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Public-use earth science datasets are a useful resource with the unfortunate feature that their provenance
is easily disconnected from their content. “Fair-use policies” typically associated with these datasets require
appropriate attribution of providers by users, but sound and complete attribution is difficult if provenance
information is lost. To address this we introduce a technique to directly associate provenance information
with sensor datasets. Our technique is similar to traditional watermarking but is intended for application
to unstructured time-series datasets. Our approach is potentially imperceptible given sufficient margins
of error in datasets, and is robust to a number of benign but likely transformations including truncation,
rounding, bit-flipping, sampling, and reordering. We provide algorithms for both one-bit and blind mark
checking, and show how our system can be adapted to various data representation types. Our algorithms
are probabilistic in nature and are characterized by both combinatorial and empirical analyses. Mark em-
bedding can be applied at any point in the data lifecycle, allowing adaptation of our scheme to social or
scientific concerns.
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1. INTRODUCTION
Open sharing of datasets is beneficial for scientific research, but is often complicated by
issues related to attribution, i.e. who should be acknowledged, and how, if a particular
dataset is used? Two major problems present themselves: how to associate provenance
metadata with datasets, and what is the nature of metadata. In environmental sci-
ences datasets in particular, dataset usage often brings with it an informal obligation
to attribute organizations that manage areas from which data is collected, e.g. field
stations, as well as collectors of data, e.g. University research groups. These are typ-
ically called "fair use policies", and different datasets are subject to different, possi-
bly complex policies. And although standards such as eml [Arndt et al. 2000] have
been proposed, different repositories use different techniques to associate data and
metadata such as provenance information. Even if researchers are well-intentioned,
metadata and datasets can become disassociated during usage, and provenance infor-
mation lost, leading to incomplete or inaccurate attributions in publications and other
research products.
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In this paper, we explore a scheme for embedding a provenance identifier in environ-
mental datasets, that associates metadata with datasets in a tightly coupled manner
that does not rely on external structure such as XML formats or database schema. We
say that such datasets are "self identifying". Further, this identifier provides a level
of indirection allowing referenced metadata to be structured and organized in an ar-
bitrary manner. For example, the identifier could be a URL link to a data object with
extensive provenance information. Our technique is suited to environmental datasets
because it exploits noise common to instruments used in environmental sciences data
gathering, in particular, margin of error in instrumentation. It can be viewed as a
type of watermarking scheme, where the watermark does not alter data beyond the
bounds of its error bars, and is thus "imperceptible" by data end-users, but is nev-
ertheless retrievable by algorithmic means. And while these provenance identifiers
are not impervious to attack as would be a security mechanism, they are robust to
corruptions—including reordering, sampling, truncation, and rounding—that can be
expected during the course of normal dataset analysis by end users. Thus, our ap-
proach is well-suited to supporting attribution and fair use policies in environmental
datasets.

1.1. Provenance Connections
There is a growing body of literature on provenance issues in informatics, and the
Open Provenance Model [Moreau et al. 2011] even provides a structured format and
ontology for provenance information in data systems. Our provenance identifiers are
intended to refer to provenance information, and in this sense the relation of our work
to provenance is indirect. However, we aim to address a significant issue with respect
to provenance in practice, which is adaptation and use of provenance schemes. Rather
than associating provenance metadata with datasets via e.g. XML data structure that
may be discarded and lost by data users, provenance identifiers are “baked in” to the
data itself, and are robust to certain expected transformations. At the same time, refer-
ences to provenance information can be used to easily retrieve the latter when needed
e.g. via web tools, as we discuss in Section 8. By alleviating end-users from the burden
of maintaining metadata structure during use, we argue that our scheme will promote
more reliable use of provenance information.

1.2. A Proposed Application Setting
The Sagehen Creek Field Station (CA) provides both a setting for environmental field
research and data gathering, and an online data repository for associated datasets.
On its data repository web portal [Sagehen Creek Field Station Data Repository ], a
blanket fair use policy is stated requiring acknowledgment of the field station and data
owners, and a request to contact data owners to discuss attribution details. Similarly,
the Hubbard Brook Experimental Forest (NH) also provides both a research setting
and online repository [Hubbard Brook Ecosystem Study ]. In this case, specific fair
use policies are associated with individual datasets (although a general default policy
appears to cover most), and users must electronically sign a fair use agreement prior to
downloading data. In any case it is clear that use policies are sufficiently complex that
repositories must clearly enunciate them, and encourage compliance with them. And
in fact, although research scientists are typically well-intentioned, anecdotal evidence
from station managers suggests that fair use policies are often violated.

We argue that these violations are often caused by the decoupling of datasets and
their provenance information during normal scientific usage. Once datasets are down-
loaded, they are often reformatted, entered into local databases with arbitrary schema,
and passed around between users. Policies that were reviewed when data was down-
loaded may be forgotten or not communicated between users, and data structure im-
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posed in XML or similar forms may be discarded once datasets are extracted from
them, and metadata lost. We envision that our scheme can be used to mark datasets
intended for public use, for example by data repository managers. This mark, when
recovered from datasets, can be interpreted as a pointer to online provenance informa-
tion and fair use policies. Thus, any end-user, or reader of their work, could copy-paste
a subset of their dataset into a recovery tool and be immediately directed to relevant
provenance information for the dataset. The scheme therefore provides much greater
ease of access to provenance information, and user accountability for proper attribu-
tion.

It is important to note that the addition of a provenance mark does alter datasets,
however imperceptibly. But an appealing feature of our scheme is that a provenance
mark can be applied at any point in the data lifecycle. Thus, marking strategies can
be flexible, and unmarked, raw datasets can be retained by data producers, or made
available on repositories along with marked datasets. This will allow data providers to
negotiate marking strategies with repository managers, and determine the best trade-
off between ease of attribution and fidelity to original data. In most cases, we expect
that marks will be applied post-processing, e.g. after raw sensor voltage readings are
converted to physical units and smoothed. In any case, in Section 7 we provide an
analysis that establishes quantitative guidelines for use of the system, e.g. expected
dataset entropy.

To provide a user experience that actively illustrates these ideas, we have developed
a prototype application, described in Section 8 and available online. It shows how data
providers can embed provenance marks in datasets without significant alterations to
existing web interfaces or data distribution schemes. It also illustrates how users of
datasets can easily retrieve associated metadata from a sampling of datapoints. Fur-
thermore, the application shows how data can be marked post-processing, and that
marking does not preclude access to unmarked datasets.

1.3. Technical Background and Contributions
Watermarking refers to any number of techniques for marking a real or virtual item
with some sort of provenance identifier, in a manner that does not interfere with nor-
mal use of the item and is “indelible” by some measure. An analog example is the dollar
bill, which contains a watermark that is visible when held against a bright light, using
a technique developed in the 13th century to protect against counterfeiting. In the dig-
ital realm, it has been adapted to audio and video data, wherein signals are altered to
carry the mark in subtle ways that are undetectable by human senses. In contrast to
analog watermarking, digital watermarking usually does not prevent copying of data,
but ensures that copying retains the watermark and thus encoded provenance infor-
mation.

Watermarking of digital media is typically treated as a signal processing issue [Cox
and Miller 2002]. Watermarking techniques have also been studied in application to re-
lational databases [Agrawal and Kiernan 2002] and streaming data [Sion et al. 2006].
Usually these approaches leverage the database schema, or the sequential structure
of a data stream, in order to embed watermarks in the data itself.

Our main contribution is a new watermarking technique for environmental sciences
data. Similar to database watermarking it is combinatorial in nature, and allows typ-
ical datasets to be marked in a manner that does not interfere with normal scientific
use. But unlike database watermarking, the technique makes minimal assumptions
about the structure of datasets. While it is not a security mechanism per se, it is ro-
bust to corruptions including reordering, sampling, truncation, and rounding, which
we argue is sufficient to support fair use policies in the scientific user community.
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We have evaluated our system from both empirical and analytic perspectives. Using
a prototype implementation of our system and a simulation of watermarked dataset
corruptions, we have characterized the robustness of our approach in practice. And, a
combinatorial analysis yields an upper bound probability for recovering a watermark
from a dataset with our technique. Results obtained from these exercises demonstrate
its flexibility and resilience. Further underscoring the practical applicability of our
approach, we formulate a general method for adapting it to a variety of data represen-
tation types, e.g. integer values, floating point values, and geographic datapoints.

To illustrate how our system can be used in practice to support fair use policies, we
have applied our method to encode a 32-bit provenance mark in an existing public use
dataset, available online. We have also made available online an interface for extract-
ing 32-bit provenance marks and reporting provenance information associated with
marked datasets. URLs for these tools, and further discussion of them, are provided in
Section 8.

1.4. Characterization of the Technique
As described above, our goal is to design a system that can embed provenance infor-
mation into, and retrieve such information from, scientific datasets. Furthermore our
techniques are intended to be robust against certain natural, non-adversarial dataset
corruptions. The remainder of the paper comprises a detailed description and analysis
of our embedding and retrieval algorithms; now we provide a high-level characteri-
zation of our technique, using common parlance of the watermarking literature for
clarity. In particular, we classify our system under the standard categories of percepti-
bility, robustness, and capacity [Fridrich and Goljan 1999].

