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Abstract—Accurate and real-time detection of precipitation
phases is essential for hydrological modeling, water resource
management, and climate impact assessments. However, con-
ventional methods struggle to distinguish precipitation phase
near freezing and are unsuitable for distributed deployment in
remote, complex terrain due to cost, size, and power constraints.
In this work, we present an integrated acoustic sensing system
that combines machine learning (ML) on the edge with acoustic
sensing and Mel-frequency cepstral coefficients (MFCCs)-based
feature extraction, all implemented on our designed edge device.
The device is low-cost, with LAN and WAN capabilities for
near real-time reporting and can integrate multiple sensors for
snow hydrology studies, in addition to detecting the precipitation
phase. We present the design, fabrication, and validation of
the Advanced Unified Rainfall and Atmospheric Monitoring
(AURA) system, integrating sensors for temperature, humidity,
ultrasonic snow depth, solar radiation, and wind velocity. AURA
features an embedded ML algorithm that enables accurate clas-
sification of precipitation phases. Short-time Fourier Transform
(STFT) and MFCCs are computed on the edge from recorded
precipitation acoustics via novel Mel filter bank computation
methods. Using support vector machine (SVM) and random
forest (RF) classifiers, the RF model achieves testing accuracy
of 97.35% on simulated precipitation acoustics and 85.67% in
consolidated class (CC) environmental recordings. The SVM
classifier achieves 98.07% accuracy on simulated acoustics and
85.99% on CC environmental recordings. The low-power AURA
network uses a long range (LoRa) star topology with time-
division multiple access (TDMA) and an Iridium gateway for
reliable data transfer from remote sites. Signal-to-noise ratio
(SNR) analysis and comprehensive field tests confirm and validate
system performance.
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I. INTRODUCTION

RECIPITATION phase partitioning is the classification of

various types of precipitation, such as rain, snow, sleet,
and hail, and the quantification of their respective contribu-
tions to the total amount of precipitation [1]. Identifying the
precipitation phase accurately is crucial in hydrology, climate
science, and water resource management, as it determines how
water is stored and released in a given environment [2]. With
climate change and its impacts on precipitation patterns [3] and
transformations into terrestrial water storage, accurately moni-
toring precipitation phase transitions is increasingly important
to assess flood and drought risks and predict long-term impacts
on regional and global water resources [4].

Current precipitation monitoring techniques rely on mete-
orological measurements and threshold methods [5], sophis-
ticated remote sensing and instruments such as laser and
radar disdrometers [6], microwave attenuation measurement,
and commercial wireless measurement systems [7]. Laser and
radar disdrometer networks are utilized to enhance spatial
resolution [8], [9]. Meteorological observation satellites offer
significant value, but their spatial and temporal resolutions
often do not meet the specific needs for high-resolution
monitoring [10]. Cui et al. [11] demonstrated that basin-scale
wireless sensor networks can estimate rain—snow transition
elevations. In mountainous or remote regions, where tra-
ditional methods suffer from coverage gaps and reduced
accuracy, there is a need for localized, real-time monitoring
systems.

Recently, acoustic detection in environmental monitoring
has gained significant attention due to its potential in various
applications such as acoustics, signal-based, and machine
learning (ML)-assisted rainfall and intensity detection [12],
[13], [14], [15], [16], [17], [18], as well as snow sensing
systems [19]. A widely used technique for analyzing acoustic
signals is the extraction of Mel-frequency cepstral coefficients
(MFCCs) as features.

MFCCs are features widely used in audio signal processing
that represent the short-term power spectrum of a sound,
based on a perceptual scale that mimics the human ear [20].
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Originally developed for speech recognition, MFCCs have
since been applied in a variety of acoustic classification tasks,
including environmental sound classification such as forest
soundscapes, animal vocalizations, acoustic snow sensing, and
wildlife monitoring [21], [22], [23], [24], [25]. MFCCs capture
the overall shape of the signal spectrum. Based on the Mel
scale, they mimic human hearing and are computationally
efficient, compressing spectral data into fewer features. The
MFCC application is further extended to precipitation phase
detection [26]. These advances reflect a growing interest in
leveraging acoustic signals as a non-invasive and cost-effective
approach to monitor and interpret environmental conditions.
Further advancement is required in developing reliable, low-
cost, real-time precipitation phase monitoring sensor systems
capable of operating in remote and harsh environments.
MFCC:s are often used because they outperform other acoustic
features [27].

The significant growth of Internet of Things (IoT) devices
has enabled and intensified demand for ML and computing
at the edge [28], [29], [30], [31]. Instead of offloading sensor
data to the cloud (which adds latency and bandwidth costs),
emerging approaches run ML inference locally on devices
or nearby gateways. For instance, recent work in acoustic
sensor networks shows that tiny wireless nodes can locally
recognize sound events using onboard convolutional neural
network (CNN) models [32]. Similarly, in environmental
sensing, precipitation detection has been enhanced by edge
intelligence. IoT sensors can classify rainfall versus snowfall in
real time using lightweight ML [33], [34], [35], [36], avoiding
the need to stream raw data. In general, performing edge
analytics yields markedly lower latency, improved bandwidth
efficiency, and enhanced data privacy compared to only cloud-
based methods. Moreover, modern TinyML techniques have
made it possible to run optimized neural network models
with limited CPU and memory resources, bringing intelligent
analytics to even the most resource-constrained IoT nodes
[37].

To enhance precipitation sensing efficiency through
advances in IoT technology, we propose a novel multimodal
wireless acoustic system that leverages a support vector
machine (SVM) classifier and MFCC feature extraction on
the edge device to provide real-time multitype precipitation
phase prediction. The proposed system incorporates additional
meteorological sensors, especially relevant to remote snow
hydrology, including a temperature and relative humidity sen-
sor, an ultrasonic-based snow depth sensor, and an illuminance
(light) sensor with an anemometer for wind velocity mea-
surement. The system features low-power wide-area network
(LPWAN) technology using long range (LoRa) and satellite
communications for near-real-time (NRT) transmissions. In
this work, we design and fabricate an integrated advanced
unified rainfall and atmospheric monitoring (AURA) circuit
board that features an ATmega 2560 microcontroller unit
(MCU) and its peripherals, including sensors, input/output
(I/O) pins, power distribution switches (PDSs) for sensors, and
the RockBlock Iridium 9603 modem.

