking. We also require
that assumed type coercions in ∆ don’t overlap with ∃-bound coercions in an ascribed
type, a property reflecting our view of type variables as de Bruijn indices.

Definition 4 The pair (∆, τ) is well-formed iff ∆ is closed and ftv(τ) ⊆ Dom(∆) and
t 6∈ Dom(∆) for every ∃-bound t in τ . The judgment Γ,∆ ` e : τ is well-formed iff
(∆, τ) is, and (∆,Γ (x)) is well-formed for all x ∈ Dom(Γ ), and ftv(e) ⊆ Dom(∆).

Type validity is then defined as follows:

Definition 5 A type judgement Γ,∆ ` e : τ is valid iff it is well-formed and derivable.
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Const
Γ,∆ ` c : ty(c)

Var
Γ (x) = τ

Γ,∆ ` x : τ

Type
Γ,∆ ` τ : type[τ ]

AppΠ
Γ,∆ ` e : Πt 4 τ ′′.τ ′ ∆ ` τ 4 τ ′′

Γ,∆ ` e τ : τ ′[τ/t]

App
Γ,∆ ` e1 : τ ′ → τ Γ,∆ ` e2 : τ ′

Γ,∆ ` e1e2 : τ

Abs
Γ ;x : τ,∆ ` e : τ ′

Γ,∆ ` λx : τ.e : τ → τ ′

AbsΛ
Γ,∆⊕ t 4 τ ` e : τ ′

Γ,∆ ` Λt 4 τ.e : Πt 4 τ.τ ′

Code
Γ,∆ ` e : τ

〈·Γ ·〉,∆ ` 〈e〉 : 〈·τ ·〉

Let
Γ,∆ ` e1 : τ ′ Γ ;x : τ ′,∆ ` e2 : τ

Γ,∆ ` let x = e1 in e2 : τ

Weaken
Γ,∆ ` e : τ

Γ ⊕ x : τ ′,∆ ` e : τ

Run
Γ,∆ ` e : 〈·τ ·〉
Γ,∆ ` run e : τ

Lift
Γ,∆ ` e : τ

Γ,∆ ` lift e : 〈·τ ·〉

Cast
Γ,∆ ` e : τ ′

Γ,∆ ` (τ)e : τ

Sub
Γ,∆ ` e : τ ′ ∆ ` τ ′ 4 τ

Γ,∆ ` e : τ

∃-Intro
Γ,∆; t 4 τ ` e : τ ′

Γ,∆ ` e : ∃t 4 τ.τ ′

∃-Elim
Γ,∆ ` e : ∃t 4 τ.τ ′

Γ,∆; t 4 τ ` e : τ ′

TLet
Γ,∆ ` e : type[σ] Γ,∆⊕ t 4 σ ` e′ : τ
Γ,∆⊕ t 4 σ ` tlet t 4 σ = e in e′ : τ

Fig. 6 Type Judgement Rules

3.3.1 On tlet and ∃ Types

In any tlet expression, a type variable is bound to a type-returning computation. But
since types are first class values in 〈ML〉, it is not possible to statically predict the
result of such a computation, hence in any tlet expression we allow the type variable
to stand in. This means that a type variable can appear free in the tlet expression’s
type, hence its upper bound definition must be extruded in the expression’s typing to
close the judgement, as expressed in the TLet typing rule. For example, consider the
expression tlet t 4 σ = e in λx : t.x where e is some closed expression and σ is a
closed type. It can be assigned the following typing, assuming that e is appropriately
typable:

∅, t 4 σ ` tlet t 4 σ = e in λx : t.x : t→ t

In this typing, the bound t 4 σ is extruded, providing a definition for the variable t
occurring in the type component of the judgement. Note in general that it is not sound
to replace a tlet-bound variable with its upper bound; in this case for example we would
obtain σ → σ as the type of the expression, but t→ t 64 σ → σ due to contravariance
of the domain in function subtyping. Hence, use of the type t is necessary.

The typing rule ∃-Intro, on the other hand, allows extruded type variable bounds
to be moved into the type itself via an ∃ binding. This is important, since in particular
the upper bound of a tlet-bound type variable may contain a Λ-bound variable. For
example, consider the following typing derivation fragment, where we assume that σ
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and e are closed and e is appropriately typable:

∅, t′ 4 σ; t 4 t′ ` tlet t 4 t′ = e in λx : t.x : t→ t

∅, t′ 4 σ ` tlet t 4 t′ = e in λx : t.x : ∃t 4 t′.t→ t

∅,∅ ` Λt′ 4 σ.tlet t 4 t′ = e in λx : t.x : Πt′ 4 σ.∃t 4 t′.t→ t

The first deduction is by ∃-Intro, the second by AppΠ . Note that the second deduction
step is not possible without the first, since t′ cannot occur free in the top-level coercion;
the bound t 4 t′ must be moved into the type.

Indeed, it is easy to imagine a complete normal-form derivation of types that uses
a restricted subset of type forms. Such a normal form derivation would always perform
∃-Intro just before an instance of AbsΛ, and always perform ∃-Elim just after an
instance of AppΠ . The resulting restricted type form can be shown to be in a one-to-
one correspondence with theΠ type formΠt◦∆.τ defined in a preliminary presentation
of this work [33], where ∆ contains the upper bounds for t as well as all tlet-bound
variables in scope. This form is discussed at greater length in Sec. 6.2.1.

We believe that our tlet construct, statically typed using ∃ type forms and scope
extrusion, is novel. In essence, it supports a well-typed first-order form of type compu-
tation. Type computation is fully embodied in λω, which is subsumed e.g. by both Coq
[13] and Agda [3], but those systems allow definition of higher order type constructors
which comprise a complete λ calculus. We do not provide type constructors in our
system per se; although Λ abstraction does allow an encoding of type construction, Λ
application can only be performed on concrete, first order type forms.

3.3.2 Typing User-Defined Constants

To illustrate how user-defined constants may be appropriately type-axiomatized, we
recall the example constants in Sec. 2.1.1. Appropriate base types for these constants
could be:

γ ::= int8 | int16 | real

where the following base subtyping axioms are defined:

int8 4ax int16 int16 4ax real

and with the type assignment function ty defined as follows:

ty(i8) = int8
i16 6∈ Z28

ty(i16) = int16

n 6∈ Z216

ty(n) = real
ty(abs) = int16→ int16

ty(floor) = real→ real

Given these definitions, the expression abs(1.2) is not typable, whereas the expression
floor(2) is, for example, which is sound since the latter is defined whereas the latter is
not.

As another realistic example, consider adding booleans expressions to the language
along with a condition operator ite. The typing of boolean values and operators us-
ing an introduced type bool is straightforward. To interpret conditional expressions,
we provide an appropriate semantics of ite to ensure full generality, in particular it
comprises type abstraction:

δ(ite, true) = Λt 4 >.λx : t.λy : t.x δ(ite, false) = Λt 4 >.λx : t.λy : t.y
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The appropriate type for this constant is then clear:

ty(ite) = Πt 4 >.bool→ t→ t→ t

3.4 Discussion

Type Abstraction and Application for Staged Code Our running example introduced in
Sec. 1.1 is that of object level code parameterized by a pre-computed address type. In
〈ML〉 this can be written as

Λaddr_t 4 >.〈λaddr : addr_t.e〉

Type theoretically, the construct here is a standard type abstraction mechanism as is
found in System F, with the twist that in 〈ML〉 type arguments can be dynamically
constructed, not just statically declared. Type application can then be performed to
produce staged code with a concrete type, such as

(Λaddr_t 4 >.〈λaddr : addr_t.e〉)uint8

This code will be executed on the meta stage, so that when this code is executed
on sensor nodes, variable addr will have uint8 type. Observe how the type parameter
addr_t is used within object code in the . . . λaddr : addr_t. . . . declaration, but the
actual parameter uint8 is a type and not “code that is a type” 〈uint8〉. This highlights
how our system supports CSP of types (but not terms); this is sound because types
“transcend” process spaces in that they can be interpreted correctly at any stage.

Type Bounds and Subtyping The benefit of static type checking for staged code has
been widely discussed in recent efforts in meta programming [39,6,58,9,55]. As in other
contexts, polymorphism increases the expressivity of type systems for staged code, but
note that e.g. type checking the code above would be restrictive: since addr_t can be
instantiated with any concrete type, any variable of type addr_t would be assigned a
universal type within the scope of the function and hence only be usable as a completely
generic object.

To address this problem in a familiar fashion, 〈ML〉 allows programmers to assign a
bound on the abstracted type. For instance, the message send code defined previously
can be refined as:

Λaddr_t 4 uint.〈λaddr : addr_t.e〉

With this bound, the type system can assume the type of addr is at least uint when e
is typechecked, and use it as such. Our form of type abstraction is related to standard
bounded polymorphism of System F≤; our bounds cannot be recursive, but we allow
types to be constructed dynamically whereas System F≤ does not.

Types as Expressions Unlike System F≤ where types and terms do not mix, and all
type instantiation occurs statically, types are first-class citizens in 〈ML〉, and can be
assigned, passed around, stored in memory, compared, etc.

Treating types as values in 〈ML〉 provides programmers with a flexible way to
define constructs such as the type macros discussed in Sec. 1.1 (in fact, arbitrary 〈ML〉
programs are allowed to define T), while at the same time preserving static type safety
as demonstrated in Sec. 5. As a result, the static type system of our language differs
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from System F≤ and its descendants such as Java generics. That is, type parameters
abstracted by Λ are instantiated not with static types, but with types as first class
values. For example, consider the following 〈ML〉 program fragment:

tlet tcond 4 uint32 = (if e0 then uint16 else uint32) in
let rtt = (Λaddr_t 4 uint32.〈λaddr : addr_t.e0; send(e1)〉) tcond in
. . .

Here the tlet . . . = . . . in expression is similar to a let . . . = . . . in , except that it
binds types. The binder tlet serves a critical purpose in the formalism: any type-valued
expression such as the above conditional cannot directly appear in another type; only
its tlet-ed name can. This means that 〈ML〉 types can only be dependent on types-
as-expressions (as in λω on the λ cube), not arbitrary expression forms (as in λP ).
Assuming the return type of a typical send function is an ACK of fixed result_t
type, our language will type the example above as rtt : 〈·tcond → result_t·〉, under
type constraint tcond 4 uint32. This type can then be existentially bound to close
the type judgement, giving rtt : ∃tcond 4 uint32.〈·tcond→ result_t·〉.

Notation type[uint] means any type less than uint; type[τ ] in general has the
following meaning:

type[τ ] = {τ ′ | τ ′ 4 τ}
These range types are used to type type-valued expressions; for example, in typing the
above we would need to show:

if e0 then uint16 else uint32 : type[uint32]

which is straightforward since uint16 4 uint32.

Casting To “close the loop” on runtime-dependent types as defined above we need to
find a way to populate these types in spite of not knowing what value (type) they will
take on at runtime. The runtime condition is crucial to define a member of a runtime-
decided type in the code, for example the e0 condition in the above example. In the
running example, the rtt function must take some value v : tcond as argument, where
tcond is a type whose value depends on the runtime value of e0. Conditional types
have been defined [1,46] which are suited for this purpose, but for this presentation
we opt for a simple typecast which is more expressive but incurs a runtime check. For
example, in the elided part of the program fragment above, if we were to use rtt we
could write:

rtt((tcond) 5)

which will typecast 5 to either uint16 or uint32 as appropriate at run-time. Typecasts
are fundamentally dynamic and may fail at runtime, and such failures are not counted
as typing failures in the type safety result, Theorem 2 below.