Perceptibility. This classification refers to whether a watermark can be “perceived”
in the marked object; its meaning is media-dependent and defined with respect to hu-
man perception. Since watermarking has not been previously studied in the context of
environmental datasets, we propose a definition of perceptibility in this context, under
the assumption that any dataset is a collection of numeric values, with possibly signif-
icant ordering. To guide intuition, we (informally) assume that individual data points
have a precision that is coarser than the precision of the datatypes used to represent
the numeric values. We say that a watermark is imperceptible in a dataset if the water-
mark does not inhibit standard uses of the dataset. Specifically, watermarking should
not significantly affect the scientific use of the dataset. Consider, as an example, the
Sensirion SHT11 temperature sensor, which is accurate to at best ±0.5◦C. Altering
data produced by a Sensirion SHT11 by amounts orders of magnitude smaller than
0.5◦C does not affect use of that data, since such alterations are well within the sensor
data error.

Robustness. Robustness refers to how well a watermark stands up to transforma-
tions of data, benign or malicious. Our scheme is semi-fragile, in the sense that it is
capable of withstanding many, but not all, transformations. It is not intended as a se-
curity mechanism per se; rather our goal is to withstand benign transformations that
scientists might impose in the natural course of dataset usage. These transformations
include truncation and quantization (rounding) of digits, as well as random bit flips.
Our scheme is also robust to sampling of datasets, i.e. where a new dataset is gener-
ated by a selection of datapoints from the original dataset; this is also called a subset
attack in the database watermarking literature [Agrawal and Kiernan 2002]. Reorder-
ing of data within the dataset also has no effect on the reliability of our mechanisms.

Capacity. This category refers to whether a mechanism allows to check if an ob-
ject is marked with a given watermark (so-called one-bit watermarking), or whether
it allows a watermark to be extracted from an object with no prior knowledge of the
embedded watermark (so-called blind watermarking). Since we expect both capacities
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to support the user community, we define techniques for both one-bit and blind mark-
ing of datasets. Indeed, our algorithm for the latter relies on the former for increased
probability of correct mark extraction.

1.5. Outline of the Paper
The remainder of the paper is structured as follows. In Section 2 we provide a technical
problem statement, define our corruption model, and summarize our embedding and
retrieval technique at a high level. In Section 3 we describe our embedding algorithm
in detail. In Section 4 we define our one-bit checking technique, and in Section 5 we
define our blind retrieval algorithm. In both of these Sections we discuss how our ap-
proach is robust to various corruptions. Our basic theory treats datasets as sequences
of bit vectors representing natural numbers; in Section 6 we formulate a methodology
for extending our approach to various datatypes such as integers, doubles, and GPS co-
ordinates. In Section 7 we report results of combinatorial analysis and empirical tests
that illustrate robustness of our technique. We have developed a prototype implemen-
tation of our technique, which is deployed as a web application, allowing consumers
of self-identifying datasets to easily check or discover provenance information. We de-
scribe the implementation in Section 8. In Section 9 we summarize deployment issues
and how we might address them in future work. We discuss related work in Section 10,
and conclude in Section 11.

This paper substantially revises earlier work by same authors [Chong et al. 2010].
The present paper contains an greatly expanded analysis of non-integral data includ-
ing floating point and GPS values, describes the implementation of a new prototype
web application that decodes concise provenance identifiers from datasets and asso-
ciates those identifiers with descriptive provenance text, discusses the application of
this tool to an environmental dataset, and reports on additional experimental results
with both real GPS data and synthetic data.

2. PROBLEM DESCRIPTION AND TECHNICAL SUMMARY
In this section we provide description of the problem of interest, and also an infor-
mal description of how we address it. For simplicity we will consider bit vector repre-
sentations of data, where bitvecn denotes the set of bit vectors of length n and bitvec
represents the set of all finite length bit vectors.

2.1. Problem Statement
A provenance mark (or simply, mark) is a bit vector of fixed length Lm. We use syntax
mark ≡ bitvecLm

for the set of all marks. Intuitively a mark is an identifier that may
refer to more elaborate metadata via some standard such as DOI. In this paper, we are
not concerned with the allocation of provenance marks, or how a provenance mark is
linked to more detailed metadata. We assume that the length of provenance marks Lm
is universally agreed upon and known.

A datapoint is a bit vector of possibly variable length, and the set of datapoints
is written datapoint ≡ bitvec. Datasets, lists of datapoints, may be subject to vari-
ous forms of corruption, for example rounding or dropping datapoints (see the fol-
lowing section). We model dataset corruption with functions of form list(datapoint) →
list(datapoint).

Letting × denote the cartesian product, our goal is to implement the functions

E : list(datapoint)×mark→ list(datapoint)
R : list(datapoint)→ mark
C : list(datapoint)×mark→ {True,False}

ACM Journal of Data and Information quality, Vol. V, No. N, Article A, Publication date: January YYYY.



A:6 Stephen Chong et al.

that respectively encode a provenance mark into data set, retrieve an encoded prove-
nance mark from a dataset, and check that mark is present in a dataset. s

It is normal that sometimes mark retrieval or checking will fail. This may occur
when a dataset is too small or corruption to too severe. The following equations char-
acterize successful instances of retrieval and checking:

R(f(E(DS,m))) = m

C(f(E(DS,m)),m′) =

{
True when m = m′

False when m 6= m′

where DS : list(datapoint) and m,m′ : mark and f : list(datapoint) → list(datapoint)
models dataset corruption.

Notation. For bit vector v ∈ bitvec, we write |v| for the length (size) of v, and write
vi to refer to the ith bit of v, where i = 0 is the most significant (left-most) bit and
i = |v| − 1 is the least significant (right-most) bit. We write v@ v′ for the concatenation
of bit vectors v and v′. Finally, we write |L| for the length of list L.

2.2. Corruption Model
In our corruption model we allow the following transformations:

— Rounding. Datapoints are rounded to the nearest multiple of some integer n.
— Truncation. Some number of least-significant bits may be removed from any data-

point in the given dataset.1
— Deletion/Sampling. Datapoints may be removed from the given dataset.
— Reordering. Datapoints in a dataset may be permuted.
— Bit flip. One or more bits of any datapoint in the given dataset may be changed.

We assume that truncation, rounding, sampling, and reordering are more likely to
occur than bit flips. For example, copying data (for example, from one spreadsheet to
another) is more likely to truncate or round data values than it is to randomly flip
bits. Note that rounding and truncation tend to corrupt or remove the less significant
bits from datapoints. That is, more significant bits in datapoints are more likely to
be unaffected by truncation and rounding. Our embedding and retrieval processes are
designed to take advantage of this behavior.

There are of course limits on the robustness of any pair of encoding and retrieval
functions within this corruption model. For example removing all datapoints from a
dataset will disallow retrieval. Similarly, replacing the entire dataset with random
data through bit flips will also prevent retrieval.

2.3. Informal Summary of the Technique
Our technique embeds a provenance mark in the lower-order bits of datapoints in a
dataset. The embedding is designed to be robust to corruption in the lower-order bits
of datapoints. That is, our technique assumes that lower-order bits are more likely to
be corrupted than higher-order bits.

To support one-bit checking (wherein given dataset DS and provenance mark m,
we want to answer the question “was m embedded in DS?”) we use two of the lower-
order bits of each datapoint in the dataset as check bits. One of the check bits is used
to help the retrieval process determine the parameters used for the embedding; the
other check bit is a hash of the encoded provenance mark concatenated with the more
significant bits of the datapoint. Given sufficiently many datapoints whose check bits

1We do not regard truncation as a special case of rounding. Truncation of the least-significant k bits will
affect only k bits; rounding to the nearest n = 2k may affect an arbitrary number of bits. For example,
10111 (=23) rounded to the nearest 4 is 11000 (=24), with 5 bits affected.
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(and more significant bits) are uncorrupted, the encoding parameters can be retrieved,
and one-bit checking supported.

To support blind checking (wherein given dataset DS, we want to answer the ques-
tion “which provenance mark was embedded in DS?”), our encoding technique breaks
a provenance mark into a number of smaller pieces, and replaces the least significant
bits of each datapoint with one of these provenance pieces. We leverage redundancy,
allowing a bit of the provenance mark to appear in more than one provenance piece,
which provides greater robustness to truncation and rounding. The significant bits of
a datapoint are used to determine which provenance piece replaces the least signifi-
cant bits. During retrieval, the least significant bits of the datapoints are examined to
retrieve a “best guess” at the provenance mark, which can then be tested using one-bit
checking. If the best guess is incorrect, the retrieval process permits limited search of
possible provenance marks, where more likely marks are considered first.

3. EMBEDDING A PROVENANCE MARK IN A DATASET
In this section we describe how we embed a provenance mark m of length Lm into a
dataset. We assume that each datapoint in the dataset contains insignificant bits: a
non-zero number of least significant bits that can be safely manipulated within the
error bounds of the device that generated the data. We embed a provenance mark
into a dataset by encoding metadata into the insignificant bits of each datapoint. We
further assume that each datapoint in a dataset is the same length, contains the same
number of insignificant bits, and represents non-negative integers. If datapoints are
of different length, we can, without loss of generality, pad datapoints with leading
zeros until they are the same length. The number of insignificant bits is inherent in
the physical characteristics of the sensor generating the dataset, and so all datapoints
in the dataset should have an identical number of insignificant bits. In Section 6 we
describe how our technique can be generalized to floating point and negative values.