In the star LoRa network, one AURA board is configured
as the gateway node, which communicates with the Iridium

IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 24, 15 DECEMBER 2025

satellite network for NRT data transmission. Additionally, we
incorporate a time-division multiple access (TDMA) scheme
to control the wireless (LoRa) data transmission between the
gateway and all leaf sensor nodes (peripheral nodes). A micro-
SD card circuit is designed to provide onboard data storage,
and a real-time clock (RTC) provides accurate timestamps for
each node. The system operates with low power consumption,
integrating edge computing for real-time processing, eliminat-
ing dependency on cloud-based computation.

Our work is novel in both algorithmic efficiency and system
design. To address the intense memory and computational
needs for MFCC extraction, we introduce two lightweight
methods for applying Mel filters: a lookup table and a compact
multiplication-based linear model, both of which are stored in
the program memory of microcontrollers, such as the AVR
family. Furthermore, we present a low-cost, low-power edge
device that performs real-time acoustic precipitation classifi-
cation, entirely on board, using MFCC features and ML. With
both LAN and LoRaWAN connectivity, the system supports
scalable deployment across remote sensor networks, making it
well-suited for snow hydrology and environmental monitoring
in complex terrains.

To provide proof-of-concept that ML models can accurately
detect precipitation phase and intensity, we have developed
both simulated precipitation acoustics datasets and collected
real (naturally occurring) precipitation acoustic data during
Winter 2025. We used these to train a variety of lightweight
models that are viable for implementation on the AURA
platform. Among these, SVM and random forest (RF) mod-
els with MFCC inputs had the best performance. Given its
smaller footprint, our best SVM model was chosen for the
prototype system described in this article, but the use of RF
or even small neural network models is feasible. Our best
SVM model had an overall testing accuracy of 98.07% and
85.99% for the simulated and actual environmental acoustics,
respectively. Overall, the complete system we describe here
demonstrates the feasibility of low-power embedded devices
for real-time environmental monitoring. The combination of
acoustic sensing with traditional meteorological data offers a
novel, effective solution for precipitation phase classification,
paving the way for improved hydrological modeling and
climate impact assessments.

The remainder of this article is structured as follows. Sec-
tion II presents the system architecture and hardware design.
Section III details the digital signal processing and time- and
frequency-domain feature extraction methodology. Section IV
details the SNR analysis and MFCC-DFT robustness. Sec-
tion V describes the edge-embedded ML and classifications.
Section VI provides details on IoT sensor networks, fol-
lowed by calibration results in Section VII. Field deployment
considerations are elaborated in Section VIII, followed by
results and discussion in Section IX, and prediction mismatch,
comparison, and conclusion in Section X.

II. SYSTEM ARCHITECTURE

In this section, we detail the device architecture and design
of the main controller circuit, which runs ML and signal
processing and controls the sensors. The circuit features LoRa
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Fig. 1. Block diagram illustration of the sensor system architecture (the

satellite modem is only for the gateway node). The figure highlights LVD,
resistive divider (RD), PDSs, bidirectional 5-3.3-V logic converters, voltage
regulators, USB to TTL converter, Atmega 2560 MCU, and sensors and
peripherals.

and LPWAN protocols, which include bidirectional node-to-
node and node-to-gateway communication.

A. Embedded Sensor Circuit Design

In this section, we describe the design sections of the pro-
posed integrated edge sensor system. As depicted in Fig. 1, the
designed edge device is built around an Atmega 2560 MCU,
which controls multiple peripherals, including the sensors,
PDS, satellite modem, micro-SD card, and LoRa module.

1) Power Supply and LVD: We use two low-dropout (LDO)
linear voltage regulators (LVRs) to supply 5-V and 3.3-V for
circuit operation, as shown in Fig. S1. The 5-V regulator
powers the ATmega 2560 MCU, peripherals, and the 3.3-V
regulator. A low-voltage disconnect (LVD) circuit, designed
with a TLV6713 micropower comparator with an internal
reference voltage of 400 mV and hysteresis, drives the active-
high enable pin of the 5-V regulator. The LVD disables the
entire circuit as soon as the input battery voltage falls below a
configurable threshold. The input—output voltage difference on
an LVR should be minimized while considering the dropout
voltage, as in the following equation, to reduce power dissi-
pation in the regulators:

Pioss = (Vin - Vout) Moyt (1)

2) Microcontroller Unit: The 5-V ATmega2560 MCU
clocked at 16 MHz runs the trained ML algorithm, signal pro-
cessing (audio sampling with 10-bit internal analog-to-digital
converter (ADC), short-time Fourier transform (STFT) calcu-
lations, and MFCC feature extraction), LoRa communication,
and scheduling tasks. The MCU depicted in Fig. S2 features
256 KB of flash program memory, 8 KB of static random
access memory (SRAM), and 4 KB of electrically erasable
programmable read-only memory (EEPROM), providing suf-
ficient storage for program code and signal processing.

3) RTC and SD Card: The AURA board adopts a DS3231
RTC chip and an SD card socket. The RTC provides accurate
timestamps for measurements and synchronization with an on-
chip temperature sensor. The SD card (Fig. S3) stores the
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TABLE I
AURA SYSTEM POWER CONSUMPTION

State (mode) Peak Current (mA) Peak Power (W)?

DSP 76.4 0.916
Audio Rec.b 94.2 1.130
MB7060 Sonar® 59 0.708
Solar Rad.© 56 0.672
Anemometer® 66 0.792
DHT22¢ 62 0.744
LoRa (TX, RX)d 128.21 ea. 1.538 ea.
9603 Sat. (TX)¢ 150.2 1.802

4 Measured peak DC power draw from a 12V source; actual use is
duty-cycled (i.e., the device is turned on periodically).

b Includes mic activation, recording, and SD write.