4 Records, State, and Serialization

In this section we extend the core functional language with records and mutable store,
along with a notion of serialization that will allow mutable data to be shared between
stages. Mutable features are essential to consider here because they are prevalent in
languages for programming embedded systems such as nesC. Furthermore, state poses
some unique technical challenges in the presence of 〈ML〉-style staging where we assume
that distinct stages represent distinct process spaces.
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s ::= v | s; e
v ::= . . . | {`1 = v1; . . . ; `n = vn} | () | x
e ::= . . . | {`1 = e1; . . . ; `n = en} | e.` | ref e | e:= e | !e | s
τ ::= . . . | {`1 : τ1; . . . ; `n : τn} | ref τ | unit
E ::= . . . | {`1 = v1; . . . ; `n = vn; ` = E; `′1 = e1; . . . ; `′m = em}

| E.` | ref E | E:= e | v:=E | !E

D ::= [ ] | let z = ref v in D
m ::= () | m; z:= v
h ::= D[m]

Fig. 7 Syntax for Records, Mutation, and Syntactic Stores

dom(s) = ∅
dom(let z = ref v in h) = {z} ∪ dom(h)

lkp z (let z′ = ref v in h) = lkp z h if z 6= z′

lkp z (let z = ref v in D[m]) = lkp′ z v m

lkp′ z v ∅ = v
lkp′ z v (m; z:= v′) = v′

lkp′ z v (m; z′:= v′) = lkp′ z v m z 6= z′

Fig. 8 Auxiliary Functions for Store Lookup

4.1 Language Model

Since we aim to focus on foundational issues, our language model is intended to capture
essential programming features as simply as possible. Previous work has demonstrated
that the addition of state and records to a core functional calculus allows expression of
a wide variety of side-effecting language idioms [17] , so we begin there. There remains
the question of how to model state, where again we are guided by simplicity and
generality. The syntactic store model uses a restricted subset of pure term syntax to
denote a mutable store, and has been shown to foundationally capture many mutable
programming idioms [27]. For our purposes, this technique allows clear and succinct
expression of serialization, and the model is no less expressive than e.g. models of the
store as a partial function from references to values, as illustrated by the presence of
lookup and update operations and a domain check. These simple definitions allow us
to focus on the fundamentals of how values move between stages.

4.2 Mutable 〈ML〉 Syntax and Semantics

In Fig. 7 we introduce new record and state expression forms that extend the syntactic
definitions in Fig. 1, as well as an expression sequence form that is a semicolon-delimited
vector of expressions, a unit value (), and a special form of let-expression helpful for
representing syntactic stores that makes subsequent definitions more succinct; this
technique follows previous work such as [27]. Syntactic stores may be interpreted as
a mapping from variables to values via the dom and lkp functions defined in Fig. 8.
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project D[m] V = project D V [project m V ]

project [ ] V = [ ]
project (let z = ref v in D) V = project D V if z 6∈ V
project (let z = ref v in D) V = (let x = ref v in (project D V )) if z ∈ V

project ∅ V = ∅
project (m; z:= v) V = project m V if z 6∈ V
project (m; z:= v) V = project m V ; z:= v if z ∈ V

Fig. 9 Projecting a Sub-Store

RRun
(e,∅)→? (v, h′)

(run 〈e〉, h)→ (serialize v h′, h)

RRef
z 6∈ dom(D[m])

(ref v,D[m])→ (z,D[let z = ref v in m])

RDeref
( !z, h)→ (lkp z h, h)

RAssign
z ∈ dom(D[m])

(z:= v,D[m])→ ((), D[m; z:= v])

RSeq
(v; e, h)→ (e, h)

RLift
(lift v, h)→ (〈serialize v h〉, h)

RContext
(e, h)→ (e′, h′)

(E[e], h)→ (E[e′], h′)

Fig. 10 Semantics of 〈ML〉 Mutable Features

We write dom(h) to denote the domain of a store h, and lkp z h to denote the value
associated with variable z in a syntactic store h.

To define serialization, we will just project that part of the store that is relevant
to a particular value and “wrap” the serialized value in that part of the store. That
part is the sub-store that defines all references reachable from that value; serialization
results in a closed expression (a fact proved in Lemma 14 below). Formally:

Definition 6 Serialization of a value v given a store h is defined via the following
function:

serialize v h = let D[m] = (project h (reachable v h)) in D[m; v]

where project is defined in Fig. 9 and reachable v h = V iff V contains all store
locations reachable from v in h. (Note that D[m; v] is not a syntactic store in the
above, we are using the fact that syntactic stores are defined as a subset of program
syntax to form an expression.)

Now, we can define the operational semantics via a small-step relation→ on closed
configurations (e, h), where (e, h) is closed iff fv(e) ⊆ dom(h). In our metatheory we
will assume that the semantics of ref cell creation will create a globally “fresh” variable
reference every time.

The interesting rules are specified in Fig. 10. Note that the semantics of run estab-
lishes a distinct process space, so there will be no cross-stage persistence. Also, observe
how values are serialized whenever we move between process spaces, in particular when
values are lifted, and when results are returned by run.
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RecS
∆ ` τ1 4 τ ′1 . . . ∆ ` τn 4 τ ′n

∆ ` {`1 : τ1; . . . ; `n : τn} 4 {`1 : τ ′1; . . . ; `n : τ ′n; . . . ; `n+m : τn+m}

RefS
∆ ` τ 4 τ ′ ∆ ` τ ′ 4 τ

∆ ` ref τ 4 ref τ ′

Fig. 11 Additional Record and State Subtyping Rules

Rec
Γ,∆ ` e1 : τ1 . . . Γ,∆ ` en : τn

Γ,∆ ` {`1 = e1; . . . ; `n = en} : {`1 : τ1; . . . ; `n : τn}

Ref
Γ,∆ ` e : τ

Γ,∆ ` ref e : ref τ

Set
Γ,∆ ` e : ref τ Γ,∆ ` e′ : τ

Γ,∆ ` e:= e′ : unit

Get
Γ,∆ ` e : ref τ
Γ,∆ ` !e : τ

Unit
Γ,∆ ` () : unit

Seq
Γ,∆ ` e1 : τ ′ Γ,∆ ` e2 : τ

Γ,∆ ` e1; e2 : τ

Fig. 12 Additional Record and State Type Judgement Rules

The subtyping and typing rules for records and references are standard, and are
given in Fig. 11 and Fig. 12 as extensions to Fig. 5 and Fig. 6, respectively.

5 Type Safety

In this section we prove a formal type safety result for our system. Along with standard
properties this result ensures that programs respect process separation, since process
separation is enforced by the dynamic semantics of 〈ML〉.

5.1 Type Preservation in tlet Reduction

Our argument for type safety employs a mostly standard subject reduction aka type
preservation strategy. However, the argument is complicated by the tlet expression
form reduction case, since the type variable used to “stand in” for the tlet-defined type
value is instantiated– in both the reduced term and its type. For example, suppose we
have a reduction:

(tlet t 4 > = unit in λx : t.x)→ (λx : unit.x)

The redex e in this example can be typed as ∅,∅ ` e : ∃t 4 >.t → t, or as ∅, t 4
> ` e : t → t whereas the reduced term can be assigned the more precise type
∅,∅ ` e : unit→ unit. The general form of this instantiation is still more complicated
since reduction can take place within evaluation contexts. Also, ∃-Elim and ∃-Intro
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are not syntax-directed, and though closure of typings is required, significant type
bound “shuffling” can occur in perverse examples. For example, consider the expression
e defined as:

tlet t1 4 > = unit in tlet t2 4 > = unit in λx : t1.x

This expression has the following valid typings:

∅,∅ ` e : ∃t1 4 >.∃t2 4 >.t1 → unit ∅,∅ ` e : ∃t2 4 >.∃t1 4 >.t1 → unit

∅, t2 4 > ` e : ∃t1 4 >.t1 → unit ∅, t1 4 > ` e : ∃t2 4 >.t1 → unit

∅, t1 4 >; t2 4 > ` e : t1 → unit

This example illustrates that type instantiation via tlet unrolling and non-syntax di-
rected rules must be treated delicately when proving type preservation. Our approach
is to define a general form of instantiation, and show that typings are preserved modulo
this notion of instantiation during reduction.

We begin by introducing syntactic sugar to more easily discuss types with multiple
∃ bindings; NB how the syntax of ∆ has a different interpretation in this context (that
is, not as a function, as is the case when ∆ appears “bare” in judgements):

Definition 7 The syntactic sugaring ∃∆.τ is defined inductively as follows:

∃∅.τ , τ

∃∆; t 4 σ.τ , ∃∆.∃t 4 σ.τ

We then formalize an appropriate notion of instantiation as follows. First a small step
instantiation relation � is defined, the transitive closure of which obtains a multi-step
instantiation relation ≤. We let (∆, τ)[σ/t] denote (∆[σ/t], τ [σ/t]) in the following.

Definition 8 The one-step instantiation relation � is defined via the following rules:

�-Ref
(∆, τ)� (∆, τ)

�-Coerce
∆′ ` σ′ 4 σ ∆′ ⊆ ∆

(∆, τ)[σ′/t]� (∆; t 4 σ, τ)

�-Exists
∆ ` σ′ 4 σ

(∆, (∃∆′.τ)[σ′/t])� (∆,∃∆′; t 4 σ.τ)

Then we define ≤ as the transitive closure of �, and we say that (∆′, τ ′) is an instance
of (∆, τ) iff (∆′, τ ′) ≤ (∆, τ).

Given this definition, and returning to our previous example, observe that:

(∅,unit→ unit) ≤ (t 4 >, t→ t) (∅,unit→ unit) ≤ (∅, ∃t 4 >.t→ t)

We now need to prove auxiliary Lemmas relating � and non-syntax directed rules
for proving type preservation. We begin by stating two obvious properties of subtyping:

Lemma 1 ∆ ` ∃t 4 σ.τ1 4 ∃t 4 σ.τ2 iff ∆; t 4 σ ` τ1 4 τ2.

Lemma 2 If ∆ ` τ1 4 τ2 then ∆⊕ t 4 σ ` τ1 4 τ2.
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Now we demonstrate that instantiation of the appropriate form preserves subtyping.

Lemma 3 If ∆ ⊕ t 4 σ ` τ 4 τ ′ and ∆′ ` σ′ 4 σ for some ∆′ ⊆ ∆ then ∆[σ′/t] `
τ [σ′/t] 4 τ ′[σ′/t].

Proof By induction on the derivation of ∆ ⊕ t 4 σ ` τ 4 τ ′ and case analysis on the
last step. Observe that ∆′ must be closed by sanity conditions on coercions.
Case CoerceS. In this case we have that τ = t′ for some t′, and (∆⊕ t 4 σ)(t′) = τ ′.
Suppose on the one hand that t = t′. Then τ ′ = σ, and ∆′ ` σ′ 4 σ is equivalent to
∆′ ` τ [σ′/t] 4 τ ′[σ′/t] since t cannot occur in σ, so the Lemma follows by Lemma 2
since ∆′[σ′/t] = ∆′. Suppose on the other hand that t 6= t′, thus τ ′ = ∆(t′). This
t′[σ′/t] = t′, and ∆[σ′/t] ` t′ 4 τ ′[σ′/t] by CoerceS.

The other cases follow in a relatively straightforward manner, with the assistance
of the induction hypothesis in non base cases. ut

In many cases we will want to apply this result in a context where the coercion ∆′ is
closed, so we state the following Corollary for convenience.