Let Lmd denote the number of insignificant bits in a datapoint, and Lsig denote the
number of significant bits; thus the length of any datapoint is Lmd + Lsig . Clearly
the values of Lmd and Lsig are dependent on the given dataset, since the number of
significant bits is a property of the sensors used to collect the data.

We refer to a datapoint in which the insignificant bits have been replaced with meta-
data as an annotated datapoint. The process of embedding a provenance mark in a
dataset produces an uncorrupted annotated dataset containing uncorrupted annotated
datapoints.

Figure 1 shows the structure of an annotated datapoint. The Lmd insignificant bits
have been replaced with a parameter check bit, a mark check bit, and a provenance
piece. We thus require that each datapoint contains at least 3 insignificant bits (i.e.,
Lmd ≥ 3). The provenance piece is a subset of bits of the provenance mark; Section 3.1
describes how provenance pieces are derived from a provenance mark. The parameter
check bit and mark check bit are derived from the datapoint’s significant bits and the
parameters for the embedding, described in Section 3.2. The check bits enable the re-
trieval process to verify, with high probability, which provenance mark was embedded
in the dataset.

3.1. Provenance Pieces
Each annotated datapoint contains Lmd −2 bits of the provenance mark, referred to as
a provenance piece. If the length of the provenance mark Lm is greater than Lmd − 2,
then a single datapoint cannot contain all bits of the provenance mark. The embedding
process chooses provenance pieces to ensure that an annotated dataset contains all bits
of the provenance mark with high probability.
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Fig. 1. Anatomy of an Annotated Datapoint

The embedding process takes as a parameterNpp , the number of distinct provenance
pieces. For each datapoint one of the Npp provenance pieces is chosen to be embedded
into it. Specifically, given a datapoint with significant bits s, we choose the kth prove-
nance piece, where k = hash(Npp , s) and hash(n, v) is a cryptographic hash of bit vector
v that returns a value in Zn. Provided that a dataset has sufficient variation in the sig-
nificant bits of its constituent datapoints, the Npp provenance pieces will be embedded
uniformly at random throughout the dataset. Thus, any sufficiently large random sub-
set of an annotated dataset is likely to include every distinct provenance piece. This
supports robustness in the retrieval process. Section 6 discusses an extension to this
technique that treats low entropy datasets.

Given provenance mark m of length Lm, and given the number of provenance pieces
Npp and insignificant bits Lmd , then the Npp distinct provenance pieces are defined as
follows. Let Lpp = Lmd − 2 be the length of each provenance piece. For k ∈ 0..(Npp − 1)
and i ∈ 0..(Lpp − 1), let the ith bit of the kth provenance piece, denoted ppki , be defined
as

ppki = mj where j =
(
k
Lm
Npp

+ i

)
mod Lm.

Note that a given bit of provenance mark m may appear in more than one prove-
nance piece. This redundancy means that not all distinct provenance pieces need to
be available during the retrieval process. Furthermore, since the same mark bit may
occur in a more significant position in one provenance piece than another, redundancy
provides robustness to truncation and rounding.

Figure 2 gives an example of how a provenance mark of length 16 is split into four
distinct provenance pieces of length 8 (i.e., Lm = 16, Npp = 4, and Lpp = 8). Note that
each provenance piece contains 8 contiguous bits of the provenance mark. (The fourth
provenance piece, pp3, contains the last four bits of m followed by the first 4 bits.)
Note also that each bit of the provenance mark appears in exactly two provenance
pieces. Thus, provenance mark m could be retrieved if the retrieval process has either
provenance pieces pp0 and pp2, or provenance pieces pp1 and pp3. This redundancy
means that a subset of the provenance pieces may suffice to retrieve the provenance
mark. Furthermore, if a dataset was truncated by, say, a single bit, then the least
significant bit of piece pp0 (corresponding to the 7th bit of m) would be lost from every
instance, but the 7th bit of m would still be available in all instances of piece pp1.
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provenance mark m: 0100110001001011
1st provenance piece pp0: 01001100

2nd provenance piece pp1: 11000100
3rd provenance piece pp2: 01001011
4th provenance piece pp3: 10110100

where Lm = 16, Npp = 4,

Lpp = 8

Fig. 2. Provenance pieces example.

To ensure that each bit of the provenance mark appears in the same number of
distinct provenance pieces, we require that Npp × Lm is divisible by Lpp . Moreover,
since each provenance piece should contain distinct bits of the provenance mark, we
require that Npp ≤ Lm.

3.2. Parameter and Mark Check Bits
The parameter check bit and mark check bit are derived from the encoding param-
eters, and are used in one-bit checking and during retrieval to determine with high
probability if the correct provenance mark has been retrieved. The parameter check
bit pc for a datapoint with significant bits s is computed by taking the hash of s and
the number of distinct provenance pieces, Npp . The mark check bit mc is the hash of s
and the provenance mark m. Formally, we have:

pc = hash(2, s@Npp) (1)
mc = hash(2, s@m). (2)

Section 4 describes how the parameter and mark check bits are used by one-bit check-
ing.

4. CHECKING A PROVENANCE MARK
The embedding process embeds a provenance mark m into a dataset to produce an un-
corrupted annotated dataset. As the dataset is disseminated and used, it may be cor-
rupted, for example by datapoints being rounded or deleted as described in Section 2.2.
However, we can use a corrupted annotated dataset for both one-bit watermarking and
blind watermarking. In one-bit watermarking, we can determine with high probability
whether a provenance mark m′ is the provenance mark m that was embedded into the
dataset. Blind watermarking allows us to retrieve m with high probability.

In this section, we describe how to perform one-bit watermarking using a corrupted
annotated dataset. In Section 5 we describe how to perform blind watermarking, and
our technique there relies on the one-bit checking described here to increase probabil-
ities of correctness.

4.1. Retrieving Lsig and Npp

The embedding process adds a parameter check bit to each datapoint to assist the
retrieval of embedding parameters Lsig (the number of significant bits of a datapoint)
and Npp (the number of distinct provenance pieces used in the embedding process).
The retrieval process guesses values for Lsig and Npp , and uses the parameter check
bits to determine (with high probability) when it has guessed the values correctly.

A corrupted annotated datapoint d is defined to be pc-consistent with guesses Lsig

and Npp iff

hash(2, d0 . . . dLsig−1 @Npp) = dLsig
.
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Note that if the guesses for Lsig and Npp are correct, and bits d0 . . . dLsig
have not been

corrupted, then dLsig
is the parameter check bit as computed by Equation 1. If the

guesses for Lsig and Npp are incorrect, or one or more bits d0 . . . dLsig
have been cor-

rupted, then the probability of the datapoint being pc-consistent is approximately 1
2 ,

due to the properties of the cryptographic hash function used to generate the parame-
ter check bit.

We define the pc-consistency score of corrupted annotated datasetDS for guesses Lsig

and Npp to be the proportion of datapoints in DS that are pc-consistent for guesses Lsig

and Npp . If the guesses are correct, and the first Lsig + 1 bits of each datapoint have
not been corrupted, then the pc-consistency score will be 1. If the guesses are incorrect,
then (regardless of the corruption of the datapoints) the expected pc-consistency score
is 1

2 . In general, the probability of an incorrect guess having pc-consistency score of 1
is 2−n, where n = |DS|, which is vanishingly small for an annotated corrupted dataset
DS of reasonable size.

Because guesses Lsig and Npp are drawn from limited domains ({1 . . .max{|d| |
d ∈ DS}} and {1 . . . Lm} respectively) it is feasible to enumerate all possible guesses
(Lsig , Npp) and calculate their pc-consistency score. The parameters with the best pc-
consistency score are used for the following step, checking a provenance mark. In Sec-
tion 7, we investigate the effects of corruption on the pc-consistency score.

4.2. Checking a Provenance Mark
Suppose we have a corrupted annotated dataset DS for which we know the embed-
ding parameter Lsig , and we have a guess at the provenance mark m. (We describe
in Section 5 how we retrieve one or more guesses for the provenance mark for blind
checking.) The embedding process adds a mark check bit to each datapoint to deter-
mine with high probability when the correct provenance mark has been guessed.

Given a corrupted annotated datapoint d ∈ DS, we say that d is mc-consistent with
Lsig and m iff

hash(2, d0 . . . dLsig−1 @m) = dLsig+1.

Note that if the guesses for Lsig and m are correct, and the bits d0 . . . dLsig+1 have not
been corrupted, then dLsig+1 is the mark check bit as computed by Equation 2. Other-
wise, the probability of the datapoint being mc-consistent is approximately 1

2 .
The mc-consistency score of dataset DS for Lsig and m is the proportion of datapoints

in DS that are mc-consistent for Lsig and m. As with the pc-consistency score, if Lsig

and m are correct and the first Lsig + 2 bits of each datapoint are uncorrupted, the
mc-consistency score will be 1, otherwise the expected mc-consistency score is 1

2 . In
Section 7, we investigate the effects of corruption on the mc-consistency score, and
given an mc-consistency score, when that implies the provenance mark is correct.