¢ Sensor current includes switch parasitic current and analog read.
4 TX and RX stand for transmit and receive, respectively.

logged data locally on each node as backup. Since SD cards
operate at 3.3V, a level shifter is required for serial peripheral
interface (SPI) communication of the SD module with the 5-V
MCU.

4) Universal Serial Bus: To program the MCU, a universal
serial bus (USB)-to-serial transistor-to-transistor logic (TTL)
programmer, illustrated in Fig. S4, featuring a Type-C USB
connector, is utilized. The circuitry incorporates an automatic
voltage selector circuit using a Schottky diode (V; = 0.39V)
that provides a voltage source for operation when powered
via USB. A polymeric positive temperature coefficient (PTC)
thermistor (up to 500 mA) is integrated as a resettable fuse
to protect the computer connected to the board upon short
circuits.

5) Sensors and PDSs: The sensor suite includes six mete-
orological sensors and four additional connectors for sensor
expansion, that is, extra microphones and a barometric pres-
sure sensor. The default sensors include an Adafruit MAX
9814 microphone [set to 40-dB gain with automatic gain
control (AGC)], an FDS100 photodiode used for the illumi-
nance sensor, and an MB7092 ultrasonic range-finder (10-Hz
refresh rate) to measure snow depth in addition to a DHT22
sensor to read temperature and relative humidity. We utilize
an Adafruit anemometer sensor to quantify wind velocity.
The circuit facilitates four additional sensor connectors for
sensor expansion. Power to the peripherals is managed by two
TPS2087 devices, quad-channel high-side PDSs with active-
low enable inputs, as shown in Fig. S1.

6) Power Consumption Profiling: Table I summarizes the
peak active current of AURA board components. The board
is powered by a 12-V sealed lead-acid battery. In deep sleep
operation mode, only the MCU draws 260-uA current. In the
LVD mode, the current drops to 140 uA, with only the LVD
comparator being active [Fig. S14].

We estimate that under ideal conditions with a 5% monthly
self-discharge rate for a typical sealed lead-acid battery, with
an average current draw of 20.2 mA, the device should run for
approximately 15.2 days without solar panels and recharging.
We add a 10-w solar panel to replenish the battery energy
during the day [refer to battery life estimation in the supple-
mentary material].
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Fig. 2. AURA control board (quad-layer) is an Arduino-compatible edge
device supporting the LoRaWAN protocol (designed at UVM). (a) Top view:
includes sensor, SD card, satellite, battery, USB port, and I/O pins. (b) Bottom
side view. Fabricated AURA PCB price: about 110 (USD).

7) Bidirectional Level Shifters: Peripherals operating at
different logic levels (i.e., 3.3V), such as the SD card,
Quick Wire Inter-Integrated Circuit (QWIIC), RFM9X LoRa
transceiver, and RockBlock 9603 modem, require bidirectional
logic converters (3.3-5 V) to communicate with the MCU. We
use an N-channel metal-oxide semiconductor field-effect tran-
sistor (MOSFET) level shifter for QWIIC and RockBlock 9603
communication. For the SD card and LoRa modem, which
rely on SPI communication, we implement quad-channel level
shifters to shift four signal levels (CS, MOSI, MISO, and
SCK).

8) LoRa Radio Transceiver: The AURA circuit board
incorporates a 915-MHz RFMO9X LoRa transceiver, which
produces up to +20 dBm transmit power and supports trans-
mission distances of up to 1.23 km in an urban area. The
transceiver handles data packets, error correction, and retrans-
mission, enabling LoRa, low-power communication via SPI.
The RFM9X schematic is provided in Fig. S3.

B. Embedded Printed Circuit Board Design and Fabrication

Fabricated utilizing FR-4 material with a quad-layer board
(1.6-mm thick), the top and bottom views of the AURA board
PCB are shown in Fig. 2(a) and (b). The PCB layout is
provided in Fig. S5.

III. DIGITAL SIGNAL PROCESSING

This section details the audio sampling and processing of
the STFT and MFCCs on the edge device (ATmega 2560
microcontroller).

A. Audio Sampling and Discretization

The microprocessor samples the audio signal from the
microphone using AGC with an ADC at a sampling rate of
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Fig. 3. Full signal processing and feature extraction pipeline on the edge
device (ML on the edge).

24 kHz (8-bit ADC mode), accurately capturing frequencies up
to half of the bandwidth (12 kHz), as per the Nyquist theorem.
The audio is recorded in 8-bit format using the TMRpcm
library for a time length of 10 s to ensure that sufficient
precipitation events are captured. Each analog audio sample
is then quantized to discrete digital values and sequentially
stored in an uncompressed Pulse Code Modulation (PCM)
format. The sampled data are then written to the SD card in
the Waveform Audio (WAV) File Format, which consists of
a 44-byte header followed by raw audio samples. The digital
signal-processing flow is depicted in Fig. 3.

B. STFT and MFCC Extraction

MFCCs provide a compact representation of spectral
envelopes of audio signals by modeling the characteristics
of human auditory perception [38]. They are derived from a
time—frequency representation computed via the STFT.