Corollary 1 If ∆⊕ t 4 σ ` τ 4 τ ′ and ∆ ` σ′ 4 σ then ∆ ` τ [σ′/t] 4 τ ′[σ′/t].

Now we can demonstrate an auxiliary Lemma for the Sub case of type preservation.

Lemma 4 If (∆1, τ1) � (∆2, τ2) and ∆2 ` τ2 4 τ ′2, then there exists τ ′1 such that
∆2 ` τ1 4 τ ′1 and (∆1, τ

′
1)� (∆2, τ

′
2).

Proof Proceed by considering cases as formulated in the definition of �. Case �-Ref
is immediate. Case �-Coerce follows by definition and Lemma 3. In case �-Exists,
we have that ∆1 = ∆2 and τ2 = ∃∆; t 4 σ.τ and τ1 = (∃∆.τ)[σ′/t] where ∆ ` σ′ 4 σ.
But since we assume that (∆1, ∃∆; t 4 σ.τ) is well-formed we have that ∆1[σ

′/t] = ∆1

by Definition 4. The result follows by Lemma 1 and Corollary 1. ut

We may also state the following Lemma for proving the ∃-Elim case of type preserva-
tion. Note that conditions (iii) and (iv) arise due to possible type bound reshufflings
exemplified at this beginning of this subsection; they will apply when the ∃-Elim rule
instance manipulates a type variable other than the one instantiated by a tlet-unrolling.
The result follows by definition of �.

Lemma 5 Given (∆′, τ ′)�(∆,∃t 4 σ.τ), exactly one of the following conditions holds:

(i) ∆′ = ∆ and τ ′ = ∃t 4 σ.τ

(ii) ∆′ = ∆ and τ ′ = τ [σ′/t], where ∆ ` σ′ 4 σ

(iii) ∆ = ∆′; t′ 4 σ′ and τ ′ = (∃t 4 σ.τ)[σ′′/t′], where (∆′; t 4 σ, τ)[σ′′/t′]� (∆; t 4
σ, τ)

(iv) ∆′ = ∆ and τ = ∃∆′′; t′ 4 σ′.τ ′′ and τ ′ = (∃t 4 σ.∃∆′′.τ ′′)[σ′′/t′], where
(∆′; t 4 σ, (∃∆′′.τ ′′)[σ′′/t′])� (∆; t 4 σ, τ)

A similar result can be stated to apply to the ∃-Intro case of type preservation.

5.2 Substitution and Contextual Lemmas

Both type and term substitution can occur during evaluation, and reduction in eval-
uation contexts must take into account term and type substructure. Here we provide
relevant Lemmas. To begin, a canonical forms Lemma specifies the correspondence of
types to their associated classes of values in valid type judgements. Here we consider
just the interesting cases.
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Lemma 6 (Canonical Forms) Given valid Γ,∆ ` v : τ all of the following hold:

1. if τ = 〈·τ ′·〉 for some τ ′ then v = 〈e〉 for some e.
2. if τ = type[τ ′] for some τ ′ then v = τ ′′ for some τ ′′.
3. if τ = Πt 4 σ.τ ′ for some t, σ, τ ′ then v = Λt 4 σ.e for some e.
4. if τ = τ0 → τ ′0, then e = λx : τ ′.e′ for some x, τ ′, e′.

Next, a term substitution Lemma will apply to the β reduction case of type preser-
vation, following standard tactics. We present here a novel case of term substitution
that is central to our system design, where code is substituted into code. The result
illustrates how our type system preserves typings in this latter case.

Lemma 7 (Term Substitution) If Γ ;x : τ ′0,∆ ` e : τ0 and Γ,∆ ` v : τ1 with
∆ ` τ1 4 τ ′0, then Γ,∆ ` e[v/x] : τ0.

Proof This result follows in a mostly standard manner by induction on the derivation
of Γ ;x : τ ′0,∆ ` e : τ0 and case analysis on the last step in the derivation. The
interesting case in our system is where the last step is an instance of Code. In this
case by inversion1 of Code we have:

e = 〈e′〉 τ ′0 = 〈·τ ′·〉 Γ = 〈·Γ ′·〉 τ0 = 〈·τ ·〉

for some e′, τ ′, τ , and Γ ′, and we have also a judgement of the form:

Γ ′;x : τ ′,∆ ` e′ : τ
〈·Γ ′·〉;x : 〈·τ ′·〉,∆ ` 〈e′〉 : 〈·τ ·〉

But 〈·Γ ′·〉,∆ ` v : 〈·τ ′·〉 by assumption, so by Lemma 6 we have that v is a code
value of the form 〈e1〉 for some e1. By inversion of the typing rules it is easy to show
that Γ ′,∆ ` e1 : τ ′′ where ∆ ` τ ′′ 4 τ ′, so by the induction hypothesis we have that
Γ ′,∆ ` e′[e1/x] : τ . And since e[v/x] = 〈e′[e1/x]〉 in this case by definition of term
substitutions, the result follows in this case by an application of Code. ut

Now, because types are treated as first-class values for tlet constructs and type
abstractions, in type preservation we need to apply a type substitution lemma that is
similar to term substitution. Note that the type substitution result itself requires that
instantiated type variables must not be tlet-bound within the typed term, as such a
condition falsifies the result due to possible extrusion of such variables. For example,
the judgement (1) is valid, whereas (2) is not derivable:

∅, t 4 uint ` tlet t 4 uint = uint in t : t (1)

∅,∅ 0 tlet t 4 uint = uint in t : uint (2)

This requirement is naturally met in the context of application within the type preser-
vation argument.

Lemma 8 (Type Substitution) Given that t is not tlet-bound in e, if Γ,∆ ⊕ t 4
τ ′0 ` e : τ0 and ∆ ` τ1 4 τ ′0, then Γ,∆ ` e[τ1/t] : τ0[τ1/t].

1 In this proof and later, when given a judgement obtained as an instance of a particular
derivation rule, we may assert validity of the precedents of that derivation rule instance in the
standard manner; we refer to this as an inversion of the known derivation rule instance.
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Proof By induction on the derivation of Γ,∆⊕ t 4 τ ′0 ` e : τ0 and case analysis on the
last step.
Case Sub. In this case the last derivation step is of the form:

Γ,∆⊕ t 4 τ ′0 ` e : τ ∆⊕ t 4 τ ′0 ` τ 4 τ0

Γ,∆⊕ t 4 τ ′0 ` e : τ0

By assumptions of this Lemma and by Corollary 1 we have that ∆ ` τ [τ1/t] 4 τ0[τ1/t],
and by the induction hypothesis the judgement Γ,∆ ` e[τ1/t] : τ [τ1/t] is derivable.
Hence we may construct:

Γ,∆ ` e[τ1/t] : τ [τ1/t] ∆ ` τ [τ1/t] 4 τ0[τ1/t]

Γ,∆ ` e[τ1/t] : τ0[τ1/t]

which was to be proven.
Case AbsΛ. In this case τ0 = Πt′ 4 σ.τ and e = Λt′ 4 σ.e′ and the last derivation
step is of the form:

Γ,∆⊕ t 4 τ ′0 ⊕ t′ 4 σ ` e′ : τ
Γ,∆⊕ t 4 τ ′0 ` Λt′ 4 σ.e′ : Πt′ 4 σ.τ

Now, ∆ ` τ1 4 τ ′0 by assumption, and since ∆ is closed and t′ 6∈ Dom(∆) therefore
t′ does not occur in ∆, so it is easy to show that ∆ ⊕ t′ 4 σ ` τ1 4 τ ′0. Hence the
induction hypothesis yields derivability of Γ,∆⊕ t′ 4 σ ` e′[τ1/t] : τ [τ1/t], so we may
reconstruct:

Γ,∆⊕ t′ 4 σ ` e′[τ1/t] : τ [τ1/t]
Γ,∆ ` Λt′ 4 σ.e′[τ1/t] : Πt

′ 4 σ.τ [τ1/t]

where the consequent is equivalent to Γ,∆ ` e[τ1/t] : τ0[τ1/t], which was to be proven.
The remaining cases follow in a similar fashion via the induction hypothesis. ut

Since reduction may take place within an evaluation context, we provide the following
lemmas to “do the dirty work” in proving type preservation in this case. These Lemmas
will allow us to apply the result obtained for pure redices via induction. Proof sketches
follow the statement of each.

Lemma 9 If Γ,∆ ` E[e] : τ is valid, its derivation contains a subderivation with
consequent Γ,∆ ` e : τ ′ for some τ ′.

The preceding Lemma follows in a straighforward manner by induction on the form
of E. In the base case, where E = [ ], wherein e is shown to be typable, a necessary
condition of typability of E[e]. Inductive cases never need to modify Γ due to the
possible forms of E, so the result follows.

Lemma 10 If a derivation of Γ,∆ ` E[e] : τ0 contains a subderivation with consequent
Γ,∆ ` e : τ1, and Γ ′,∆′ ` e′ : τ ′1 is valid where Γ ′ extends2 Γ and (∆′, τ ′1)� (∆, τ1),
then Γ ′,∆′ ` E[e′] : τ ′0 where (∆′, τ ′0)� (∆, τ0).

The preceding Lemma follows by induction on the form of E. In the base case, where
E = [ ], the result is easily obtained via assumptions, Lemma 8, and Weaken. In the
inductive cases, the result follows since the induction hypothesis ensures the desired
property holds essentially because τ ′1 replaces occurrences of τ1 in τ0 to yield τ ′0.

2 In general, a partial function f extends a partial function g iff f(x) = g(x) for all x ∈
Dom(g).
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5.3 Configuration Typings

Next we extend the notion of type validity to configurations. The definition is straight-
forward thanks to our use of syntactic stores.

Definition 9 (Type Valid Configurations) A configuration typing (e,D[m]) : τ◦∆
is valid iff ∅,∆ ` D[m; e] : τ is.

An important consequence of this definition is that code values at run-time are closed ;
the importance of this is that closedness ensures that references do not “cross stages”,
ensuring process separation between stages.

Lemma 11 If (E[〈e〉], D[m]) has a valid typing then 〈e〉 is closed.

In proving type preservation we will typically want to focus on the term component
of configurations, but within a typing environment dictated by variables defined in the
store. To this end we introduce the notion of coverage, and provide a couple of lemmas
that will allow moving between configuration and expression typing judgements.

Definition 10 We say that Γ covers D[m] iff ∅,∆ ` D[m] : τ is valid and contains a
subderivation with consequent Γ,∆ ` m : τ .

Lemma 12 If (e,D[m]) : τ◦∆ is valid then it contains a subderivation with consequent
Γ,∆ ` e : τ for some Γ that covers D[m].

Lemma 13 If Γ,∆ ` e : τ is valid and Γ covers D[m] then (e,D[m]) : τ ◦∆ is also
valid.

Another important property has to do with serialization, and ensuring that our
definition of serialization is type-correct in the sense that serialization produces a closed
value of the same type as the original, unserialized value:

Lemma 14 (Serialization Typing) If (v, h) : τ ◦ ∆ is valid, then so is ∅,∆ `
serialize v h : τ .

5.4 Failure Semantics

Type preservation is the core of our type safety argument, but there remain some sub-
tleties in the statement of type safety. In particular, it is not satisfactory to equate the
class of irreducible non-value expression forms with semantically ill-formed expressions
as in the usual formulation of “stuck” expressions. There are two problematic cases; the
one where an illegal typecast is attempted, and the one where code is run and diverges
in its separate process space. In the former case there is a run-time check in place to
catch the error, and the latter case is just a form of divergence. Neither case should be
included in the class of semantically ill-formed expressions.