5. RETRIEVING THE PROVENANCE MARK
In addition to the parameter check bit and mark check bit, the embedding process adds
to each point in the dataset a provenance piece containing bits of the provenance mark
m. To retrieve a provenance mark from a corrupted annotated dataset (also known
as blind watermarking), we extract provenance pieces from the dataset and combine
them to construct a best guess at the provenance mark. Because the dataset may have
been corrupted, the provenance pieces embedded into datapoints may not contain all
the correct bits of the embedded provenance mark. However, due to the construction
of the provenance pieces, it is likely that some information about provenance mark m
can be recovered as a best guess. This guess can be checked for correctness using the
mark check bits, as described in Section 4.2.
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For presentation purposes, we define a useful function split(·) that takes datapoint
d and, based on parameters Lsig and Npp , returns information about the significant
bits, check bits, and provenance piece retrieved from d. Formally, for datapoint d, and
parameters Lsig and Npp , we define split(d) = (s, pc,mc, pp, k) where

— s = d0 . . . dLsig−1; and
— pc = dLsig and
— mc = dLsig+1; and
— pp = dLsig+2 . . . d|d|−1; and
— k = hash(Npp , s) .

Assuming that the datapoint has not been corrupted and Lsig and Npp were the
parameters used in the embedding process, then s is the significant bits of d, pc and
mc are the parameter check bit and mark check bit respectively, pp is the provenance
piece that was embedded into the datapoint, and k indicates which provenance piece
was chosen for this datapoint. If the datapoint is corrupted, then one or more bits may
be incorrect.

However, we provide redundancy in the encoding of the provenance mark in two
ways. First, each datapoint contains a provenance piece; even if some datapoints are
corrupted, there are likely to be other datapoints that contain the same provenance
piece, possibly uncorrupted. Second, the encoding parameter Npp can be set so as to
ensure that each bit of the provenance mark appears in more than one distinct prove-
nance piece; if some of the less significant bits of a provenance piece are corrupted
due to rounding or truncation, those bits will appear in another provenance piece in
a more significant position, making the retrieval process more robust to corruptions
such as rounding or truncation. For example, in Figure 2, the first bit of the prove-
nance mark appears in provenance piece pp3 in the fourth least-significant position,
and in provenance piece pp0 in the most significant position.

The suggestion for bit i of the provenance mark of datapoint d is the information that
datapoint d contains about the ith bit of the provenance mark. Specifically, suggest(d, i)
is either ∗ (if d contains no information about the ith bit of the provenance mark) or a
pair (b, c), where b is the bit (0 or 1) that d suggests for the ith bit of the provenance
mark, and c ∈ N is the confidence of that suggestion. Formally, we define:

suggest(d, i) =

{
(ppj , j) if j + k mod Lm = i and 0 ≤ j < |pp|
∗ otherwise

where (s, pc,mc, pp, k) = split(d).
The confidence of suggestions is a natural number, where higher numbers indicate

less confidence. We use the index within the provenance piece at which the ith bit of
the provenance mark occurs. Thus, the most confident suggestion is one where the ith
bit of the provenance mark appears in the most-significant position of the provenance
piece. This reflects our corruption model, where less-significant bits of a datapoint are
more likely to be corrupted than more-significant bits.

For example, if datapoint d is uncorrupted and contains provenance piece pp2 from
Figure 2, then suggest(d, i) = ∗ for 0 ≤ i ≤ 7 (since pp2 contains no information about
the first 8 bits of the provenance mark), and suggest(d, 10) = (pp22, 2) = (0, 2).

We lift the definition of suggest(d, i) from datapoints to datasets: suggest(DS, i) is
a list of suggestions for bit i of the provenance mark, derived from the datapoints of
dataset DS. We ignore datapoints d that contain no information about the ith bit of the
provenance mark (i.e., we ignore datapoints d such that suggest(d, i) = ∗). Formally, we
define suggest(DS, i) as follows.

suggest(DS, i) = {suggest(d, i) | d ∈ DS ∧ suggest(d, i) 6= ∗}.
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Given suggest(DS, i), there are many ways to compute the “best guess” for the ith bit
of the provenance mark. One possibility is that we select the bit that the majority of
suggestions propose, regardless of the confidence of any suggestion. We call this allVote
defined as follows (we use L to range over lists of suggestions of the form (b, c), and
round(·) rounds real numbers to the nearest integer):

allVote(L) = round

(∑
(b,c)∈L b

|L|

)
Another possibility is that we choose the bit that the majority of the most confident
suggestions propose. Function bestVote considers only the most confident suggestions.

bestVote(L) = let L′ =
{
(b, c) | (b, c) ∈ L ∧ c = min{c′ | (b′, c′) ∈ L}

}
in round

(∑
(b,c)∈L′ b

|L′|

)
Other functions are possible, such as weighting the vote b from suggestion (b, c) based
on the confidence c—more confident suggestions receive greater weight.

Now, given some function f (such as allVote or bestVote) for computing a bit from
a list of suggestions, we can compute a “best guess” m at a provenance mark from a
dataset. The ith bit of the best guess m is computed as

mi = f(suggest(DS, i)).
Given thusly computed best guess m, we can verify whether it is the originally embed-
ded provenance mark via one-bit checking as described in Section 4.2. The construction
of the best guess is robust to many transformations of the dataset; Section 7 presents
related analysis in detail.

However, if the dataset is too corrupted, the best guess may be incorrect. If the
mark check bits of the dataset are also severely corrupted, then there is insufficient
information in the dataset to determine if we have recovered the correct provenance
mark. But if the mark check bits are mostly uncorrupted, then we can search for the
correct provenance mark, using mc-consistency to determine when we have succeeded.

Directed Search. The space of possible provenance marks is too large to search ex-
haustively. However, given a best guess for a provenance mark, and some measure of
confidence in each bit of that guess, we can direct the search of possible provenance
marks so that we check more likely marks first. This allows allocation of a budget for
searching, with the budget being used to check the best candidates first.

We assume that we have a best guess m for the provenance mark, and for each i,
confidence ci in the ith bit of m. Confidence ci may be derived from the suggestions of
datapoints, for example, using the average of confidences of suggestions used to com-
pute the ith bit of m. However, other measures of confidence are possible, such as using
the entropy of the suggestions for the ith bit. For example, when using allVote to com-
pute the ith bit of the provenance mark, if

∑
(b,c)∈L b

|L| is close to 0.5, then there is much
entropy in the suggestions for bit i, and as a result, there should be low confidence for
that bit.

Let i1, . . . , iLm be a permutation of 1..Lm such that ci1 ≥ ci2 ≥ · · · ≥ ciLm
. That

is, i1, . . . , iLm orders the Lm bits of the provenance mark guess m by increasing con-
fidence, with i1 being the index of the bit that we have the least confidence in, and
iLm

being the index of the bit that we have the most confidence in. The recursive
algorithm sketched in Figure 3 checks possible provenance marks in decreasing or-
der of confidence, starting with a call search(Lm,m), where m is the best guess at the
provenance mark. Note that m is the first provenance mark checked, and subsequent
possible provenance marks are obtained by varying the bits in which we have the least
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search(n, m):
if n = 0 then

check possible provenance mark m
else

search(n− 1, m)
flip bit in of m
search(n− 1, m)

Fig. 3. Directed search algorithm.

confidence. An implementation could stop once the mc-consistency score of a possible
provenance mark is above a certain threshold. Alternatively, given a search bound sb,
it could consider only the first sb possible provenance marks and choose the best prove-
nance mark of those considered. For example, by calling search(10,m) only the best 210
possible provenance marks will be considered, equivalent to sb = 1024.

Section 7 discusses the robustness of the retrieval process, and the efficacy of di-
rected search.

6. EXTENSION TO VARIOUS DATATYPES AND LOW-ENTROPY DATASETS
Our presentation has focused on embedding and recovery techniques for watermarking
collections of bit vectors, with an underlying assumption that lower order bits corre-
spond to less significant data. However, in practice, datasets needing marking may not
conform to these assumptions. Here we consider extensions of our framework that can
accommodate datasets that may be encountered in the wild.

One precondition for our encoding is a certain level of entropy in data, since sig-
nificant bits in datapoints serve as provenance piece indices. Insufficient entropy will
result in an insufficient distribution of provenance pieces in the dataset. However, we
note that surprisingly little entropy is needed to support statistically reliable recovery
of a mark; as demonstrated in Section 7 our encoding is reasonably robust for datasets
with as few as 50–100 unique elements. Datasets with fewer unique values are uncom-
mon and when they do arise, it is typically when measuring small, discrete quantities.
These are a poor fit for our scheme, since encoding in the low order bits of an inte-
gral data representation would result in unacceptably large changes in value. On the
other hand, increasing entropy in a dataset is always possible, either by randomly
manipulating low order bits in datapoints, or by padding real-numbered datapoints
with additional, randomized lower order bits. However, this sort of manipulation is so
closely tied to the needs and tolerances of data users that we consider such strategies
highly application specific and thus out of scope for this presentation.

Real datasets will also employ different representation types of data. For example,
geographic coordinates are common in environmental datasets, and are fundamentally
different from integral values in their representation. This matter is more readily con-
sidered here, since in particular we can develop a general terminology and method
for dealing with different data types. Our approach is to introduce a notion of data
preserving, bidirectional transformation between representation types and bit vectors.
This allows us to retain the previously described method for directly embedding and re-
covering marks from sets of bit vectors, and providing a technical framework in which
to evaluate the effect of applying provenance marks.