Let x[n] be a discrete-time audio signal of length L. To
extract overlapping frames, we apply a window w[n] of length
N to segments of x[n] with a hop size H, where L,N € 2Z*
(positive even integers), specifically chosen as 29, g > 0 (pos-
itive powers of two) for computation using the Cooley—Tukey
radix-2 DFT. Zero-padding is applied to the final samples of
x[n] if L ¢ 29 to ensure L conforms to the required length.
The total number of frames can be calculated by the following

equation:
L-N
M=|—— 1. 2
{ _ J+ @

To reduce the spectral leakage, each frame is then windowed
using the Hamming window function defined in the following
equation:

2
wln] = 0.54 — 0.46 cos(N"”

1), 0<n<N-1. (3)

The discrete STFT is computed using the following equa-

tion:
N-1

X(m,k)=Zx[n+mH]w[n] e_j% 4)
n=0

where m indexes the time frames and k indexes the frequency
N assuming N € 29

bins (typically, k ranges from 0 to 3
corresponding to the Nyquist frequency bins). The magnitude
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of X(m,k) is typically visualized as the signal spectrogram,
which shows how the frequency content of x[n] evolves. The
STFTs extracted via MATLAB’s built-in functions and our
approach are illustrated in Fig. S6.

In the MFCC extraction pipeline, |X(m, k)[> is utilized to
compute the spectral power, which is then filtered using
the Mel filter bank. The pre-emphasis step is omitted for
precipitation acoustics because such signals do not exhibit the
strong high-frequency attenuation seen in speech.

C. Mel Filterbank

Mel filter banks are designed using the nonlinear Mel scale
to reflect human auditory perception. Mel filters are applied to
the DFT power spectrum |X(m, k)|> within a linear frequency
domain. The conversion from linear frequency f (in Hz) to
the Mel scale is given by the following equation:

M(f) = 2595 1og10(1 + %) : (5)

The Mel scale M(f) is applied to evenly space filter centers
in the Mel domain. The frequencies are first mapped to Mel
space, evenly spaced in Mel space, then converted back to Hz
and multiplied by DFT bins. The normalized triangular Mel
filter bank H,(k) is defined over the DFT bin indices k. For
each filter (indexed by p with 0 < p < P — 1, where P is the
number of filters), three bin locations f,, f,+1, and f,, are
specified, forming a triangular division-based implementation
of the as in the following equation:

0, k< fyor k> f,in
k= fp
Hp (k) = fp-H _ fp’ fp <k< fp+1 (6)
2 —

> fp+1 k< fpia.
fp+2 _fp+l

Each filter is centered at bin f,,; (where the amplitude is

1), and the bins f, correspond to actual frequencies spanning
from f; to fy (Hz).

D. Logarithm and Discrete Cosine Transform

For each time frame m, the Mel-filtered spectral power
is computed by summing the squared STFT magnitudes
weighted by the corresponding Mel filter (we discard con-
jugate pairs) in the following equation:

NJ2
s(p) =Y IX(m, k)P Hyk), 0<p=<P-1 7
k=0
where s(p) represents the energy in the pth Mel filter for the
given time frame. Note that this process is repeated for all
time frames m on the MCU.

Then, the logarithm of these energies is taken, and the
discrete cosine transform (DCT) in (8), which decorrelates
energy in different Mel bands (filter bank energies), is applied
to yield the MFCCs

P-1 1
c(n) = ZIOglo(s () COS(% (p - 5)) ®)

p=0
n=0,1,...,C-1
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Linear Representation of the Mel Filter Bank

Amplitude

i

Frequency (Hz)

Fig. 4. Linear representation of the normalized Mel filter bank with only
three filters for illustration. Overall, 30 filters are utilized in the digital signal
processing.

where c(n) represents the nth MFCC coefficient for the frame
and C coeflicients are retained. In this work, we compute the
first 13 MFCCs on the edge device (ATmega 2560 MCU) from
recorded precipitation acoustics.

E. Efficient MFCC Computation on Microcontrollers

While libraries such as ArduinoFFT and ApproxFFT sup-
port DFT computation on microcontrollers, MFCC extraction
is constrained by RAM limitations. Applying P Mel filters
to an N-point DFT requires a matrix of size RFP*(V/2+D,
often exceeding available memory. To address this, we imple-
ment two novel memory-efficient methods: 1) a lookup table
storing precomputed filter weights in program memory, and
2) a multiplication-based (computationally quicker on MCU
compared to division) linear model where each triangular filter
is defined by slope-intercept parameters.

1) Look-up Table: The Mel filter bank is precomputed in
MATLAB and stored in program memory as a matrix H, (9).
This table is sparse and less efficient to store due to a high
number of zero entries:

hoo hoy - oy
hio h1 hl,g

Hp = . &)
hp_1o  hp_1 hp_y v

2) Linear Representation: Each triangular Mel filter is
defined by three frequency bins {f,, f,+1, fp+2} and modeled
using two line segments in the following equation:

(qup k + bL,p» fp < k < f[l-H
Hy () = Yagpk+brp. frp1 Sk<forz  (10)
0, otherwise.

The linear modeling of the Mel filter bank is detailed in
Fig. 4. This figure outlines three full filters (for demonstration
only), and the process repeats for the remaining filters. This
approach has higher resolution compared to the look-up model.
A total of 30 Mel filters are utilized in practical programming.
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Fig. 5. STFT and MFCC spectrograms of MATLAB-generated acoustics
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results.

Slopes and intercepts in the linear model are defined as

1
arp=—-, brp=—arp f,
i fp—H _fp i par
1 (n
agp=—————"7> brp=1-ag, fri1.
P fp+2_fp+1 P pJp+

The Mel filter bank parameters in linear representation
include {fp, fp+1, fp+2, AL p> brp, Arp, brp} and are stored
in the program memory of the MCU. At runtime, the
pgm read float function loads these values, allowing
H,(k) to be computed on the fly without storing the full filter
table in RAM space. In this work, we apply 30 Mel filters
and a 512-point DFT (discarding the redundant conjugate
points), where the lookup table approach requires R30*27
and the linear approach fits in R3°%7 [Algorithm 1 in the
supplementary material].
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IV. SNR ANALYSIS FOR MFCC-DFT NOISE ROBUSTNESS

Signal-to-noise ratio (SNR) testing is essential for assessing
the robustness of spectral features. MFCCs compress spec-
tral energy via Mel filter banks and DFT-DCT operations.
Additive noise raises the noise floor, and by injecting con-
trolled noise at known SNRs, we evaluate how reliably DFT
preserves frequency components, how stable MFCCs remain
under degradation, and at what thresholds feature reliability
fails.