To address this, we introduce an untyped value fail, along with a failure semantics
in Fig. 13. This failure semantics clearly delineates the class of semantically ill-formed
expressions and allows a succinct statement of type safety.

Now, we need to show that semantically ill-formed expressions are untypable. A
basic sanity condition requires that user-defined constants are type-safe:
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FConst
δ(c, v) undefined
(c v, h)→ (fail, h)

FApp
v′ not a type or term abstraction

(v′ v, h)→ (fail, h)

FTLet
v not a type

(tlet t 4 τ = v in e, h)→ (fail, h)

FAppΠ
v not a type

((Λt 4 τ.e)v, h)→ (fail, h)

FRun
(e,∅)→? (fail, h′)

(run 〈e〉, h)→ (fail, h)

FDeref
lkp z h undefined
( !z, h)→ (fail, h)

FAssign
z 6∈ dom(h)

(z:= v, h)→ (fail, h)

FLift
serialize v h undefined
(lift v, h)→ (fail, h)

FContext
(E[fail], h)→ (fail, h)

Fig. 13 〈ML〉 Failure Semantics

Definition 11 We require that δ is typable in the following sense: if (c v, h) : τ ◦∆ is
valid, then δ(c, v) is defined.

Basic properties of typing establish that typable side-effecting operations are well-
formed, in that functions underlying their semantics are defined. To guarantee the
following result, we hereafter require that variables used as references are distinct from
variables used as value identifiers.

Lemma 15 Each of the following conditions hold:

1. If (v, h) : τ ◦∆ is valid then (serialize v h) is defined.
2. If (!z, h) : τ ◦∆ is valid then (lkp z h) is defined.
3. If (z := v, h) : τ ◦∆ is valid then z ∈ dom(h).

The preceding results allow us to demonstrate that semantically ill-formed expressions
are untypable, except for the FRun case that needs an induction to be addressed. This
will by done in the proof of Type Preservation.

Lemma 16 If (e0, h0) → (fail, h1) for some h1 by a rule other than FRun, then
(e0, h0) is untypable.

Proof The proof proceeds by case analysis on the failure semantics of Fig. 13. Case
FConst follows by Definition 11. Cases FApp, FTLet, and FAppΠ follow by Lemma 6.
Cases FDeref, FAssign, and FLift follow by Lemma 15. Case FContext follows
since fail is untypable, whereas all subexpressions of typable expressions are necessarily
typable. ut

5.5 Typings and Structural Induction

Not all typing rules are syntax-directed, but structural inductions in type preservation
require typings of subterms to be known in order for induction hypotheses to apply.
Thus, when something is known about the structure of typed terms, the following Lem-
mas allows judgements to be deconstructed in a syntax directed manner. In particular,
we first show how to manipulate non-syntax directed rules wlog.
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Lemma 17 Each of the following properties hold:

1. Any Sub application sequence (including one of length 0) can be expressed in a
single application of Sub.

2. Consecutive application of ∃-Intro followed by ∃-Elim can be suppressed.
3. Consecutive applications of ∃-Elim and Sub (in either order) can be switched.
4. Consecutive applications of ∃-Intro and Sub (in either order) can be switched.

Proof Property 1 follows by reflexivity and transitivity of 4. Property 2 follows im-
mediately by definition of typing. To prove property 3, we note that in general ∆; t 4
σ ` τ1 4 τ2 iff ∆ ` (∃t 4 σ.τ1) 4 (∃t 4 σ.τ2), and ∆ ` (∃t1 4 τ1.τ) 4 (∃t1 4 τ2.τ

′)
implies that t1 = t2 and τ1 = τ2, so the following proof fragments are equivalent and
illustrate the desired property in general:

Γ,∆; t 4 σ ` e : τ
Γ,∆ ` e : ∃t 4 σ.τ ∆ ` ∃t 4 σ.τ 4 ∃t 4 σ.τ ′

Γ,∆ ` e : ∃t 4 σ.τ ′

and:
Γ,∆; t 4 σ ` e : τ ∆; t 4 σ ` τ 4 τ ′

Γ,∆; t 4 σ ` e : τ ′

Γ,∆ ` e : ∃t 4 σ.τ ′

Similarly for property 4. ut

Now, we show how to relate various syntactic forms with their corresponding syntax-
directed typing rules, in a manner that will allow structural induction on type deriva-
tions to apply.

Lemma 18 Each of the following properties holds:

1. Γ,∆ ` Λt 4 σ.e : Πt 4 σ.τ implies Γ,∆⊕ t 4 σ ` e : τ ′, where ∆; t 4 σ ` τ ′ 4 τ .
2. Γ,∆ ` λx : σ.e : τ ′ → τ implies Γ ;x : σ,∆ ` e : τ , where ∆ ` τ ′ 4 σ.
3. Γ,∆ ` τ : type[τ ′] implies ∆ ` τ 4 τ ′.
4. Γ,∆ ` 〈e〉 : 〈·τ ·〉 implies Γ,∆ ` e : τ .

Furthermore, the judgements in the consequents of each of the above implications follow
by strict subderivations of the antecedent judgement derivations.

Proof In each of the above implications, the antecedent must be derived by some
syntax directed rule instanceR followed by some sequence of non-syntax directed rules,
i.e. Sub, ∃-Intro, and ∃-Elim. Lemma 17, properties 3,4, and 1 allow all instances
of Sub to be migrated down below all ∃ rule instances, and collapsed into a single
Sub rule instance R′. Furthermore, the remaining sequence of ∃-Intro and ∃-Elim
will be “nested”, in the sense that the first instance of ∃-Elim must be preceded by a
∃-Intro of the same subtyping coercion, allowing this two rule instance sequence to be
suppressed by Lemma 17, property 2. This process can be continued for all remaining
∃-Intro rule instances, eliminating all ∃-Intro and ∃-Elim instances between R and
R′. The result follows by syntactic case analysis of the property under consideration
and the corresponding form of R. ut
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5.6 Type Preservation and Type Safety

Now, before proving type safety, we observe that the single-step RRun reduction rule
is predicated on a complete reduction in the next-stage process space. Because of this,
in type preservation we will need to induct on the length of reduction sequences, where
length takes into account the preconditions of RRun reduction instances.

Definition 12 The length of an evaluation relation (e, h) →? (e′, h′) is inductively
defined as the sum of all single reduction steps in the evaluation, plus the lengths of
all evaluation relations occurring as precedents of Run instances in the derivation of
(e, h)→? (e′, h′).

Definition 13 A computational reduction (e, h)→ (e′, h′) is one that holds by a rule
other than Context or FContext.

Now we can state type preservation, which follows by a double induction on the
length of a multi-step reduction sequence and type derivations. The requirement that
reduced expression typings may be instances of initial typings was anticipated and
briefly discussed at the beginning of this section.

Theorem 1 (Type Preservation) If (e0, h0) : τ0 ◦ ∆0 is valid and (e0, h0) →?

(en, hn), then there exists (∆n, τn) which is an instance of (∆0, τ0) such that (en, hn) :
τn ◦∆n.

Proof Assuming that (e0, h0)→? (en, hn) has length n, the proof follows by induction
on n. The result follows trivially for n = 0. For the induction step in case n > 0, we
let hn = Dn[mn] and focus on the last step in the reduction, of the form (e,D[m])→
(en, hn). We first observe that assumptions of the theorem and the induction hypothesis
imply the existence of (∆, τ) which is an instance of (∆0, τ0) such that (e,D[m]) : τ ◦∆.
Therefore by Lemma 12 there exists Γ covering D[m] such that Γ,∆ ` e : τ is valid.

Since ≤ is the transitive closure of �, it now suffices to show that there exists Γn,
∆n, and τn such that: (∆n, τn) � (∆, τ), and Γn extends Γ and covers Dn[mn], and
Γn,∆n ` en : τn is valid. Given this, the Theorem follows by Lemma 13. To proceed,
we induct on the derivation of Γ,∆ ` e : τ and split the proof into two subclaims, (1)
where we assume that this reduction step is computational and (2) where it follows as
an instance of Context. These claims cover all cases of the Theorem since reduction
by FContext is ruled out by Lemma 16.
Case (1): (e,D[m]) → (en, Dn[mn]) is a computational reduction, wherein the result
follows by subcase analysis on the last step in the derivation of the judgement Γ,∆ `
e : τ .
Subcase AppΠ . By definition of typing, evaluation, and Lemma 16 we have that
(e,D[m]) → (en, hn) is an instance of RAppΠ , meaning that e is of the form (Λt 4
σ.e′)σ′ and τ is of the form τ ′[σ′/t]. Inversion of the last derivation step in the typing
obtains:

Γ,∆ ` Λt 4 σ.e′ : Πt 4 σ.τ ′ ∆ ` σ′ 4 σ

Further, Γ,∆ ` σ′ : type[σ′] by rules of typing so Γ,∆ ` σ′ : type[σ] by Sub. These
facts and Lemma 18 also obtain:

Γ,∆⊕ t 4 σ ` e′ : τ ′′ ∆; t 4 σ ` τ ′′ 4 τ ′
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Now, Γ,∆ ` e′[σ′/t] : τ ′′[σ′/t] by Lemma 8 since t is not tlet-bound in e′ (recall that
we treat type variables as de Bruijn indices). Further, by Corollary 1 it is the case that
∆ ` τ ′′[σ′/t] 4 τ ′[σ′/t], so by an application of Sub we have Γ,∆ ` e′[σ′/t] : τ ′[σ′/t].
But (en, hn) = (e′[σ′/t], D[m]) in this case by definition of evaluation; taking Γn = Γ ,
∆n = ∆, and τn = τ ′[σ′/t] the result follows.
SubcaseApp. By definition of typing, evaluation, and Lemma 16 we have that (e,D[m])→
(en, hn) is an instance of RApp, meaning that e is of the form (λx : σ.e′)v, and
en = e′[v/x] and hn = D[m] for some x, σ, e′, and v by definition of evaluation.
Further, by inversion of the last step in the typing derivation we obtain:

Γ,∆ ` λx : σ.e′ : τ ′ → τ Γ,∆ ` v : τ ′

Now, by Lemma 18 we have Γ ;x : σ,∆ ` e′ : τ where ∆ ` τ ′ 4 σ. Thus by Lemma 7
we also have Γ,∆ ` e′[v/x] : τ . Taking Γn = Γ , ∆n = ∆, and τn = τ , the result follows
in this case.
Subcase TLet. By definition of typing, evaluation, and Lemma 16 we have that
(e,D[m])→ (en, hn) is an instance of RTLet, meaning that e is of the form tlet t 4
σ = τ ′ in e′ and ∆ = ∆′; t 4 σ for some ∆′ by definition of typing, and en = e′[τ ′/t].
Also, by inversion in the last step of the typing rule in this case we have:

Γ,∆′ ` τ ′ : type[σ] Γ,∆′ ⊕ t 4 σ ` e′ : τ

and consequently by Lemma 18 we also have ∆′ ` τ ′ 4 σ. But then by Lemma 8
we may assert that Γ,∆′ ` e′[τ ′/t] : τ [τ ′/t] since t is not tlet-bound in e′, and also
(∆′, τ [τ ′/t])� (∆′; t 4 σ, τ) by definition. Taking ∆n = ∆′, τn = τ [τ ′/t], and Γn = Γ ,
the result follows in this case.
Subcase Lift. By definition of typing, evaluation, and Lemma 16 we have that
(e,D[m]) → (en, hn) is an instance of RLift, meaning that e is of the form lift v for
some v and τ = 〈·τ ′·〉 for some τ ′ by definition of typing. And by typing inversion in this
case we have that Γ,∆ ` v : τ ′. But then by Lemma 14 and applications of Weaken
we have that Γ,∆ ` serialize v D[m] : τ ′. And (en, hn = (〈serialize v D[m]〉, D[m])

in this case by definition of →. Taking Γn = Γ , τn = 〈·τ ′·〉, and ∆n = ∆, the result
follows by Lemma 13 and an application of Code.
Subcase Run. In this case e = run 〈e〉 by definition of typing. By typing inversion we
have Γ,∆ ` 〈e〉 : 〈·τ ·〉, and by Lemma 11 we have that 〈e〉 is closed so ∅,∆ ` 〈e〉 : 〈·τ ·〉
by obvious properties of typing. Now by Lemma 18 we have ∅,∆ ` e : τ , so assuming
(e,∅)→? (v, h) with length j for some j, v, and h we have that (v, h) : (∆′, τ ′) where
(∆′, τ ′) ≤ (∆, τ) by the first induction hypothesis of this Theorem since j < n by
definition. But since fail is untypable it cannot be that v = fail, so by evaluation rules
we have that (e,D[m])→ (en, hn) can only be an instance of RRun, meaning that e′

is of the form (serialize v h,D[m]). Thus Γ,∆′ ` serialize v h : τ ′ by Lemma 14 and
applications of Weaken, so taking Γn = Γ , ∆n = ∆′, and τn = τ ′ the result follows.
Subcase Ref. In this case e = ref v and τ = ref τ ′ and (en, hn) = (z,D[let z =

v in m]) for some τ ′ and v and fresh z by definition of typing and evaluation. By typing
inversion in this case we have Γ,∆ ` v : τ ′, so clearly Γ ; z : ref τ ′ covers D[let z =

v in m] since Γ covers D[m] by assumption and z is fresh. And Γ ; z : ref τ ′,∆ ` z : τ

by one application of Var, so taking ∆n = ∆, τn = τ , and Γn = Γ ; z : ref τ ′ the result
follows.
Subcase ∃-Elim. In this case we have that ∆ = ∆′; t 4 σ for some ∆′, t, and σ by
definition of typing. And by typing inversion in this case we have Γ,∆′ ` e : ∃t 4 σ.τ .
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ReflWS
∆ `W τ 4 τ

TopWS
∆ `W τ 4 >

ConstWS
` γ1 4 γ2

∆ `W γ1 4 γ2

TransWS
∆ `W ∆(t) 4 τ

∆ `W t 4 τ

CodeWS
∆ `W τ1 4 τ2

∆ `W 〈·τ1·〉 4 〈·τ2·〉

FnWS
∆ `W τ ′1 4 τ1 ∆ `W τ2 4 τ ′2

∆ `W τ1 → τ2 4 τ ′1 → τ ′2

TypeWS
∆ `W τ 4 τ ′

∆ `W type[τ ] 4 type[τ ′]

PiWS
∆; t 4 τ0 `W τ 4 τ ′

∆ `W (Πt 4 τ0.τ) 4 (Πt 4 τ0.τ
′)

ExistsWS
∆; t 4 τ `W τ0 4 τ1

∆ `W (∃t 4 τ.τ0) 4 (∃t 4 τ.τ1)

Fig. 14 Algorithmic Subtyping Rules

But by the second induction hypothesis of the theorem we then have that Γ ′,∆′′ ` en :

τ ′ where Γ ′ is some extension of Γ and (∆′′, τ ′)� (∆′,∃t 4 σ.τ). Now, we proceed by
considering four possible conditions identified in Lemma 5. Assuming (i), the subcase
follows by an instance of ∃-Elim applied to Γ ′,∆′′ ` en : τ ′. Assuming (ii), the subcase
follows immediately by definition of �. Assuming (iii) or (iv), the subcase follows by
an instance of ∃-Elim applied to Γ ′,∆′′ ` en : τ ′.
Subcase ∃-Intro follows in a manner similar to subcase ∃-Elim.
Subcase Sub. In this case we have that Γ,∆ ` e : τ1 with ∆ ` τ1 4 τ by typing
inversion. Thus Γ ′,∆′ ` en : τ2 with Γ ′ some extension of Γ and (∆′, τ2)� (∆, τ1) by
the induction hypothesis. But then by Lemma 4 there exists τ ′2 with ∆′ ` τ2 4 τ ′2 and
(∆′, τ ′2)� (∆, τ), hence Γ ′,∆′ ` en : τ ′2 by Sub, so this subcase follows.

The other subcases of Case (1) follow in a relatively straightforward manner. What
remains to be shown is the second Case.
Case (2). Suppose on the other hand that (e,D[m])→ (en, hn) holds as an instance of
Context, so that e is of the form E[e′] and en is of the form E[e′n] and (e′, D[m])→
(e′n, hn). If E = [ ], the result follows by Case (1) above. Otherwise, by Lemma 9 we
may assert the existence of some τ ′ such that Γ,∆ ` e′ : τ ′, so that by the induction
hypothesis we may assert the existence of Γn which is an extension of Γ that covers
hn and the existence of (∆n, τ ′n) ≤ (∆, τ ′) such that Γn,∆n ` e′n : τ ′n. But then by
Lemma 10 we have that Γn,∆n ` E[e′n] : τn where (∆n, τn) ≤ (∆, τ) for some τn,
obtaining the result. ut

Finally, our main result follows easily by Type Preservation.

Theorem 2 (Type Safety) If (e0, h0) : τ0 ◦ ∆ is valid then it is not the case that
(e0, h0)→? (fail, h1) for some h1.

Proof The result follows by Theorem 1, since fail is untypable. ut

6 Type Checking

We now define a type checking algorithm that is demonstrably sound with respect to
the logical system. We also conjecture, though do not prove, that it is complete. We
break up this task into subcomponents, one is the realization of the subtyping relation
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as an algorithm, and the other is the same for typing judgements. We note that any
sort of type unification or constraint solution is unnecessary, since ours is inherently a
type checking, not reconstruction, system.

6.1 Algorithmic Subtyping

To define a subtyping algorithm we mostly follow a technique invented in previous
work on bounded existential type checking [22]. We begin by defining type promotion,
whereby structure can be imposed on type variables by relating them to their least
structured upper bound in a given ∆. This function is useful during type checking
(Fig. 15) to convert type variables to structured types for syntax direction of the
algorithm; it is not used by the subtyping algorithm itself.

Definition 14 The relation � promotes a type variable to the structured type which
is its lub given a coercion:

∆ ` ∆(t)� τ

∆ ` t� τ

¬∃t.τ = t

∆ ` τ � τ

Next, we define a relation ∆ `W τ 4 τ ′ which is the algorithmic version of sub-
typing. The derivation rules for the relation are given in Fig. 14. This relation in fact
subsumes the algorithmic subtyping relation defined in [22] with trivial extensions to
accomodate code types; we may therefore use their main result, which equates the
logical and algorithmic subtyping relations:

Lemma 19 (Equivalence of Algorithmic and Logical Subtyping) ∆ `W τ 4 τ ′

iff ∆ ` τ 4 τ ′.

It is also easy to see that promotion is subsumed by the algorithmic subtyping relation,
hence we can assert the following:

Lemma 20 ∆ ` τ � τ ′ implies ∆ `W τ 4 τ ′.

Finally, we note that in type checking we take Π and ∃ types to be equivalent up to
α-renaming, so implementations of the algorithmic subtyping relation must perform ex-
plicit α-renaming when checking subtyping of these forms. But this is straightforward,
and it is easy to implement this relation, so we have:

Lemma 21 The relation ∆ `W τ 4 τ ′ induces a decision procedure: there is an
algorithm which given ∆, τ and τ ′ returns true if ∆ `W τ 4 τ ′ and false otherwise.

6.2 Algorithmic Type Derivation

We here define an algorithmic typing relation Γ,∆ `W e : τ that defines an algorithm
which given Γ , ∆, and e, returns a type τ , such that Γ,∆ `W e : τ implies Γ,∆ ` e : τ .
We begin with relevant definitions, and then discuss type checking as a sort of normal-
form type derivation.

In the computation of any type checking judgement Γ,∆ `W e : τ , our strategy is
to pass Λ-defined coercions down via ∆, and return extruded tlet-defined coercions up
via existential bindings in the type τ . Because there may be multiple such bindings,
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ConstW
Γ,∆ `W c : ty(c)

VarW
Γ (x) = τ

Γ,∆ `W x : τ

TypeW
Γ,∆ `W τ : type[τ ]

AppΠW
Γ,∆ `W e : ∃∆′.ς ∆;∆′ ` ς � Πt 4 τ ′′.τ ′ ∆;∆′ `W τ 4 τ ′′

Γ,∆ `W e τ : ∃∆′.(τ ′[τ/t])

AppW
Γ,∆ `W e1 : ∃∆1.ς1
Γ,∆ `W e2 : ∃∆2.ς2

∆;∆1;∆2 ` ς1 � τ ′ → τ ∆;∆1;∆2 `W ς2 4 τ ′

Γ,∆ `W e1e2 : ∃∆1;∆2.τ

AbsW
Γ ;x : τ,∆ `W e : ∃∆′.ς

Γ,∆ `W λx : τ.e : ∃∆′.τ → ς

AbsΛW
Γ,∆; t 4 τ `W e : τ ′

Γ,∆ `W Λt 4 τ.e : Πt 4 τ.τ ′

CodeW
peel(Γ |fv(e)),∆ `W e : ∃∆′.ς

Γ,∆ `W 〈e〉 : ∃∆′.〈·ς·〉

RunW
Γ,∆ `W e : ∃∆′.ς ∆;∆′ ` ς � 〈·τ ·〉

Γ,∆ `W run e : ∃∆′.τ

LiftW
Γ,∆ `W e : ∃∆′.ς

Γ,∆ `W lift e : ∃∆′.〈·ς·〉

CastW
Γ,∆ `W e : τ ′

Γ,∆ `W (τ)e : τ

LetW
Γ,∆ `W e1 : ∃∆1.ς1 Γ ;x : ς1,∆;∆1 `W e2 : τ

Γ,∆ `W let x = e1 in e2 : ∃∆1.τ

TLetW
Γ,∆ `W e : ∃∆′.ς

∆;∆′ ` ς � type[τ ′′] ∆;∆′ `W τ ′′ 4 τ ′ Γ,∆; t 4 τ ′ `W e′ : τ

Γ,∆ `W tlet t 4 τ ′ = e in e′ : ∃∆′.∃t 4 τ ′.τ

Fig. 15 Type Checking Rules

we make heavy use of the syntactic sugaring ∃∆.τ specified in Definition 7. It is also
important to distinguish structured types from existential types in the definition of the
algorithm:

Definition 15 We let ς range over structured types, i.e. any type not of the form
∃t 4 σ.τ .

Thus, every type checking judgement is in fact of the form Γ,∆ `W e : ∃∆′.ς, with ∆′
containing extruded type coercions. It will often be necessary to append these extruded
coercions to top-level coercions, both in the computation of subtypes and also in the
course of proving soundness. Hence we define coercion append as follows:

Definition 16 Letting ∆ = ∅; t1 4 τ1; . . . ; tn 4 τn, we define ∆′;∆ , ∆′; t1 4
τ1; . . . ; tn 4 τn.