We start by formalizing our provenance mark encoding functionality in pointwise
manner. For the issue under consideration, it is convenient to consider encoding a
single datapoint at a time with fixed encoding parameters.
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Definition 6.1. Recall type datapoint populated by bit vectors. Let PM be our prove-
nance mark embedding function defined on single bit vectors with fixed Lpp , Lsig , and
provenance mark m : mark. Hence:

PM : datapoint→ datapoint

This is the point-wise version of encoding functionE; the formal relation between these
functions is E(DS,m) = map PM DS. An important property of the encoding is that it
only manipulates low-order bits, which we characterize as follows.

PROPOSITION 6.2. Let preservedBits(PM ) = { i | (PM (b))[i] = b[i] for all b : bitvec}.
Then preservedBits(PM ) ⊇ {0 . . . Lsig − 1}.

Now, we introduce a general notion of representation type T , whose members are
data points. The following will show how to effectively mark elements of a type T using
a provenance mark embedding function PM . As we will see, it is sufficient for T to be
endowed with an equivalence relation and a distance function. Distance is expressed
as a real number, and allows us to measure the perturbation of datapoints under an
embedding.

Definition 6.3. We let T range over arbitrary representation types which must admit
an equivalence relation =T and a distance function:

	 : T × T → real symmetric distance function

Now we formally characterize the transformation between representation types and
bit vectors, which must be data preserving.

Definition 6.4. Given fixed provenance mark function PM and a representation
type T , an encoding for T , denoted e, is a pair of functions vectorizeT and devectorizeT
such that:

vectorizeT : T → bitvec devectorizeT : bitvec→ T

and these must be inverses, i.e. for any p : T it must be the case that:
devectorizeT (vectorizeT (p)) =T p

We will write e(p) to denote devectorizeT (PM (vectorizeT (p))) for p : T .

Ultimately, we would like to objectively evaluate encoding schemes to determine
if they are suitable for specific applications. Intuitively, this is measured in terms of
the resulting perturbation thresholds of datasets—less is better. In general, we expect
desirable thresholds to be within the margin of error of a given dataset.

Definition 6.5. An encoding e respects a threshold n in T iff p 	T e(p) ≤ n for all
p : T .

Now, some examples. We consider likely common representation types: two’s comple-
ment integers, fixed-point numbers, IEEE floating points, and geographic coordinates.
For both two’s complement and IEEE floating point values, transformation is trivial
since both representation types are already bit vectors with less significant bits in
lower order positions.

Example 6.6 (Two’s complement encoding). Take T to be a two’s complement bit
vector representation of integer values, with maximal bit vector length n; we call this
type 2s. We define vectorize2s and devectorize2s to be the identity function, and =2s

and 	2s to be ordinary two’s complement equality and absolute difference respectively,
with results interpreted as real numbers. Suppose that the provenance mark embed-
ding function PM manipulates the Lmd low-order bits. Then encoding e respects a
threshold 2Lmd − 1, since p	2s e(p) ≤ 2Lmd − 1 for all two’s complement numbers p.
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Example 6.7 (Fixed-point encoding). Take T to be the set of real numbers that,
when represented in base-2, have at most k bits after the radix point. Intuitively,
by multiplying each datapoint by 2k, we obtain an integer value, and can use the
two’s complement encoding defined above. Specifically, we can define vectorizeT and
devectorizeT as follows.

vectorizeT (p) = vectorize2s(p× 2k)

devectorizeT (v) = devectorize2s(v)÷ 2k

If we suppose that the provenance mark embedding function PM manipulates the
Lmd low-order bits then encoding e respects a threshold 2Lmd−k − 2−k, which follows
immediately for the threshold for the two’s complement encoding.

The fixed-point encoding works well if all datapoints in the dataset have approxi-
mately the same magnitude. However, if the datapoints can vary in magnitude, then
a fixed-point encoding is typically not suitable. This is because the noise added to dat-
apoints to encode provenance information is of the same magnitude for all datapoints,
and thus the relative change needed to encode provenance information may be vastly
different for different datapoints. This issue can be avoided by using a floating-point
encoding to encode numbers of varying magnitude.

Example 6.8 (IEEE floating point encoding). Take T to be the set of real numbers
encodable as IEEE binary64 “double precision” floating point numbers; we call this
type double. We define vectorizedouble and devectorizedouble to be the standard IEEE bi-
nary64 encoding and interpretation. Furthermore, we take =double and 	double to be
ordinary IEEE binary64 equality and absolute difference respectively, with results in-
terpreted as real numbers.

In the standard IEEE binary64 encoding, 64 bits are used to represent numbers,
with the left-most bit indicating sign s (either 1 or 0), the next 11 bits indicating
the exponent e (covering all integer values between −1023 and 1023 inclusive) and
the remaining 52 bits indicating the mantissa man. Thus, the number represented is
(−1)s ×man × 2e (with a few exceptions for encoding ±0, ±∞, and not-a-numbers).

Restricting attention to a well-behaved subset of T yields stronger properties. Let
T ′ ⊆ T be the set of non-zero, normal numbers. This is all positive and negative doubles
with exponent e greater than −1023 and excludes smaller subnormal numbers, ±0,
±∞, and not-a-number codes. Call the corresponding representation type normdouble.
Here we take a	normdouble b = max(a/b, b/a). Assuming Lsig > 12 (i.e., Lsig encompasses
the sign bit and all exponent bits), applying a provenance mark does not change a
number’s sign or exponents bits, and we can calculate that that this encoding respects
threshold 1 + 213−Lsig in T ′.

More interesting is the example of GPS coordinates, which are typically represented
as pairs of floating point numbers. Perturbation distance here is measured as the geo-
graphic distance between pre- and post-embedding datapoints. Noting that each com-
ponent of the coordinate pair is equally significant, a successful strategy is to interleave
the coordinate pair in vectorization.

Example 6.9 (GPS coordinates). Take T to be pairs of normal real numbers, rep-
resenting GPS coordinates in WGS84 format up to 64 bit (double) precision; we call
this type GPS. We define =GPS to be ordinary equality on pairs, and define 	GPS as
the physical distance between two points on the Earth, calculated using the haver-
sine formula. The result of vectorizeGPS is a 128 bit vector obtained by interleaving the
elements of each coordinate pair represented as binary64 values. That is, the least sig-
nificant bits of the latitude and longitude elements becomes the 0th and 1st bits in the
bit vector respectively, the second least significant bits the 2nd and 3rd elements, etc.
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We just take devectorizeGPS to be the inverse of this. Modifying the real-number bounds
to account for the fact the latitude and longitude each have half as many bits flipped
as a single real number, allows us to compute that this encoding satisfies threshold

R arcsin

√
sin2

kπ

2
+ sin2 2kπ

where R is the radius of the Earth and k = 2(13−Lsig/2). Note that, assuming a constant
amount of metadata, Lsig will be more than twice a large for a GPS coordinate—a
pair of doubles—as for a single double. As a point of references, if we have 12 bits of
metadata then Lsig = 128−12 = 116 and the encoding respects a threshold of 2.9×10−7

meters, or 0.29 micrometers. Section 7.2 evaluates this techinqique in practice.

The essential characteristic of the above transformations from representation types
to bit vectors is that less significant data in the representation type end up as less sig-
nificant bits in the resulting bit vector. Since our encoding modifies the less significant
bits of bit vectors, this scheme tends to modify less significant data in the represen-
tation type. We therefore propose the following property as a heuristic for creating
encoding schemes that are likely to respect low thresholds.

PROPERTY 6.1. Given an encoding e = (vectorizeT , devectorizeT ) for a representation
type T , we say that e is significant-bit order preserving iff for all b : bitvec we have:

j < Lsig and j < k =⇒
devectorizeT (flip j b)	 devectorizeT (b) ≤
devectorizeT (flip k b)	 devectorizeT (b)

where flip i b logically negates b’s ith bit.

Finally, when a datatype’s vectorized representation contains more than than 64 bits,
we may choose to apply the provenance mark encoding and retrieval functions to its
least significant 64 bits only. This short-encoding technique does not effect mark per-
ceptibility. Short encoding is poorly suited for datasets whose least significant 64 bits
have substantially lower entropy (fewer unique values) than the dataset as a whole.
Section 7.2 describes an experiment using short encodings.

7. EVALUATION AND ANALYSIS
We have developed prototype tools for encoding provenance marks into datasets, and
for performing one-bit and blind mark checking. The tools are implemented in approx-
imately 1,300 lines of non-comment, non-blank lines of Perl code. We have also de-
veloped tools that corrupt datasets by rounding, truncating, and sampling datapoints.
In this section we empirically evaluate the effectiveness of our techniques using the
prototype tools on artificially generated and real datasets. In addition, we consider
analytically how our encoding techniques affect statistical properties of datasets.

To ensure consistency of our system’s performance on real (not synthesized) datasets
and different datatypes, we also considering an encoding of an existing GPS dataset in
Section 7.2. Practical experience with encoding of another real dataset is considered in
Section 8.

7.1. Mark checking for synthetic data
Retrieving encoding parameters. Recall from Section 5 that the first step in both one-bit
and blind checking is to retrieve the encoding parameters Lsig and Npp by computing
the pc-consistency score of all possible parameters, and selecting the candidate with
the greatest score. For an uncorrupted annotated dataset, the correct encoding param-
eters yield a pc-consistency of 1, and all other candidates will have a pc-consistency
score of approximately 1

2 .
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Fig. 4. pc-consistency scores vs. sample size. Each thick column represents pc-consistency scores from a
single run of the parameter recovery algorithm.