A. Signal Generation

We synthesize a five-tone sequence with frequencies f; €
{2,4,6,8, 10} kHz, sampled at f; = 24 kHz for a total duration
of T = 10s. Each block has length L = f;D, where D = T/5.
The discrete-time signal x[n] is constructed using (12), where
phase continuity across tone transitions is preserved by the
recurrence in (13)

x[n] =4, sin(¢i + 27rfin_(if—_1)L)

i=1,...,5

(12)
neli-1L, iL-1],

where x[n] is the discrete-time signal, A, is the peak ampli-
tude, f; is the frequency of the ith block, L is the number of
samples per block, f; is the sampling frequency, and ¢; is the
carry-over phase from the previous block. The block index i
spans 1 to 5 (each representing a 2-s segment)
m
Giv1 = ¢i +2xfiD, ¢ = 7
Equation (13) recursively computes the starting phase ¢,
of each block to preserve continuity.

13)

B. Targeted SNR and Noise Injection

Let x[n] be the clean signal and y[n] = x[n]+ n[n] the noisy
signal, where n[n] is white gaussian noise (WGN). The signal
power Pj, noise power P,, and resulting SNR in decibels are
computed using the following equation:

1 N-1
_ 2
Pi=~ Zox[n]
N-1

_1 N (14)
Pn—N;@[n] x[n])

P
SNRgp = 1010g10(P—s)

where Pj is the average signal power over N samples, P, is
the average power of the noise, and SNRgyg is the resulting
SNR in decibels.
To produce a specific SNR, the noise variance (noise power)
2 is set based on the target level using the following equation:

nln] ~ N (0, o).

(o

2 Py

Tn = T0SNRe/10°

(15)

Equation (15) determines the variance of the Gaussian noise
n[n] such that the resulting SNR equals the target. The noise
is drawn from a zero-mean normal distribution with variance
2. Post synthesis, the true SNR is verified by re-evaluating
(14) on the final WAV signal via MATLAB.
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Fig. 6. MFCC variation analysis against additive WGN. (a) 2-D bar chart
illustrating mean absolute MFCC index difference from baseline audio (SNR
=45 dB) across all MFCC indices. (b) 2-D bar chart showing mean Euclidean
distance with respect to baseline (SNR = 45 dB).

C. Quantization Limit of WAV Storage

Exporting to b-bit PCM imposes a theoretical SNR limit
due to quantization noise. The upper bound is estimated using
(16), where Apy is the normalized peak amplitude

SNRquantized.as & 6.02b + 1.76 +201log, (4,).  (16)

With b = 8 (8-bit audio for the TMRpcm library) and A, =
1, this yields a maximum SNR of 49.92 dB. To remain well
within this bound and ensure realistic comparability, we select
A, = 0.57 to result in a 45-dB SNR as the baseline reference
(clean audio with no noise). We then inject different noise
levels into the baseline to degrade the SNR.

D. SNR Analysis Results

Fig. 5 illustrates the five-tonal structure in both STFT and
MFCC domains under increasing noise (degrading SNR). The
clean audio features an SNR of 45 dB. As the SNR decreases
from SNR = 30 dB to SNR = -5 dB, feature blurring
and distortion increase (background noise becomes stronger),
though the five-tone signature remains visible.

To quantify MFCC degradation, we apply two complemen-
tary metrics for each coefficient k: the absolute difference and
the Euclidean distance. Let M;[n] and Ry[n] represent the
MEFCC coefficient k at time frame n for the noisy and reference
(clean) signals, respectively.

The average absolute difference measures individual MFCC
index deviation from the reference signal (SNR = 45 dB) for
each index and is defined by the following equation:

N
1
. N;Wk [n] = Ry [n]]. amn
The Euclidean distance aggregates the squared deviation for
each MFCC and is given by the following equation:

D, = \/ S (Milnl - R[]

To study the effects of WGN on MFCCs, we provide two
metrics, including mean absolute distance from baseline in Fig.
6(a) and mean Euclidean distance from baseline in Fig. 6(b).
In Fig. 6(a), MFCC 1 shows the greatest deviation across
noise levels. This coefficient represents low-order spectral

(18)
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Fig. 7. MFCCs calculation steps and ML on the edge device; (a) RF and
(b) SVM on the edge device (AURA board). In step 4, each color bar illustrates
one averaged MFCC coefficient. All five steps are carried out on the AURA
board.

shapes (e.g., energy slope and tilt) that are more susceptible
to additive noise. In contrast, higher-order coefficients remain
relatively stable and resilient. Fig. 6(b) presents a descend-
ing mean Euclidean distance from baseline as SNR value
increases, suggesting MFCCs show less variation at lower
noise levels.

E. Methodology Comparison and Validation

To compare our customized MFCC extraction functions
with the standard MATLAB functions, we compute the cor-
relation coefficient under identical conditions using a single
audio file in both MATLAB and AURA. A positive correlation
is found and illustrated in Fig. S7 and Table ST1 in the
supplementary document.

V. EMBEDDED ML ON THE EDGE

This section details the ML (RF and SVM) classifiers
trained to run on AURA using MFCC input features.

A. Acoustic Features for ML

The MFCCs extraction from a Hail audio sample and ML
pipeline are illustrated in Fig. 7. The training and testing data
are processed as shown in Fig.7. The 10-s recorded audio
in each class is framed with a 512-sample frame width and
windowed to produce the STFTs. The first 13 MFCC indices
are then calculated for each audio frame and averaged over
time to be utilized for training and testing of the RF model.