Further, in order to move between code levels in static typing, we define a function
peel as follows:

Definition 17 The function peel removes a layer of code type from an environment:

peel(∅) = ∅
peel(Γ ;x : 〈·τ ·〉) = peel(Γ );x : τ
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Note that peel(Γ ) is defined only if all bindings in Γ are of code type, and if peel(Γ )

is defined then 〈·peel(Γ )·〉 = Γ .

Also, when moving between code levels, it is desirable to isolate only those variables
that occur free within a deeper level (which must have code type). Hence:

Definition 18 We write Γ |{x1,...,xn} to denote the environment Γ ′ where dom(Γ ′) =

{x1, . . . , xn} and Γ ′(x) = Γ (x) for all x ∈ {x1, . . . , xn}.

Type derivation rules for the algorithmic system are given in Fig. 15; the reader
will observe that these rules are entirely syntax-directed. Given the above definitions,
and also decidability of subtyping as noted above, the syntax-directed nature of type
checking immediately implies decidability of type checking:

Lemma 22 (Decidability of Type Checking) Relation Γ,∆ `W e : τ induces
a decision procedure: there is an algorithm which given Γ , ∆, and e produces τ if
Γ,∆ `W e : τ , and fails otherwise.

6.2.1 Type Checking as Normal Form Derivation

As discussed above, type judgements in our system are of the form Γ,∆ `W e : ∃∆′.ς
where Γ keeps track of type binding annotations on term abstractions, ∆ keeps track
of type binding annotations on type abstractions, and ∆′ contains extruded typing
assumptions for tlet-bound variables within e. This latter trick distinguishes the two
type binding forms and allows tlet-bound variables to be “percolated upwards”, while
Λ-bound variables are passed downwards. It is sound, since in the logical typing rules
any syntax-directed rule can be preceded by an instance of ∃-Elim and followed by an
instance of ∃-Intro to replay the strategy.

Indeed, while the type checking rules are syntax-directed, it is illuminating to think
of them as a normal form logical derivations, incorporating implicit uses of ∃-Elim and
∃-Intro. From this perspective, implicit instances of ∃-Elim occur before every point
where subtyping is checked or used in the form of promotion. The point where non-
trivial ∃-Intro implicitly occurs is at the point of Λ abstraction. By non-trivial here
we mean where the resulting existential type becomes the subterm of another type,
not a form that can be immediately eliminated. This is essential for soundness, since
Λ-bound type variables can occur within the upper bounds of tlet-bindings within
their scope. This results in a restricted type form, where all Π types in type inference
are of the form Πt 4 τ.∃∆.τ ′, and occurrences of t in ∆ are instantiated appropriately
when Π types are applied. As already noted in Sec. 3.3.1, this is equivalent to the type
form presented in a preliminary version of this paper [33].

6.3 Soundness of Type Checking

Now we prove that type checking is sound with respect to the logical system that
was shown to enjoy type safety. In the course of this presentation we will refine the
algorithm slightly to ensure consistency of typing coercions during computation. In par-
ticular, note that when computing types for expressions with multiple subexpression,
the computation of each subexpression type will return an existential type carrying
assumptions about type variables within the subexpressions. These assumptions need
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to be “fused” and percolated upward for the type computation of the root expression;
therefore the assumptions must be consistent. We begin by formalizing an adequate
notion of coercion consistency as follows:

Definition 19 Coercions ∆ and ∆′ are consistent, written ∆ ./ ∆′, iff t ∈ Dom(∆)∩
Dom(∆′) implies ∆(t) = ∆(t′).

In order to demonstrate soundness, we first show that the strategy of reconstructing
coercions from leaves towards the root in typing derivations, checking consistency, is
fundamentally sound wrt the logical system, as follows. Both stated properties hold
by a straightforward induction on derivations; consistent weakening of coercions is
monotonic wrt subtyping derivability.

Lemma 23 (Coercion Weakening) Given ∆ ./ ∆′, both of the following properties
hold:

1. ∆ ` τ 4 σ implies ∆;∆′ ` τ 4 σ

2. Γ,∆ ` e : τ implies Γ,∆;∆′ ` e : τ

When proving soundness we will typically make multiple applications in a row of either
∃ introduction and elimination in the logical system, so we introduce shorthand to
simplify this part of the presentation.

Definition 20 We add to the logical type system the following sound sugarings for
sequences of existential intros and elims:

∃-Intro*
Γ,∆;∆′ ` e : τ ′

Γ,∆ ` e : ∃∆′.τ ′

∃-Elim*
Γ,∆ ` e : ∃∆′.τ ′

Γ,∆;∆′ ` e : τ ′

Next we must establish some sanity and hygiene conditions on type checking inputs
and results. In the logical system we defined well-formedness of judgements, whereas
a priori we impose well-formedness conditions only on inputs to type checking; type
soundness will demonstrate that well-formedness of the resulting judgement is obtained
by the algorithm. We note that at the top level these conditions are trivially satisfied
given a closed expression and an empty environment and coercion; they are subse-
quently maintained as a representation invariant during computation.

Definition 21 The tuple (∆,Γ, e) is well-formed iff each of the following properties
hold:

1. (∆,Γ (x)) is well formed for all x ∈ Dom(Γ )

2. ftv(e) ⊆ Dom(∆)

3. All tlet− and Λ-bound variables in e are not in Dom(∆).

Proving type soundness requires to observe that well-formedness of coercion, type pairs
is preserved by algorithmic subtyping:

Lemma 24 If (∆,σ) is well-formed and ∆ `W σ 4 τ then (∆, τ) is well-formed.

Finally, we refine the type checking algorithm slightly with hygiene conditions that
will ensure consistency of coercions returned by the algorithm. Although α-renaming
of Λ- and tlet-bound terms will ensure “freshness” of those variables, type annotations
on λ-bound variables, type casts, and type assigments in the environment may mention
∃-bound types as well. The following hygiene condition will ensure the consistency of
returned coercions.
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Definition 22 The notion of a hygienic type is defined inductively as follows: any
structured type ς is hygienic, and ∃t 4 σ.∃∆.ς is hygienic iff ∃∆.ς is and t ∈ Dom(∆)

implies ∆(t) = σ.

A check for this hygiene condition is easily implemented and incorporated into a type
checking implementation. To increase efficiency we observe that such a check need not
be performed at every step of type checking, but rather at strategic points; hygiene is
maintained by the so-called canonical algorithm as demonstrated by type soundness:

Definition 23 A judgement of the form Γ,∆ `W e : ∃∆′.ς where ∃∆′.ς is hy-
gienic and ∆ ./ ∆′ is called hygienic. An algorithmic derivation is canonical iff the
consequent of any instance of the following inference rules it contains is hygienic:
ConstW,VarW,AppΠW,AppW, RunW,CastW, TletW.

Now the pieces are in place to demonstrate our main result for type checking,
which follows by induction on derivations. The statement of the result mentions well-
formedness and hygiene conditions so that the induction hypothesis is sufficiently
strengthened to obtain validity, not just derivability, of the analagous derivation in
the logical system.

Lemma 25 (Soundness of Type Checking) Given well-formed (∆,Γ, e), if the
judgment Γ,∆ `W e : τ is canonically derivable, then it is hygienic with (∆, τ) well-
formed and Γ,∆ ` e : τ is valid.

Proof The result follows by induction on the derivation of Γ,∆ `W e : τ and case
analysis on the last step thereof.
Case AppΠW. In this case by definition of type checking we have e = e′σ and τ =

∃∆′.τ ′[σ/t], where by inversion of the last step there exist derivable judgements of the
following form:

Γ,∆ `W e′ : ∃∆′.ς ′ ∆;∆′ ` ς ′ � Πt 4 τ ′′.τ ′ ∆;∆′ `W σ 4 τ ′′

Since (Γ,∆, e′) must be well-formed, therefore by the induction hypothesis we may
assert validity of Γ,∆ ` e′ : ∃∆′.ς ′, and ∆;∆′ ` ς ′ 4 (Πt 4 τ ′′.τ ′) by Lemma 20
and Lemma 19. Also by the induction hypothesis we have that (∆, ∃∆′.ς ′) is well-
formed, hence ∆;∆′ is closed. Therefore the following valid derivation fragment can be
constructed3:

Γ,∆ ` e′ : ∃∆′.ς ′

Γ,∆;∆′ ` e′ : ς ′ ∃-Elim* ∆;∆′ ` ς ′ 4 (Πt 4 τ ′′.τ ′)

Γ,∆;∆′ ` e′ : Πt 4 τ ′′.τ ′ Sub

But we have also ∆;∆′ ` σ 4 τ ′′ by Lemma 19, so the following can be constructed:

Γ,∆;∆′ ` e′ : Πt 4 τ ′′.τ ′ ∆;∆′ ` σ 4 τ ′′

Γ,∆;∆′ ` e′σ : τ ′[σ/t] AppΛ
Γ,∆ ` e′σ : ∃∆′.τ ′[σ/t] ∃-Intro*

Finally, we have that (∆;∆′, Πt 4 τ ′′.τ ′) is well-formed by Lemma 24, so that also
(∆;∆′, τ ′[σ/t]) is well-formed since ftv(σ) ⊆ Dom(∆) by assumptions of the Lemma.
Since Γ,∆ `W e : τ is hygienic by definition in this case, the result follows.

3 Operative rules label consequents in all reconstructed derivation fragments.
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Case TLetW. In this case we have e = (tlet t 4 σ = e0 in e1) and τ = ∃∆0.t 4 σ.τ1,
where by inversion we have:

Γ,∆ `W e0 : ∃∆0.ς ∆;∆0 ` ς � type[σ′] ∆;∆0 `W σ′ 4 σ

Γ,∆; t 4 σ `W e1 : τ1

Now, by the induction hypothesis we have that Γ,∆ ` e0 : ∃∆0.ς is valid, and ∆;∆0 `
ς 4 type[σ′] by Lemma 20 and Lemma 19. Also by the induction hypothesis we have
that (∆,∃∆0.ς) is well-formed so ∆;∆0 is closed. And ∆;∆0 ` σ′ 4 σ by Lemma 19,
wence we can construct the following valid derivation fragment:

Γ,∆ ` e0 : ∃∆0.ς

Γ,∆;∆0 ` e0 : ς ∃-Elim* ∆;∆0 ` ς 4 type[σ′]

Γ,∆;∆0 ` e0 : type[σ′] Sub
∆;∆0 ` type[σ′] 4 type[σ]
Γ,∆;∆0 ` e0 : type[σ] Sub

Now, since Γ,∆ `W e : τ is hygienic by construction in this case, therefore also
∃∆0.∃t 4 σ.τ1 is hygienic. Since t 6∈ Dom(∆) this means that ∆; t 4 σ ./ ∆0. And
since ftv(σ) ⊆ Dom(∆) by well-formedness therefore ∆;∆0; t 4 σ is closed, so by the
induction hypothesis and Lemma 23 we have that Γ,∆;∆0 ⊕ t 4 σ ` e1 : τ1 is valid.
Hence the following derivation fragment can be constructed:

Γ,∆;∆0 ` e0 : type[σ] Γ,∆;∆0 ⊕ t 4 σ ` e1 : τ1

Γ,∆;∆0 ⊕ t 4 σ ` tlet t 4 σ = e0 in e1 : τ1 TLet

Γ,∆ ` tlet t 4 σ = e0 in e1 : ∃∆0.t 4 σ.τ1 ∃-Intro*

The result follows in this case.
Case AppW In this case e = e1e2 and τ = ∃∆1;∆2.τ1, where by inversion we have:

Γ,∆ `W e1 : ∃∆1.ς1 ∆;∆1 ` ς1 � τ0 → τ1 Γ,∆ `W e2 : ∃∆2.ς2

∆;∆1;∆2 `W ς2 4 τ0

By the induction hypothesis both Γ,∆ ` e1 : ∃∆1.ς1 and Γ,∆ ` e2 : ∃∆2.ς2 are
derivable and ∆;∆1;∆2 is closed, and clearly ∆1;∆2 = ∆2;∆1 since τ is hygienic.
Also, both ∆;∆1;∆2 ` ς1 4 τ0 → τ1 and ∆;∆2;∆2 ` ς2 4 τ0 are valid by Lemma 20
and Lemma 19. The following derivation fragments can therefore be constructed by
Lemma 23:

Γ,∆;∆2 ` e1 : ∃∆1.ς1

Γ,∆;∆1;∆2 ` e1 : ς1 ∃-Elim* ∆;∆1;∆2 ` ς1 4 τ0 → τ1

Γ,∆;∆1;∆2 ` e1 : τ0 → τ1 Sub

Γ,∆;∆1;` e2 : ∃∆2.ς2

Γ,∆;∆1;∆2 ` e2 : ς2 ∃-Elim* ∆;∆1;∆2 ` ς2 4 τ0

Γ,∆;∆1;∆2 ` e2 : τ0 Sub

Γ,∆;∆1;∆2 ` e1 : τ0 → τ1 Γ,∆;∆1;∆2 ` e2 : τ0

Γ,∆;∆1;∆2 ` e1e2 : τ1 App

Γ,∆ ` e1e2 : ∃∆1;∆2.τ1 ∃-Intro*
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Since (∆;∆1;∆2, τ0 → τ1) is well-formed by Lemma 24, the result follows in this case.
Case AbsΛW. In this case e = Λt 4 τ.e′ and τ = Πt 4 σ.τ ′, where we have Γ,∆; t 4
σ `W e′ : τ ′ by inversion. But t 6∈ Dom(∆) by well-formedness, hence by the induction
hypothesis Γ,∆⊕ t 4 σ ` e′ : τ ′ is derivable, with (∆; t 4 σ, τ ′) well-formed. But then
(∆,Πt 4 σ.τ ′) is clearly well-formed, and Γ,∆ ` Λt 4 τ.e′ : Πt 4 σ.τ ′ is derivable by
an instance of App, so the result follows in this case.

The remaining cases follow in a relatively straightforward manner by the induction
hypothesis. ut

7 A Programming Example

In this section, we use WSN programming as a case study to demonstrate how 〈ML〉
supports programming practice. Our focus here is on highlighting the crucial need for
type specialization in staged programming. Existing staged programming systems often
focus on how to pre-execute code as much as possible at a meta-stage so that code for
object-stage execution has the shortest computation time. This philosophy however
does not always work well for sensor networks, as shortening computation time alone
has a limited effect on the primary issue faced by WSNs – sensor energy consumption.
It has been shown in experiments that the energy consumed by transmitting one bit
over the radio is equivalent to executing 800 instructions [35]. Thus, given e.g. a radio
communication function that is going to be executed on the a sensor node, the way
to significantly improve system efficiency is not to shorten the code of the function,
but to minimize the bandwidth it would consume by shortening the size of the packet
transmitted by the radio.

The example we present in this section fleshes out this observation. If we can
specialize the type of a node address so that its representation requires the least possible
amount of bits – say uint4 rather than uint64 – we are saving 56 bits of each radio
send, so the net of energy saved is equivalent to saving 56 * 800 = 44,800 instructions,
for each radio packet transmission. Now, if in a particular network deployment we know
there is no need for a sensor node to communicate with more than 16 neighbors due to
some address assignment or neighborhood discovery protocol, we can assign a uint4
type to represent addresses, rather than uint64, and save radio power.

We will use some language constructs beyond the 〈ML〉 formal core in the example,
including for loops and arrays; adding these features is not difficult technically and
clarifies the presentation. The code will also assume the user-defined constant types
include uint4 subtype of uint8 subtype of uint16, and so on, and that all of these
integer constant forms are a subtype of uint. We allow tlet syntax to be used here
without any upper bound on the variable, in which case the upper bound can be taken
to be the same as the type of the expression bound to the variable.

The rest of the section describes the example in more detail. Code snippets are
found in Fig. 16 and Fig. 17. Fig. 16 illustrates a type-specializable program for inter-
mote packet send, and is described in Sections. 7.1-7.3. Fig. 17 contains hub code for
the entire deployment process, and is described in Section. 7.4. The code here is only
a small part of a full-fledged application, since packet receiving, mote synchronization,
low-level hardware control, and other features are missing.
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radio = Λ addr_t 4 uint.
Λ dlen_t 4 uint.
Λ msg_t 4 {header : {dest : addr_t}; data : uint8[dlen_t]}.
λ msg : 〈·msg_t·〉.

〈 . . . prepare packets and physically send msg based on msg_t . . . 〉

FLEN = uint4
send = λ parity : bool.

Λ addr_t 4 uint.
λ self : 〈·addr_t·〉.
λ other : 〈·addr_t·〉.
Λ dlen_t 4 uint.
λ d : 〈·uint8[dlen_t]·〉.

tlet hd_t = {src : addr_t; dest : addr_t} in
tlet ms_t = {header : hd_t; data : uint8[dlen_t]} in

tlet ml_t =
{
header : hd_t; data : uint8[dlen_t];
footer : uint8[FLEN]

}
in

if (parity)

radio addr_t dlen_t ml_t

〈 let ft = . . .CRC algorithm on d . . . in header = {src = self; dest = other};
data = d;
footer = ft


〉

else

radio addr_t dlen_t ms_t
〈{

header = {src = self; dest = other};
data = d

}〉

D_BD = uint8
mote = λ parity : bool.

Λ addr_t 4 uint.
λ self : 〈·addr_t·〉.
λneighbors : addr_t[].
λneighbor_num : uint16.

let c = ref 〈0〉 in
for(uint16 i = 0; i < neighbor_num; i++){

let addr = lift neighbors[i] in
let sendf = send parity addr_t self addr in
let pl = payload i in
tlet dlen_t 4 D_BD = if (pl.size < 16) then uint4 else D_BD in
c := seq !c (sendf dlen_t (uint8[dlen_t])pl.content)

}; !c
seq = λx : 〈·>·〉.λy : 〈·>·〉.〈x; y〉

Fig. 16 Code Snippet for Mote Code Specialization

7.1 A Specializable “Radio” Snippet

In the standard TinyOS sensor network platform [26], the message type message_t has
the following format:

typedef struct message_t {
uint8 header[sizeof(message_header_t)];
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uint8 data[TOSH_DATA_LENGTH];
uint8 footer[sizeof(message_footer_t)];
uint8 metadata[sizeof(message_metadata_t)];

} message_t;

It contains a payload field data – the underlying data – together with network
control information, including the header, the footer, and the metadata. The header
in turn has the following type, where the flag field contains control information, and
dest and src are destination and source addresses respectively:

typedef struct message_header_t {
uint8 flag;
uint64 dest;
uint64 src;

} message_header_t;

Any radio communication function that uses type message_t for messages will not
necessarily be efficient. For example, 64-bit addresses are hardcoded inside this data
structure; the length of data is fixed to TOSH_DATA_LENGTH; the message is required to
carry fields such as footer even when there are times that they may carry no useful in-
formation. 〈ML〉 can effectively avoid these situations. A more flexible implementation
of the radio function in Fig. 16 allows programmers to

– customize the type addr_t, used to represent the addresses
– customize the type dlen_t, used to represent the length of the data; as our core cal-

culus does not have refined singleton integer types, the example here uses notation
such as uint8[uint4] to represent an array of size 16.

– customize the type msg_t, used to represent the format of the packet

Note that the radio function here is different from a standard systems programming
function that encapsulates the radio communication logic. It is a staged function that
returns a piece of first-class code which in turn encapsulates the communication logic.
The body of this piece of code prepares memory layouts and radio communication logic
based on msg_t ; a more customized message format (including address format, and
data length) can positively contribute to power savings when motes are running after
specialization. All three types are abstracted, and eventually will be instantiated at the
meta-stage with the most efficient concrete types. Type msg_t is given a type bound
of a record type with at least a header field with a destination address dest inside, and
a data field with length dlen_t.

7.2 A Specializable “Send” Utility

Type specialization over radio is illustrated by function send. Overall, send is a “mes-
sage assembler” – given message fragments such as data d, source address self, destina-
tion address other, and a boolean parity bit indicating whether a CRC-style footer is
needed, the function assembles the messages into a record, and sends it to the under-
lying radio function. Like radio, send is also a staged program, in the sense that the
function is meta-stage code which builds object stage code able to send a particular
customized form of message through radio communication.

The bulk of this program centers on whether a footer field is needed for the message.
If parity is set to be true, a footer is calculated. Note that at the execution of send,
argument d is only a piece of code which at object stage will turn into byte-array data.
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It is thus necessary that the entire CRC algorithm is part of the object stage execution
as well, enclosed in the 〈. . .〉 bracket. Observe that at specialization time, any subtype
of the type bound for msg_t in radio can be applied. Both mts and mtl are such
subtypes: the first has an additional dest field, and the second has both an additional
footer field as well as a dest field.

The addr_t and dlen_t types in the radio function are also specialized, by real
arguments of the same in the send function. The two arguments in turn are passed in to
send, meaning send can be further specialized. Note that as a result of the dependency
of ml_t (or ms_t) over addr_t and dlen_t corresponding to the dependency specified
by the signature of radio, both type specializations typecheck.

7.3 A Specializable Toy Program on Motes

The send code we have described is a “utility” function that could be used in a full
application deployed to the motes by the hub. We now define a complete toy mote
application, as mote in Fig. 16. The program just sends a beacon broadcast message
to the mote’s 1-hop neighbors. This example is constructed to showcase the power
of staged programming in two aspects: loop unrolling and data length specialization,
which we describe now.

As a specializable staged function, mote allows the neighbor information of a mote
to be specialized, including the entire neighbors array, and the number of neighbors
neighbors_num. What this implies is the definition allows the neighbor information to
be “hardcoded”. Supporting hardcoding of neighbor information may seem unintuitive,
especially in a dynamic environment like sensor networks, where neighbor information
is previously not known before physical deployment. The rationale here is to promote
the potential for memory savings for the case where the number of neighbors is known
when mote is specialized. As a result, rather than allocating the array neighbors in
(scarce) mote memory, loop unrolling can be performed before the code is deployed.
This can be illustrated in the body of the mote function. Here, the mote intends to
send a beacon message to all neighbors one by one4. Note that the for loop is executed
at the meta-stage, and the neighbors array does not exist at the object stage at all.
Auxiliary binary function seq pieces code together via statement sequencing.