For corrupted datasets, the correct encoding parameters may have a pc-consistency
score less than 1. Retrieving these parameters is still possible if there exists a sig-
nificant gap between the greatest and second-greatest pc-consistency scores, which
correspond to the correct and best-looking incorrect answer respectively. If the encod-
ing parameters cannot be retrieved, then neither one-bit nor blind checking can be
performed.

The retrieval algorithm examines only the significant bits and the parameter check
bit of a datapoint; it does not examine the other Lmd −1 bits of metadata. Thus trunca-
tion and bit flips do not effect parameter recovery so long as the corruption is limited to
low-order bits. Furthermore, pc-consistency scoring is unaffected by dataset reorder-
ing. Below we consider how sampling and rounding affect parameter retrieval.

Corruption via sampling. Figure 4 shows the pc-consistency scores for all non-trivial
encoding parameter candidates for annotated datasets of various sizes. Samples were
drawn from a synthetic dataset with 10,000 datapoints generated by choosing ele-
ments uniformly at random, with replacement, from the set {1, 2, . . . , 5 × 106}. We
assume that there are 13 significant bits (Lsig = 13), and, since the synthetic data
can be represented in 23 bits, there are 10 least significant bits that we can use to
encode metadata (Lmd = 10). A 32-bit provenance mark (Lm = 32) was encoded in
the dataset by replacing the 10 least significant bits; there were 8 distinct provenance
pieces (Npp = 8), and the length of each provenance piece was 8 (Lpp = Lmd−2 = 8). Un-
less otherwise stated, all experiments in this section used the same parameters. When
retrieving the encoding parameters, degenerate encoding parameters (with Lsig ≤ 2)
were ignored.

In all cases, the correct parameters have a pc-consistency score of 1. For sufficiently
large samples (say, at least 50), the pc-consistency scores of incorrect parameters clus-
ter around 1

2 , since incorrect parameters are consistent with a given parameter check
bit half the time, and thus the pc-consistency scores of incorrect parameters are bi-
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Fig. 5. Fraction of provenance marks recovered from a data set vs. number of unique datapoints. The solid
series describes data sets with k elements and the dashed series describes data sets with 1,000 elements,
k-many of which are unique. Prior to decoding, low-order bits are flipped with low probability. The difference
between sampled and low-entropy behavior appears to vanish if the encoded data is not corrupted.
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Fig. 6. Max pc-consistency scores vs. degree of rounding.
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nomially distributed. Thus, in a dataset with n distinct values, the probability of an
incorrect parameter have a pc-consistency score of 1 is approximately 2−n. For small
sized samples, there is a much greater chance of an incorrect parameter having a high
pc-consistency score.

Thus, the correct encoding parameters can be retrieved with high probability given
a sufficiently large sample of an otherwise uncorrupted annotated dataset, say at least
50 datapoints. This result is independent of the length of the provenance mark Lm,
length of the metadata Lmd , and number of provenance pieces Npp .

Figure 5 shows the proportion of provenance marks recovered when computed from a
sampled data set. Consistent with Figure 4, a high likelihood of successful provenance
mark recovery was observed for samples with about 50 elements.

Effect of low-entropy data. We consider a dataset with many identical values to be a
low-entropy dataset. Such a dataset may occur when, for example, a sensor measures
a slowly changing quantity. Provence mark recovery for a data set with many samples
but only k unique elements behaves similarly to recovery for a data set with k-many
elements total, all of which are unique. Figure 5 shows that a low entropy data set can
be more resilient to random corruption than a small sample of a data set. A point is
corrupted by flipping each of its 4 least significant bits with probability 0.2.

Corruption via rounding. Figure 6 shows maximum pc-consistency scores computed
when decoding a dataset corrupted by rounding datapoints to the multiples of k, for
varying values of k. The dataset contained 10,000 datapoints, but the pc-consistency
scores were calculated using a randomly chosen 100 element sample.

As we round by larger quantities, top scores fall and it becomes harder to distin-
guish the correct encoding parameters from the incorrect parameters. Rounding to the
nearest multiple of k for 2 ≤ k ≤ 128 leaves top pc-consistency scores far above those
expected for arbitrary parameters, thus allowing the successful retrieval of the encod-
ing parameters. At first, large values of k yield substantially lower top pc-consistency
scores. However once rounding has eliminated enough significant bits, it becomes easy
to overfit during parameter recovery.

The value of k for which it becomes difficult to determine the correct encoding param-
eters is independent of the length of provenance mark Lm and number of provenance
pieces Npp . It is however dependent on the length of the metadata Lmd : using more
bits for metadata provides robustness for larger values of k.

One-bit checking. One-bit checking evaluates the mc-consistency score of a single
provenance mark. A sufficiently high mc-consistency score indicates that it is likely
that the same provenance mark was embedded in the dataset.

Since one-bit checking uses just the mark check bit, and does not use the Lpp =
Lmd−2 bits of the provenance piece, its robustness with respect to various corruption is
very similar to that of recovering the encoding parameters, which uses the parameter
check bit. It is unaffected by truncation or bit-flipping that affect only the Lmd − 2
least-significant bits of datapoints. It is also unaffected by reordering of datapoints.
The effects of sampling and rounding on one-bit checking are the similar to their effect
on parameter recovery.

What mc-consistency score indicates that we have the same provenance mark that
was used during encoding? The acceptance threshold for mc-consistency scores—
especially in view of potential corruption—is best determined empirically. In our expe-
rience, 0.85 is a conservative threshold; given a sufficiently large dataset (containing,
say, 100 distinct values), the probability that an incorrect provenance mark will have a
mc-consistency score of 0.85 or higher is approximately 2.41×10−13—about two chances
in 10 trillion. Intuitively, this is because the mc-consistency scores of incorrect prove-
nance marks are binomially distributed. Figure 7 demonstrates this with a histogram
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of mc-consistency scores for about 10,000 incorrect provenance marks, in a dataset of
100 datapoints.

Blind checking. Blind checking attempts to retrieve a provenance mark from a cor-
rupted annotated dataset knowing only the length of the mark. It uses a heuristic to
generate one or more guesses, and uses one-bit checking as a subroutine to evaluate
the guesses. Blind checking is not affected by reordering of datapoints. It is affected by
sampling, since too few datapoints may not contain all bits of the encoded provenance
mark. Blind checking can be affected by bit flips, truncation, and rounding; however,
the encoding scheme is designed to be robust to corruption in lower order bits, and
truncation and rounding are more likely to corrupt lower order bits.

Effect of redundancy and sampling. A single bit of the provenance mark may occur
in many provenance pieces. We write R = k to indicate an annotated dataset has re-
dundancy k—that is, each bit of the provenance mark appears in k provenance pieces.
As shown in Figure 2, encoding a provenance mark of length 16 using Npp = 4 and
Lpp = 8 results in each bit of the provenance appearing in two distinct provenance
pieces: R = 2. Increasing redundancy substantially increases likelihood that decoding
will succeed in the presence of corruption of lower-order bits. However, more redun-
dancy also increases the probability that a small sample won’t contain all bits of a
provenance mark.

The probability of recovering a provenance mark from an (uncorrupted) annotated
dataset of size |D|, with a given redundancy R, can be calculated analytically. Each
datapoint of the annotated dataset contains one of the Npp distinct provenance pieces,
chosen uniformly at random by the encoding mechanism. Thus, there are (Npp)

|D|

equally probable ways of choosing (with replacement) |D| provenance pieces from the
Npp distinct provenance pieces. Given |D| provenance pieces, the provenance mark
can be recovered if every bit of the provenance mark occurs in at least one of the |D|
provenance pieces. We can count the number of ways that |D| provenance pieces can
be chosen such that the provenance mark can be recovered. The combinatorial argu-
ment is described in detail in the accompanying technical report [Chong et al. 2014].
Figure 8 presents the predicted probability of recovering a provenance mark from an-
notated datasets of various size (with Npp = 8). Here, recovery means that the sample
contains datapoints with enough provenance pieces so that every bit of the provenance
mark appears in at least one provenance piece. Other than sampling, the annotated
dataset is not corrupted (i.e., no bit-flipping, rounding, etc.). Note that the probabili-
ties for recovery depend only on the redundancy and sample size, and are independent
of provenance mark length Lm, and provenance piece length Lpp ; however, not all re-
dundancies are possible with given encoding parameters. For example, R cannot be
greater than Lpp .

Figure 8 demonstrates that the probability of blind mark recovery undergoes a
“phase transition” around sample size 10. For smaller samples, there are not enough
distinct provenance pieces present to recover all the bits of the provenance mark; for
larger samples, recovery is very likely.

Also plotted on Figure 8 are observed recovery rates for a series of experiments using
Lm = 32, Lpp = 8 and Npp = 8 (which implies R = 2). Taking samples of various sizes
from a large uncorrupted annotated dataset, we measured how often the sample con-
tained sufficient information to reconstruct all bits of the provenance mark (without
any search). The observed success rate matches the predicted success rate well.