B. Data Collection and Labeling

An Enviro DIY Mayfly board is utilized to record 8-bit
audio from a MAX9814 microphone (40 dB AGC) in a conical
chamber made from aluminum. We utilize a conical geometry
that makes an effective resonance chamber by naturally shed-
ding snow and frozen precipitation due to its sloped surfaces,
while also supporting acoustic resonance through its shape
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TABLE I

DSP, ML, AND DSP+ML ON MICROCONTROLLER
MEMORY USAGE SUMMARY

Category Model Flash Memory? RAM

DSP Only LMP 22.02 kB (8.88%) 2.84 kB (35.45%)
LUT® 50.49 kB (20.36%)  2.84 kB (35.55%)

ML Only SVM 43.08 kB (17.37%) 1.10 kB (13.70%)
RF 134.09 kB (54.07%)  1.10 kB (13.73%)

DSP + ML  SVM+LMP 65.10 kB (26.25%)  3.93 kB (49.15%)
SVM+LUT® 93.57 kB (37.73%)  3.94 kB (49.24%)
RF+LMP 156.12 kB (62.95%)  3.93 kB (49.18%)
RF+LUT® 184.61 kB (74.44%)  3.94 kB (49.28%)

4 Flash Memory of the ATmega 2560 (248 kB Flash, 8 kB RAM available).
b LM: Linear Model implementation in DSP.
¢ LUT: Lookup Table implementation in DSP.

that focuses and amplifies sound waves. A Raspberry Pi 3B+
is connected to the Mayfly via USB to trigger recording and
logging weather data from a local API. A nearby Google Nest
camera provides a live feed of the deployment site and weather
conditions for data labeling (ground truth).

C. RF Model Training and Evaluation

Features are extracted using MFCCs and labeled by precip-
itation category. Environmental audio files with 83 samples
for Mixed Precip., 62 samples for rain, 101 samples for
snow, and 70 samples for WGN [see Table ST3 in the
supplementary material] are utilized in training. Leave-one-
out cross-validation (LOO-CV) is used for verification, where
one sample is held for testing, and the remaining samples
are for training via fit/predict. The training is carried out
on a computer, and the model is ported as a header file and
included in the Arduino program. The RF classifier achieves
97.35% precision in simulated and 85.67% in recorded envi-
ronmental samples. Class-wise performance is shown with
confusion matrices and confidence plots in Figs. S9 and S10,
respectively.

D. SVM Model Training and Evaluation

The SVM classifier is similarly trained on MFCC-derived
features using a linear kernel and evaluated with LOO-CV.
Accuracy reaches 98.07% on synthetic (simulated) data and
85.99% on real environmental recordings. Confusion matrices
and class-wise confidence histograms visualize model perfor-
mance (Figs. S9 and S10).

E. ML on the AURA Board

The SVM shows the lowest memory footprint among ML
models and higher accuracy than RF (Table II and Fig. S9).
SVM+LM uses 65.10 kB (26.25%), the smallest overall,
followed by SVM+LUT at 93.57 kB (37.73%). RF+LM
and RF+LUT require 156.12 kB (62.95%) and 184.61 kB
(74.44%), respectively, with a combined (ML+DSP) RAM
usage of approximately 3.93-3.94 kB (x 49%). Fig. S9 in the
supplementary document shows the confusion matrices for the
SVM and RFE.
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Fig. 8. Designed TDMA protocol for the AURA LoRa network.

VI. 10T SENSOR NETWORK

This section describes the LPWAN development. The LoRa
network and packet format details, in addition to the TDMA
protocol, are discussed. A multinodal deployment representa-
tion is provided.

A. LoRa Star Network

The LoRa network is based on a star topology with AURA
nodes transmitting to a central Iridium-enabled gateway [39],
[40], [41], [42]. Leaf Nodes use RFM95 modules supporting
up to 15-km line-of-sight range [43], with experimental vali-
dation of up to 1.23 km in urban conditions with surrounding
buildings and trees. LoRa enables low-power, LoRa commu-
nication.

B. TDMA Protocol

The TDMA protocol shown in Fig. 8 controls the wireless
node communication by dividing time into fixed intervals,
ensuring accurate data transmission while preventing LoRa
packet collisions and minimizing power consumption [44].
Each node is assigned a unique time slot based on an auto-
incrementing ID, starting from 0, with the gateway node
always occupying ID 0. A brief guard period at the end
of each interval prevents timing conflicts during transitions
[see Algorithms 2 and 3 in the supplementary material for
parameters in the TDMA Protocol section].

TDMA windows are initiated at some predetermined fre-
quency and consist of two stages: 1) synchronization, where
a sync packet shares the gateway’s time, start of the next
window, and per-node acknowledgments; and 2) data transfer,
where nodes transmit in slots of the window determined based
on their node ID [Algorithms 2 and 3 in the supplementary
document]. Data packets are stored on the local SD card until
their sequence number (timestamp) is acknowledged in the
gateway’s sync packet. During transmission windows, leaf
nodes send as many stored packets as possible. Each packet’s
header contains the timestamp of the oldest unacknowledged
packet and a transmission number [see in the supplementary

Authorized licensed use limited to: University of Vermont Libraries. Downloaded on January 04,2026 at 15:24:20 UTC from |IEEE Xplore. Restrictions apply.



FAGHIR HAGH et al.: EMBEDDED IoT SYSTEM FOR ACOUSTIC PRECIPITATION PHASE PARTITIONING

document]. Only when the gateway receives a packet with a
timestamp that has been marked as being waited on can it
update its latest acknowledgment from the sending node. The
transmission numbers within a series of data packet transmis-
sions allow the gateway to detect any dropped packets during
the send window. The gateway acknowledges the timestamp
of a packet only if its transmission number is exactly one
greater than the previous transmission number. Otherwise, the
gateway assumes the packet has been dropped. We find that
the parameters S = 20 (slot duration), Gy = 1 (guard period),
and D; = 1 (transmission delay) provide adequate time for
peripherals to complete any tasks they are running, enter their
sending window, and transmit any queued packets without
sending outside of their slot.