The mote here further demonstrates the ability to specialize on data field length.
In this toy example, let us assume function

payload :: uint16→ {content : uint8[D_BD]; size : D_BD}

is able to pre-compute the payload information given a node ID (the argument of the
function). In the return value, the real data is stored in field content and the size of
data is in field size. Type constant D_BD is the bound of the data size; in the example, it
is set to uint8, meaning the data is maximally 256 bytes. Here if the payload content
turns out to be shorter than 16 bytes, a more compact message format is used by
specializing the send function with dlen_t. Here the tlet expression is used to compute
dlen_t. Unlike previous uses of tlet expressions that are nothing but convenient type
abbreviations which could have been inlined, the tlet expression plays a critical role in

4 In real-world WSN programs, 1-hop broadcasting does not need to specify a destination
address. The example here is used to demonstrate language features, and in the real world, this
programming pattern is still useful when polling all neighbors one by one with neighbor-specific
requests.



39

NODE_NUM = 0xFFFF;
main = let tp = topology () in

let ctp = coloring tp in
for(uint16 i = 0; i < NODE_NUM; i++){

let cnum = tp[i].nsize in
tlet addr_t 4 uint16 = if (cnum <= 0xF) then uint4

else if (cnum <= 0xFF) then uint8
else uint16 in

let p = (noiseRate () > 0.5) in
let self = lift (addr_t)(ctp[i].color) in
let nb = ctp[i].cneighbors in
run (mote p addr_t self nb cnum)
}

Fig. 17 Bootstrapping Code for Hub

the fundamentally dynamic nature of dlen_t: the latter is given the bound D_BD, but
its concrete value is unknown until run time.

Process separation is illustrated here with use of lift to move the value of a meta-
stage destination address to the object stage, via the lift neighbors[i] expression.

7.4 A Metaprogram on the Hub

With a specializable mote code mote defined, Fig. 17 gives the bootstrapping code to
be executed on the hub, with the primary goal of specializing the code produced by
mote and deploying it. The general idea here is the hub will first execute function

topology :: ()→ node_t[NODE_NUM]

where

node_t =


id : uint64;
neighbors : uint64[NODE_NUM];
nsize : uint16


to obtain the global connectivity graph of the initially deployed sensor network, and
store the result in a hub data structure (the tp variable in the example). We omit the
definition of this function here. The only implementation detail that is related to the
discussion here is the computed graph is represented as an array, each element of which
stores the network-layer identifier represented as an eight-byte integer (the id field),
the network-layer identifiers of its neighbors (the neighbors field), and the number of
neighbors (the nsize field). This data structure may be large, but note that it is kept
on the hub only – a resource-rich computer. Next, the hub invokes an effectful function

coloring :: node_t[NODE_NUM]→ cnode_t[NODE_NUM]

where

cnode_t =
{
color : uint16;
cneighbors : uint16[NODE_NUM]

}
to color the topology graph. The idea here is that sensors only talk to their immediate
neighbors, so the unique addresses needed are the number of colors computed by the
classic n-coloring algorithm to guarantee adjacent nodes are rendered with different
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colors. We omit this classic algorithm here, and only note that the function computes
an array that index-wise aligns with its argument array, with each element recording
the color computed by the coloring algorithm (the color field), and the neighbors as
represented in colors (the cneighbors field). The color is represented as a uint16 integer,
as in the worst case the number of colors is the same as the number of nodes.

The primary goal of specialization is to specialize the type of addresses. This is
illustrated by addr_t, which can be either uint4, uint8, or uint16 based on the number
of neighbors a particular mote has, as indicated by cnum. The tlet expression is again
used to compute the addr_t type that is more compact for the specific deployment
environment. Just like the previous dlen_t example, the concrete value of addr_t
is unknown until run time. Auxiliary function noiseRate (omitted here) is used to
compute the environmental noise levels, to determine whether parity is needed or not.

Finally, the run expression deploys and bootstraps the specialized code (mote p
addr_t self nb cnum) on motes. Note that we do not support location information in
the calculus, so the run will not necessarily run the code on a mote, only in a different
deployment context. Including mote location in run is left to future work.

8 Related Work

While this paper contains several novel contributions such as the combination of F≤ and
λ−ω for staging and the use of SPS in the sensor programming context, it builds on many
threads of related work. The general topic of type specialization and program staging
as a means to obtain program efficiency is a common theme across many projects in the
program staging and partial evaluation literature. Several authors have explored the
interaction of program staging and type dependence to support compiler construction
[5] and interpreters [45]. Also related is work on program generation formalisms for
compiler construction that leverage first-class types and intensional polymorphism [14].
Tempo [11] is a related system that integrates partial evaluation and type specialization
for increasing efficiency of systems applications. Perhaps the system most closely related
to ours is Monnier and Shao’s [40], where type abstraction as a language construct is
supported in a staged program calculus albeit following a standard System F≤ style
(i.e. it lacks any λω dimension of expressiveness). Kameyama et al. have studied staging
in the presence of side effects as a way to optimize algorithms that exploit mutation
[28]. Moggi and Fagorzi have established a monadic foundation for integrating staging
with arbitrary side effects in a general and mathematically rigorous fashion [38].

Type-safe code specialization has been the focus of MetaML [56,39] and its more
recent and robust implementation, MetaOCaml [54]. MetaML also enjoys type safety
results of the sort presented here [52]. On a foundational level, the problem of how to
represent code of one stage in another stage has been studied in various formalisms,
such as modal logic [15], higher-order abstract syntax [58], and first-order abstract
syntax with de Bruijn indices [9]. One particular technical issue that has triggered many
recent developments in this area is known as the “open code” problem. As we described
in Sec. 2.2, our calculus does not support arbitrary escape expressions, and so the
open code problem does not arise in our system, simplifying our formal development.
The added expressiveness of MetaML here comes at the price of having to deal with
significant additional type system complexities [42,9,6,55]. We have thus far not found
this added expressiveness useful for sensor network programming.
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MetaML has also been promoted as an effective foundation for embedded systems
programming [51]. The GeHB language is a proposal for a type-safe two-stage language
for programming embedded systems [53]. The focus of this work is on how resource
bounds can be guaranteed for the embedded systems code via a type system. The
work in [29] also shows how type-safe staged programming can be effectively applied
to circuit generation languages, and other recent work shows the utility of staging for
programming hardware descriptions [23,47]. While these works do not directly overlap
with ours, they provide additional supporting evidence of the utility of the general
approach.

Parametric customization of type annotations is widely used today; examples in-
clude C++ templates and Java generics. The formal foundations for Java generics are
the parametric type systems System F and F≤ [8], and our parameterized type syntax
over an underlying subtyping relation is similar. All of these systems however do not
treat types as first-class values like we do, and this significantly limits their usefulness
in the application domain we focus on here.

Module systems are primarily designed for separate compilation and sound linking
[7] – goals we are not focusing on here – but there are nonetheless some structural
analogies between our work and module systems. 〈ML〉 is most closely related to module
systems supporting both types and values as module components [24,34,32,18] since
we analogously support types as data in our meta-stage. A “module” entity in our
language is approximately equivalent to meta code of the form:

tlet ty = τ in {sometype = ty ; 〈{somefun = . . . ; somestate = ref . . .}〉}

There is a well-known implicit staging of module definitions into compile-time and
run-time components of composition [24], and that staging is explicit in 〈ML〉. This
can be seen in the above example, where the type portion is at the meta-stage and the
non-type portion 〈. . .〉 is at the object stage (but can refer to the type ty by our scoping
rules). A “functor”-like object in 〈ML〉 is simply a meta-code λ-abstraction taking and
returning such an entity. More explicit staging could potentially be a useful approach
for future module system designs; for example, some of the thorny technical problems
in module system designs [31,16,16] arise from implicit cross-stage interactions.

The notion of type computation is expressed in pure form in λω, which is a calculus
formalized as part of the λ cube [2] and allows types to depend on types. In λω, type
constructors are endowed with a semantics that is essentially a simply typed λ calculus
over types-as-expressions. Both the Calculus of Constructions [12] and Martin Löf type
theory [37] subsume λω, thus so do the Coq [13] and Agda [3] frameworks which are
derived from these respective theories. Coq and Agda are on the cutting edge of lan-
guage theory and practice, and thus illustrate the usefulness of type computations. Our
application space only needs a first-order form of λω that we term λ−ω , and both Coq
and Agda subsume expressivity we do not consider here, in particular type dependence
(formalized on the λ cube as λP ). Also, Coq and Agda are functional languages which
are arguably too far from the imperative core needed for systems programming. Note
that recent work such as Ynot [43] has helped bridge this gap, and we believe that
incorporating program specifications in a Coq or Agda style is an interesting direction
for future work. A number of recent advances related to type dependence in practice
would support and inspire such an effort [59,10,4,19]. Runtime type information has
been successfully used for the special case of a decidable type system for specializing
types of polymorphic functions [25], and while we are performing a different kind of
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type specialization this work shares with our work the desire to push the frontiers of
decidable type systems using runtime type information.

Many staging frameworks allow types to be customized, but the output of the cus-
tomization needs to be re-type-checked from scratch and so does not have the level of
type safety that we have; two examples of this are the C++ template expansion and
Flask, the latter which we now cover. Flask [36] applies metaprogramming to sensor
networks. The main motivation of designing Flask is to allow FRP-based [57] stream
combinators to be pre-computed before sensor networks are deployed. The key con-
struct of Flask is quasi-quoting, which in essence is MetaML’s stage operator <e>
combined with an escape operator ~e. Since pre-computing stream combinators is the
main goal of Flask, the focus of our language – computing and checking precise type
annotations inside the object stage code at meta stage – is not a topic they focus on.
In particular, at the Flask meta stage a monadic encoding is used to perform dynamic
type checking of residual object code, in contrast to 〈ML〉 where object code enjoys
static type safety at the meta stage. Also, Flask is a “macroprogramming” language,
where global network behavior is specified in code, and node-level behavior is then de-
duced and encoded by the compiler. In contrast, our system is intended for “micropro-
gramming”, i.e. direct programming of individual nodes, albeit with the programmatic
orchestration capabilities of metaprogramming.

9 Conclusion

This paper has shown how the combination of type genericity and subtyping à la
System F≤, extended with a limited form of type computation à la λω, yields important
improvements in expressiveness for staged programming. The particular example we
focus on here is the case of wireless sensor network programming; in that scenario there
is no need for complex cross-stage persistence (CSP); instead, a model of staged process
separation (SPS) is more relevant and appropriate. We have demonstrated type safety
and soundness of decidable type checking for 〈ML〉, establishing a solid theoretical
foundation for our model.

The 〈ML〉 calculus only represents an exploration of concepts. As a next step, we
are interested both in porting the ideas presented here to more popular sensor net-
work languages such as nesC [21], and in directly implementing them in a functional
language setting. The second route may appear difficult since a functional language
with first-class functions and dynamic allocation generally has more runtime overhead
than typical sensor networks expect. But this is largely a non-issue for the meta-stage
of a staged programming language, because meta-stage code is always executed on
the resource-rich hub where efficiency is not a concern, and while here the hub and
mote programming languages are identical, there is no reason that this must be the
case. As for the specialized mote-stage code, there are precedent functional languages
such as Regiment [44] and Flask [36], designed for sensor networks. Competitive per-
formance can be achieved by placing restrictions on the mote language; for example,
only statically bounded recursion is allowed in Regiment.

Even though the design of 〈ML〉 was greatly influenced by sensor network pro-
gramming needs, the presentation here is a general-purpose staged calculus that can
be independently used for meta programming in cases where runtime type specializa-
tion and deployment are important. For this reason, the calculus leaves out language
abstractions that are needed for sensor network programming specifically. For instance,
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〈ML〉 does not contain distributed communication primitives, locality, concurrency, or
mechanisms to marshall data to bit strings. These features will be important when we
build a domain-specific language upon the foundation of 〈ML〉.
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