Corruption via truncation and rounding. Unlike one-bit checking and parameter
retrieval, blind checking uses low-order bits to identify a best-guess provenance mark;
corruption via truncation or rounding can impede blind checking.
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Truncation may occur in one of two ways. Under zeroing truncation, low bits of a
datapoint are overwritten with zeros, losing precision but maintaining the datapoint’s
order of magnitude. For instance applying three bits of zeroing truncation to 53 (binary
110101) yields 48 (binary 110000). In contrast shifting truncation simply removes the
truncated bits, reducing values by factors of two. For instance, three bits of shifting
truncation takes 53 to 6 (binary 110).

Figure 10 shows the effect of zeroing truncation of blind checking. All datapoints of
an annotated dataset had the n least-significant bits set to zero; blind and directed
search performed, with a search bound of 216 = 65, 536. That is, at most 216 prove-
nance marks were considered. The x-axis indicates n, the number of least-significant
bits truncated from each datapoint; the y-axis shows how many provenance marks
were considered before the provenance mark with the highest mc-consistency score
was found (which may not be the correct mark). Ten trials were performed for each
possible combination of R ∈ {1, 2, 4, 8} and 0 ≤ n ≤ 9, and the mean is plotted.

The graph indicates that we “fall off a cliff”. Blind checking can tolerate some
amount of zeroing truncation very well, and is able to retrieve the provenance mark
without search (rank = 1). However at some point, too many bits have been truncated,
and we are unable to recover the provenance mark. Higher redundancy results in
more robustness to truncation. The correct provenance mark, if not found at rank 1,
was typically not in the first 216 provenance marks considered.

Comparing Figures 10 and 11 indicates zeroing and shifting truncation have similar
effects. Furthermore, our experiments indicate that the effects of rounding are also
similar.

7.2. Mark encoding and retrieval for GPS data
Section 6 describes a vectorization scheme for GPS data and introduces a short-
encoding technique that adds and retrieves provenance marks using only the low 64
bits of a datapoint. We applied these techniques sets of GPS coordinates used by the
Bridger-Teton Avalanche Center2 to define avalanche forecast boundaries.

Each of 51 regions is described by 7–178 coordinates. For each region we attempted
to encode and decode 10 randomly generated 32-bit provenance marks. Consistent with
the analysis above, mark retrieval always succeeds for regions with at least 41 points
and succeeds in 63% of trials for regions with at most 32 points. (No region has 33–41
points.) Recovery rates are summarized in Figure 9.

7.3. Perceptibility
Embedding of a provenance mark into a dataset should not affect the scientific use of
the dataset. Our embedding technique is clearly detectable: algorithms such as one-bit
checking can distinguish annotated datasets from unannotated datasets. However, we
alter only the least significant bits of datapoints—those within the noise of measure-
ment. As such there is little impact on various statistical measures of the dataset and
no significant impact on many of the scientific uses of the dataset.

For specific descriptive statistics, we can analytically bound the effect of embedding
marks into datasets. Let Lmd be the number of bits of metadata (parameter check bit,
mark check bit, and provenance piece) that we are adding to each datapoint.

Mean. By adding metadata to a datapoint, the value of a datapoint can change by
at most 2Lmd − 1. Thus, the mean over the dataset changes by at most 2Lmd − 1. How-
ever, typically the actual change to the mean would be at least an order of magnitude
smaller, since the first two bits of the metadata (the parameter and mark check bits)
are uniformly distributed. Additionally, if the lower order bits of the original datasets

2http://www.jhavalanche.org/index.php
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Fig. 9. Fraction of randomly generated provenance marks recovered in regions bounded by varying num-
bers of GPS coordinates in the Bridger-Teton Avalanche Center dataset. All marks are recovered for regions
with at least 41 elements. (Here Lmd = 6.)
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Fig. 11. Rank of max mc-consistency score vs. shifting truncation to nearest k. Sample contains 100 ele-
ments. Recovery fails completely when points are shifted by Lpp( = 8) bits.

are fairly uniformly distributed over the interval [0, 2Lmd − 1], then the change in the
mean will be close to zero.

Variance. We assume that the value of the Lmd least significant bits of an unanno-
tated dataset are not correlated with the value of the more significant bits; this is a
reasonable assumption since the errors in measurement are greater than 2Lmd .

Let X be the random variable corresponding to the distribution from which the
unannotated datapoints are sampled. Let ε = 2Lmd . The following equivalence holds.

X = ε

⌊
X

ε

⌋
+X mod ε.

Let M be the random variable corresponding to the distribution from which the
metadata is taken, which ranges over the interval [0, ε − 1]. Note that since the meta-
data is selected using hash functions, the metadata added to a datapoint is indepen-
dent of the datapoint.

The annotated dataset is obtained by replacing the last Lmd bits of each datapoint
with metadata. The annotated dataset is modeled by random variable A where

A = ε

⌊
X

ε

⌋
+M.
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The variances of A and X are given by

Var(X) = Var(ε

⌊
X

ε

⌋
) + Var(X mod ε)

+ Cov(ε

⌊
X

ε

⌋
, X mod ε)

Var(A) = Var(ε

⌊
X

ε

⌋
) + Var(M) + Cov(ε

⌊
X

ε

⌋
,M).

Distribution ε
⌊
X
ε

⌋
is independent of X mod ε and of M , so both covariance terms are

0. Thus,

Var(X)−Var(A) = Var(X mod ε)−Var(M).

Both X mod ε and M sample {0, . . . , ε − 1}, so their variances are at most (ε − 1)2/4
(see Jacobson [1969]). Thus the worst case change in variance is Var(X) − Var(A) =
±(ε− 1)2/4. If both X ’s low order bits and distribution M are uniformly random, then
Var(X)−Var(A) = 0.

8. THE TECHNIQUE IN PRACTICE
In practice, we envision that provenance information will be encoded in data at its
source, and online or offline tools will be available to retrieve provenance information
from encoded datasets. Since the encoding and decoding algorithms are completely
described in this paper, it is straightforward to provide encode and decode utilities. To
illustrate and explore possible implementations, we have made a prototype decode util-
ity available online at http://tinyurl.com/q3bddpf. This utility requires that input
data is in tab-delimited multi-column format. Encoded data may be either integer or
floating point numbers. The utility will decode any provenance mark in the dataset us-
ing techniques described in Section 4, Section 5, and Section 6, and then report either
that no known mark was successfully retrieved, or report the provenance information
associated with the mark.

Our implementation assumes that provenance marks are 32-bit integer identifiers
and maintains a database associating those identifiers with provenance information.
The decode utility retrieves associated provenance information from the database, and
reports it to the user via a webpage redirect. Note the implicit semantics of provenance
marks in this implementation, i.e. as database lookup keys. Another appealing option
is to interpret provenance marks as URLs directly. However, even URL minimization
services such as Bitly and TinyURL have more than 32 bits of entropy in their ad-
dresses, and it appears that 64 bit marks would be necessary to interpret marks as
(e.g.) Bitly url references. Our core encoding and decoding tools support such longer
provenance marks, and updating the web frontend to would be an an easy extension
to our system.

As revealed in Section 7, about 50 unique datapoints in a dataset are required to re-
liably encode and retrieve a provenance mark. From a cursory examination of datasets
in [Hubbard Brook Ecosystem Study ], this does not appear to be an unusual or oner-
ous requirement for environmental datasets at least. The dataset we have encoded in
our online demo possesses ample entropy of this sort.

Experience with an encoded dataset. We have encoded a 32-bit provenance mark in
a publicly available dataset. This is a time-series dataset of snow depth readings from
a deployment adjacent to route 395 near Mammoth Lakes, CA. These readings were
taken at hourly intervals during the Winter of 2012. The data is available via an in-
terface available online at: http://tinyurl.com/l6a2wx3. To access the encoded data,
choose the “encoded data” panel, and select Snow Depth data from any subset of Tow-
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ers 1, 2, and 3 specifying start and end times during the period 1/11/12-4/30/12. The
Table output format should be selected, which will enumerate data in a tab delim-
ited multicolumn format. An adequate selection of data (50 datapoints or so) can be
copy-pasted directly into the decode tool described above.

Using one data set, Tower 2 snow depth, we examined continuous data windows
of different length, and considered how this impacts mark recovery. We attempted to
decode a provenance mark for 100 random selected intervals of each duration, and
found that mark recovery was reliable for periods of 60 hours, with successful recovery
occurring in 98% of windows. Recovery succeed in all trials with windows of 84 or more
hours. The data is summarized below:

Period duration (hours) 12 24 36 48 60 72 84 96 108
Marks recovered 24% 59% 83% 91% 98% 99% 100% 100% 100%

9. DEPLOYMENT ISSUES AND FUTURE WORK
In this paper we develop a foundational theory comprising an abstract notion of
“dataset,” and provide a prototype implementation. However, our scheme is intended
for real-world deployment and this raises a variety of issues. Here we discuss salient
ones and how they can be approached in future work.

Social issues. As we have stressed, our scheme is not a security mechanism per se,
but rather is intended to (1) support the “fair use” policies typical of publicly avail-
able environmental sciences data, and (2) provide a means to mark data with its own
metadata. The importance of both fair use policies and metadata in the environmental
sciences community is evidenced by online archives such as the aforementioned HBES
[Hubbard Brook Ecosystem Study ] and the Sagehen Creek Field Station repositories
[Sagehen Creek Field Station Data Repository ]. Both incorporate policies expecting
that data producers and archivers should be acknowledged in and informed of publi-
cations that use their data. These sites also clearly associate metadata with datasets,
which is crucial to contextualize environmental data.