C. LoRa Packet Structure

The sync packet (Fig. S13) is transmitted by the gateway
at the start of each TDMA cycle to all nodes. It includes
a 12-byte header and a payload containing two 4-byte Unix
timestamps and one 4-byte acknowledgment entry per node.
The data packet (also in Fig. S13), sent from leaf nodes
to the gateway, begins with the same header followed by a
1-byte flag field, which indicates the presence of optional
sensor data. Depending on the flags, the payload optionally
includes a 1-byte precipitation class, temperature, and humid-
ity stored in a I-byte quantized format, and three sensor
readings stored as raw 2-byte voltages. This structure enables
efficient communication and heterogeneous node capabilities.

D. Iridium Satellite Uplink

A UART interface links the AURA gateway to a Rock-
BLOCK 9603 modem with an Iridium 9603 transceiver.
Sensor data gets buffered and uplinked via the Short-Burst
Data (SBD) protocol, utilizing 340 bytes for uplink and 270
bytes for downlink. Messages are routed through the Iridium
network to Cloudloop, then via webhook to a web app, which
parses and saves them to a database. The details from the
Cloudloop server front-end, the Iridium satellite connection,
and the sensor network are provided in Figs. S11 and S12.

E. AURA Network Deployment Setting

The AURA system is designed for deployment in moun-
tainous regions. A representative network configuration is
shown in Fig. 9, where up to five devices are deployed, with
one functioning as a satellite-enabled gateway. The gateway
collects its precipitation data while aggregating data from
the other leaf nodes and forwarding all information to the
Cloudloop server via the satellite network in NRT. Each sensor
node features a solar panel and battery.

Under harsh mountainous conditions and snow, limited
solar irradiance during extended winter periods can hinder
battery charging. To address this, we propose leveraging the
temperature and humidity sensor only to estimate the dew
point using Ty, = T — (100 — RH)/5, where T, is the dew
point in Celsius, T is the ambient temperature in Celsius,
and RH is the relative humidity in percent (%). The system

52683

CIOUd@
Data

|

NRT Data

Fig. 9. IoT AURA sensor network deployment in a mountain setting scenario
with LoRa and satellite communication.

—~
©

=

-

Solar Sensor vs. C ial Light Meter

b
Sonar Sensor Voltage vs. Time of Flight (
~—&—Sensor 1 500
&~ Sensor 2
—4— Sensor 3
~A— Sensor 4.
2|~ 5

w

y = 89.82-0g,(x) + 53.63
R?=0.9709

[
o

Sonar Analog Reading (V)
P
Sensor Output (mV)
N
S
3

® Sensor Data
Linear Fit

0 -100
2 4 6 8 10 12 14 16 102 10" 10° 10" 102 10° 10* 10° 10°

Time of Flight (ms) Commercial Light Meter (LUX) [log scale]

Fig. 10. AURA sensor calibration curves. (a) MB7060 sonar (snow depth)
sensor calibration for 5 different sensors. (b) Solar sensor calibration in (1)
full moon, (2) deep twilight, (3) twilight, (4) very dark day, (5) overcast day,
(6) full daylight, and (7) direct sunlight.

applies a dew point threshold to opportunistically wake and
record audio only when conditions suggest a high likelihood
of precipitation.

VII. SENSOR CALIBRATION

Calibration of sensors is important for obtaining consis-
tent and accurate results. This section details the calibration
and validation of the meteorological sensors. The calibration
results are illustrated in Fig. 10.

A. Sonar Sensor (Snow Depth)

The MB7060 sensors are placed and moved at known
distances (d) in 15-cm increments ranging from 30cm to
2.55m, and the corresponding sensing voltages are recorded.
At 22° C, the speed of sound (SoS) is 344.632 m/s, calculated
using SoS(T) = 331.3 + 0.606 T, where T is the ambient
temperature in Celsius. The discrete time-of-flight calculations
are then determined by ToF = (2d)/(SoS). During calibration
(Fig. 10(a), Table ST2), linear regressions are performed to
relate sensor voltage to time-of-flight. The fit provides U(v), a
dynamic version of ToF as a function of sensor voltage v. In
operation, U(v) is used to compute ToF from real-time voltage
readings. Snow depth is then calculated using the known
ground distance, the estimated ToF, and the temperature-
dependent SoS using D = G — ((U(v))/2) - SoS(T'), where G is
the ground distance from the sensor.
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Fig. 11. AURA sensor system (single leaf node) field deployment. (a) System
components and sensors, (b) deployment site, and (c) snow depth calculation
methodology.

B. Illuminance (Solar Radiation) Sensor

The light sensor and its voltage are calibrated against an
MT-912 light meter under seven different light conditions, as
illustrated in Fig. 10(b). The results indicate linearity.

C. Temperature and Relative Humidity Sensor

Each DHT22 sensor is factory calibrated for both temper-
ature and relative humidity in a precise calibration chamber.
The calibration coefficients, which include temperature com-
pensation, are stored in the sensor’s one-time programmable
(OTP) memory and automatically referenced during operation.

VIII. FIELD DEPLOYMENT

This section thoroughly explains the field deployment setup
of a single sensor node to verify the operation, including ML,
sensors, and prediction.

A. Practical Deployment Setup

Five AURA boards are developed and mounted in Pelican
cases (Boxes#1-5); one setup for training data collection, one
as a gateway, and three as leaf nodes (Box#l1 is deployed in
this study as the leaf node). Each unit integrates environmental
sensors and a microphone with a conical chamber, mounted
on a 1.8m tripod [Fig. 11(a) and (b)]. Power is supplied
via a 12-V and 12-Ah battery and solar panel with a charge
controller in a waterproof enclosure. To mitigate wind noise,
we utilize microphone foam covers (windscreen) in addition
to mounting the microphone near the vertex of the conical
resonance chamber. The sensor box contains the AURA board,
wiring, and sensors, as shown in Fig. S8. The leaf node
deployed in this section only features a single microphone.

B. Deployment Site

The sensor leaf node was deployed on the UVM campus in
Burlington, Vermont, in May 2025, with a measurement inter-
val set to every 10 min. The deployment area is surrounded by
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buildings to provide a controlled test bed for tripod stability
tests and system verification.

IX. RESULTS AND DISCUSSION

This section presents the data collected using the AURA
board, along with a comparison and analysis.

A. Field Data

The AURA system was deployed for 66.5 h (2.77 days) in a
controlled environment to validate its performance. Field data
collected from the Sonar sensor show a stable distance mea-
surement averaging approximately 1.75 m, 2.78% lower than
the reference value of 1.8 m. No frozen form of precipitation
(i.e., hail or snow) was observed during the deployment course.
Hence, only the ground distance is reported. Slight variations
in sonar readings are caused by wind and minor displacements
of the sensor. The solar sensor effectively captured fluctuations
in sunlight during the day, with readings reflecting overcast
and direct sunlight radiation due to quickly varying conditions,
as illustrated in Fig. 12(a). Solar radiation is the main energy
source driving snow melt, especially during clear and sunny
days. Solar radiation measurement can be used to quantify
snow melt rates and predict the timing of water runoff,
which is critical for water resource management and flood
forecasting. SVM-based precipitation classification during the
deployment, shown in Fig. 12(b), identified three weather
states: no precipitation (WGN), rain, and mixed precipitation
(a combination of rain, hail, and snow precipitation). These
predictions align with the recorded and visually observed
events, supporting the viability of on-device ML. In Fig. 12(e),
the historical data from Burlington weather are provided.
Comparing our acoustic-based detection with the weather
data, precipitation is detected between May 22nd and May
24th, which matches the historic weather data. Environmental
measurements of temperature and relative humidity followed
expected diurnal trends, as shown in Fig. 12(c), while wind
velocity patterns were recorded in Fig. 12(d). Temperature
trends follow the provided historic data [faint yellow line in
Fig. 12(e)]. The deployment site conditions obstructed the
wind and reduced the wind speed; hence, limited wind data
was captured.

X. DISCUSSION OF PREDICTION AND OBSERVATION
MISMATCH

Prediction errors and mismatches can be explained by
three factors. First, the ground truth weather station is not
collocated with the deployed system, thus the precipitation
recorded at the station may not occur at the sensor site due to
spatial variability. Second, the aluminum cone produced weak
acoustic responses to light rain, as its rigid walls dampened
small droplet impacts. A redesigned pyramid structure with
transparent, flexible sheets is proposed to improve sensitivity.
Third, the model was trained on a limited dataset, reducing
generalization. Ongoing work includes collecting additional
verified events using a Parsivel® disdrometer.

For classification [Fig. 12(f)], the model employs two labels:
class 1 for precipitation and class 3 for no precipitation. A
prediction of class 1 is correct when the station reports rain
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Fig. 12. Deployment data and system performance verification, (a) sonar
and solar sensors data, (b) SVM ML predictions, (c) temperature and relative
humidity sensor readings, (d) wind velocity, (e) historic weather screenshot for
Burlington, VT from timeanddate.com, and (f) observation type comparison
timeline for the SVM model and local weather station; for panel interpretation,
refer to legend and color formatting.

events (rain, light rain, or showers), and class 3 is correct
under non-precipitation conditions (clear, cloudy, or overcast).
Data collected by AURA is reprocessed to adjust the time
stamps. In total, 72.73% of events are correctly detected. Due
to spatial variability and distance from the weather station, the
comparison mainly serves as proof-of-concept.

A. Comparing AURA With State-of-the-Art

Compared to the literature, the proposed AURA system inte-
grates multiple modalities and sensors into a compact wireless
system that is verified to detect precipitation phase. Many
systems only rely on single precipitation type detection as
outlined in Table III. The AURA system integrates LoRa net-
working and satellite data transmission for NRT precipitation
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TABLE III
SENSORS AND FEATURES COMPARISON: AURA VERSUS LITERATURE

Sensor / Feature AURA [13] [14] [35]
On-chip DSP MFCCs MFCCs STFT Sens. Read
On-chip ML SVM CNN CNN+FNN SVM
Technology Acoustic Acoustic Acoustic Meteorological
Snow Depth (cm) 30-400 N/A N/A N/A
Anemometer (m/s) up to 32.4 N/A N/A v
Temp. Range (°C) -40 to 125 N/A N/A v
Sensors up to 16 Mic. N/A Temp/Hum/Wind
SD Card v v v N/A
LoRa (915 MHz) v N/A N/A N/A
Satellite Gateway v N/A N/A N/A
Low Power v v N/A v

data transmission, supporting distributed deployments and
NRT reporting in remote settings, unlike other systems.

XI. CONCLUSION

To conclude, we present the design and validation of the
AURA system, which is a low-power, edge-based acoustic
and meteorological distributed sensing platform for real-time
precipitation phase classification. By integrating MFCC-based
feature extraction with SVM and RF classifiers, the system
achieves promising accuracies and precipitation detection. The
incorporation of auxiliary sensors and LPWAN technologies
enables robust, NRT data transmission from remote locations.
The field deployment validates the performance of the entire
system, and these results demonstrate the feasibility of
embedded acoustic sensing for environmental monitoring,
offering a scalable solution to improve hydrological and
climate-related models.

Future work on AURA includes refining ML models,
excluding noise-sensitive MFCCs, integrating weather sensors,
and developing efficient LoRa multihop protocols. We are
currently deploying our sensor instrumentation alongside a
Parsivel” laser disdrometer to generate a long-term, high-
quality dataset with accurate ground-truth labeling for future
training and testing. We will use this data to improve model
prediction accuracy, comparing SVM against RF and even a
small neural network performance. We will consider other
model input features available on the AURA platform, in
addition to MFCCs, including time-domain acoustic features
(e.g., zero-crossing rate), and nonacoustic environmental data
such as temperature, relative humidity, and solar radiation. We
also plan to evaluate various acoustic resonance chambers in
real deployments and their impact on model performance. We
anticipate that our system will support improved measurements
in real and diverse environmental monitoring applications.
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