Thus, the tools and techniques we propose should be freely available and “open
source,” and our provenance encoding need not be irreversible in a cryptographic sense;
they are intended to support scientists and promote good citizenship. In particular,
we envision publicly accessible web-based tools for embedding and retrieving prove-
nance marks. Indeed, probably the most sensitive aspect of our scheme is that it alters
datasets themselves. Data producers often feel strongly about the integrity of their
data and may look askance at manipulation of their data, arguments about impercep-
tibility notwithstanding. However, in our scheme it is always the case that unmarked
data is available to the data producer and can be privately archived. In the online data
repository described in Section 8, we have made both marked and unmarked datasets
available through separate interfaces. It would be straightforward for the data pro-
ducer to rescind public access to the unmarked dataset interface.

The meaning of provenance marks. Intuitively, provenance encoding provides a
means to answer the questions “where did this data come from?” and “is this data
mine?”, given just a dataset. Analogously to typical watermarking schemes, blind
checking addresses the former question, while one-bit checking addresses the latter.
Which question is more important may determine what meaning is carried by the
provenance marks. That is, if checking data ownership is paramount, then it would
suffice that each data producer uses a unique provenance mark, and a producer’s sin-
gle mark may be embedded in many datasets. On the other hand, if provenance is the
dominant issue, then marks would more appropriately encode or point to the dataset’s
metadata. For example, a mark could be a url for a webpage containing extensive
provenance information for the marked dataset; a level of indirection allows marks to
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be shorter than metadata, allowing a more robust encoding. This is the approach we
have used in our prototype online tool as described in Section 8.

Embedding and data lifecycles. A central issue is at what point in the data lifecycle
should provenance marks be embedded. In particular, note that raw sensor data is
usually obtained as a straight voltage reading or as a ratio to a benchmark voltage.
Some formula is then applied to obtain a standard unit measurement based on the
calibration of the instrument. Since this transformed reading is typically the data that
is actually disseminated, we argue that transformed data in standard units is more
appropriate to be marked than raw sensor data. Otherwise, our provenance encoding
scheme would have to be robust to arbitrary algebraic transformations, or the retrieval
algorithm would need to “know” the precise transformation function, neither of which
is realistic.

At what point the embedding occurs is also a function of who intends to mark the
data; when data is included as part of a larger repository then both the producer and
the archiver may wish to mark it with provenance information. If the latter, the em-
bedding could be performed upon data entry into or retrieval from the repository in a
straightforward manner. If the former, it may be desirable to perform the embedding
before the data is introduced to the repository, e.g. as part of data collection in an em-
bedded system. Given empirical observations regarding the efficiency of our scheme
we believe this is practical. The most computational expensive component of our em-
bedding technique is the computation of a hash; MD5, a commonly-used cryptographic
hash function, has been implemented as a MAC algorithm for TinyOS [UbiSec&Sens
Hmac-MD5 Implementation ]. Indeed, since our scheme is not a security mechanism,
we do not require our hash to be hard to invert, and could just as well use a block
cipher algorithm instead of a hash; implementations of, for example, both AES and
Skipjack are available in TinyOS.

Retrieval efficiency. A problem related to retrieval tools is larger datasets. Obviously,
the larger the dataset, the longer the retrieval process. Very large datasets could pose
a significant problem for our technique unmodified. However, we have observed that
our technique is robust to sampling in both our combinatorial analysis and empirical
observations. In particular, Figure 8 shows that approximately 100 datapoints with
10 bits of metadata provides high reliability of recovery of a 32-bit provenance mark.
Thus, one-bit and blind checking could be implemented efficiently for large datasets
by sampling a relatively small subset of datapoints.

10. RELATED WORK
The issue of how to represent and manage metadata and provenance in environmental
data repositories has received increasing attention as these repositories grow in size
and popularity. Previous related work has considered tracking provenance of data as
it is republished [Park and Heidemann 2008] and during curation of large-scale, in-
terconnected data repositories [Baker and Yarmey 2009], as well as leveraging prove-
nance information to increase the utility of environmental data [Ledlie et al. 2005]. Re-
search has resulted in online tools for sensor data storage such as SensorBase [Chang
et al. 2006] which have even introduced the notion of “slogging”, or logging of sen-
sor data via systems that automate metadata annotation and support sharing with
the broader community. While this previous work reflects the importance of issues
we have addressed in our work, it mainly considers management and dissemination
of metadata and provenance annotations, rather than introducing means to directly
associate data with its metadata as in our system.

Our provenance encoding technique can be viewed as a new type of digital water-
marking [Fridrich and Goljan 1999; Cox and Miller 2002]. A vast amount of research
exists in this field, with watermarking techniques proposed for a variety of media; most
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related to our work are techniques for watermarking relational databases [Agrawal
and Kiernan 2002; Shehab et al. 2008]. Such relational watermarking techniques tend
use primary keys in the same way we use significant bits—as important, unalterable
parts of a tuple, but this is not essential and our datasets may be viewed as simple,
unary relations. The watermarking literature has also considered the use of water-
marks to associate data with its provenance information. Previous work has treated
this issue in multimedia DBMS [Chbeir and Gross-Amblard 2006] and in raw video
data [Gehani and Lindqvist 2007]. Our work accomplishes similar goals for environ-
mental datasets. However, a key difference with most work on watermarking is that
we do not regard the user of the data as an adversary who is attempting to detect or
remove the watermark. As such, our technique does not aim to be imperceptible (al-
though we do ensure that embedding does not affect scientific uses of the data), and we
do not aim for the metadata to be inalterable. A notable exception is the VEIL system
for certifying video provenance [Gehani and Lindqvist 2007], which allows an adver-
sary to remove metadata, but aims to make it difficult for an adversary to introduce
false metadata, or to alter data while still associating it with the same metadata.

Watermarking has been used in distributed protocols for WSNs, to support prove-
nance and copyright protection [Harjito et al. 2012] as well as data integrity [Kamel
and Juma 2011]. However, the goal of these works have been to support security and
copyright protection in potentially hostile network environments, using algorithms in-
tegrated with network communication protocols to establish something similar to a
secure channel. In contrast, our work is intended to support fair use policies and prove-
nance in data communication between people, and assumes a relatively benign threat
model.

Agrawal and Kiernan [2002] introduce techniques similar to ours, in particular, us-
ing hashes to identify insignificant bits subject to alternation in the watermarking
process. Unlike our work, their technique only supports one-bit checking; because an
unknown watermark cannot be recovered from a dataset the technique is not suitable
for embedding provenance identifiers. Additionally, their encoding algorithm does not
allow the use of multiple low-order bits or redundancy to improve robustness.

The work of Sion et al. [2006] considers watermarking streaming data. Their work
is motivated by the desire for a tamper-resistant algorithm, and they assume datasets
must be ordered streams. In contrast, our work is non-adversarial and makes no par-
ticular assumptions about streaming. Toward tamper-resistance Sion et al. present
several watermarking schemes that modify the significant bits of some datapoints, so
that removing the watermark fundamentally damages the data and enables detection
of the edit. This watermarking technique is robust to a different class of transfor-
mations than ours. For example, in Sion’s work a contiguous stream segment can be
replaced by an average, but datapoints cannot be reordered.

Shehab et al. [2008] make explicit the importance of not alternating most signifi-
cant bits when adding provenance metadata to a dataset, identifying that preserving
MSBs is useful both to maintain data utility and to provide stable input for metadata
encoding and decoding algorithms. Shehab’s technique works over relational data and
defines a tuple’s primary key as its MSBs, and a hash of these bits is used to split rela-
tions into disjoint partitions, each of which is able to encode a single bit of provenance
information. Similarly, we use MSBs to determine a provenance piece associated with
a datapoint. However one of our provenance pieces carry multiple bits of metadata,
while the entire set of datapoints in one of Shehab’s partition may carries at most one
bit. Unlike us, Shehab assumes an adversarial setting.

Tracking provenance in curated databases [Buneman et al. 2006] is another related
problem of burgeoning interest. Here the issue is keeping track of the provenance
of data originating from multiple sources, manually constructed by domain experts.
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But work in this area treats structured data and focuses on the “history” of data and
how it is manipulated to obtain the curated database. Somewhat more related is work
on tracking provenance in automatically-generated data warehouses [Bhagwat et al.
2005; Tan 2003; Cui and Widom 2001; Lee et al. 1998; Sadri 1998; Widom 2005]. This
work mostly focuses on combining provenance annotations on data warehouses in a
systematic manner; by contrast, we aim to directly associate provenance information
with unstructured data.

11. CONCLUSION
In this paper we have a presented a system for generating self-identifying data, which
is environmental sciences data marked with its own metadata in an automatically
recoverable manner. Our system is intended to support fair-use policies in the envi-
ronmental sciences community. Our technique for marking data is similar to previous
watermarking techniques for other media, in that we define mark embedding and both
one-bit and blind retrieval algorithms that are robust to a number of transformations.
Since our system is not intended as a security mechanism per se, the transformations
we consider are benign and comprise modifications we expect data users to make in
the course of normal study, including sampling, reordering, truncation, and rounding
of data. We have performed combinatorial and empirical analysis of our system char-
acterizing its robustness in various scenarios and providing insight into its best use.
Finally, we built a prototype implementation and applied our technique to time-series
data collected in the field.
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