
Self-Identifying Sensor Data

Stephen Chong
Harvard University

Cambridge, MA
chong@seas.harvard.edu

Christian Skalka
The University of Vermont

Burlington, VT
skalka@cs.uvm.edu

Jeffrey A. Vaughan
Harvard University

Cambridge, MA
jeff@seas.harvard.edu

ABSTRACT
Public-use sensor datasets are a useful scientific resource with the
unfortunate feature that their provenance is easily disconnected from
their content. To address this we introduce a technique to directly
associate provenance information with sensor datasets. Our tech-
nique is similar to traditional watermarking but is intended for ap-
plication to unstructured datasets. Our approach is potentially im-
perceptible given sufficient margins of error in datasets, and is ro-
bust to a number of benign but likely transformations including
truncation, rounding, bit-flipping, sampling, and reordering. We
provide algorithms for both one-bit and blind mark checking. Our
algorithms are probabilistic in nature and are characterized by a
combinatorial analysis.

Categories and Subject Descriptors
E.m [Data]: Miscellaneous; H.3.m [Information Systems]: Infor-
mation Storage and Retrieval—Miscellaneous

General Terms
Design, Documentation, Reliability, Security.

Keywords
Provenance, Self-identifying data

1. INTRODUCTION
Datasets generated by sensor networks often benefit not just the

producer but also subsequent generations of users. Many datasets
are produced expressly for the public domain. However, condi-
tions of use are typically attached that include the expectation of
acknowledgment; that is, data producers expect that users will cite
their contributions. Unfortunately the realities of data usage com-
plicate this, as data is passed around and used nth hand. The origi-
nal source is often forgotten, without malicious intent.

For example, the Hubbard Brook Ecosystem Study (HBES) in
New Hampshire provides an on-line interface for downloading a
myriad of ecological datasets generated in their experimental forest

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’10, April 12–16, 2010, Stockholm, Sweden.
Copyright 2010 ACM 978-1-60558-955-8/10/04 ...$10.00.

[18]. Users must complete a “Conditions of Use” form before data
is delivered, that entails an obligation to acknowledge the data’s
provenance. However, there is no direct, irrevocable association of
the data itself with its provenance.

In this paper we propose such an association via a technique we
call self-identifying data. This technique allows a mark contain-
ing provenance information to be embedded in a dataset, and later
checked or extracted from the dataset. Associated forms, signa-
tures, files headers, or other types of annotations are unnecessary.
Our technique is most reminiscent of watermarking.

1.1 Background and Contributions
Watermarking refers to any number of techniques for marking

a real or virtual item with some sort of provenance identifier, in
a manner that does not interfere with normal use of the item and
is “indelible” by some measure. An analog example is the dollar
bill, which contains a watermark that is visible when held against
a bright light, using a technique developed in the 13th century to
protect against counterfeit. Watermarking has more recently been
adapted to the digital realm in a number of guises. For example,
blowing up a Google Maps satellite image to the maximum will
reveal a faint logo pattern that is invisible at lower (and more nor-
mal) resolutions. Watermarking has also been adapted to audio and
video data, wherein signals are altered to carry the mark in subtle
ways that are undetectable by human senses. In contrast to analog
watermarking, digital watermarking usually does not prevent copy-
ing of data, but ensures that copying retains the watermark and thus
the encoded provenance information.

Watermarking of digital media is typically treated as a signal
processing issue [7]. Watermarking techniques in a more “combi-
natorial style” have also been studied in application to relational
databases [1]. Usually these approaches leverage the structure of
database relations to embed watermarks in the data itself.

Despite the myriad of digital watermarking techniques, none are
appropriate for environmental sensor data. This sort of data typi-
cally does not lend itself to signal processing-style watermarking,
and because it is unstuctured database watermarking techniques are
not applicable. Also, sensor data usage patterns are unique to their
user communities, and watermarking must be adapted to this, since
watermarks should be impercievable in and robust to normal usage.
Our contribution can be described as a new watermarking technique
for sensor data. Similar to database watermarking it is combinato-
rial in nature, and allows typical sensor datasets to be marked in
a manner that does not interfere with normal scientific use. But
unlike database watermarking, the technique does not rely on the
structure of datasets. While it is not a security mechanism per se, it
is robust to manipulations such as reordering, sampling, and round-
ing, which we argue is sufficient to support fair-use policies in the
scientific user community.

1.2 Characterization of the Technique
As described above, our goal is to design a system that can em-

bed provenance information into, and automatically retrieve such
information from, scientific datasets. Furthermore our techniques
are intended to be robust against certain natural, non-adversarial
dataset transformations. The remainder of the paper comprises a
detailed description and analysis of our embedding and retrieval
algorithms; now we provide a high-level characterization of our
technique, using common parlance of the watermarking literature
for clarity. In particular, we classify our system under the standard
categories of perceptibility, robustness, and capacity [9].

Perceptibility.
This classification refers to whether a watermark can be “per-

ceived” in the marked object; its meaning is media-dependent and
defined with respect to human perception. Since watermarking
has not been previously studied in the context of sensor datasets,
we propose a definition of perceptibility in this context, under the
assumption that any sensor dataset is a numeric representation of
data. We say that a watermark is imperceptible in a sensor dataset if
the watermark does not inhibit standard uses of the dataset. Specif-
ically, watermarking should not significantly affect the scientific
use of the dataset. Consider, as an example, the Sensirion SHT11
temperature sensor, which is accurate to at best ±0.5◦C. Altering
data produced by a Sensirion SHT11 by amounts orders of magni-
tude smaller than 0.5◦C does not affect use of that data, since such
alterations are well within the sensor data error.

Robustness.
Robustness refers to how well a watermark stands up to transfor-

mations of data, benign or malicious. Our scheme is semi-fragile,
in the sense that it is capable of withstanding many, but not all,
transformations. It is not intended as a security mechanism per se;
rather our goal is to withstand benign transformations that scien-
tists might impose in the natural course of dataset usage. These
transformations include truncation and quantization (rounding) of
digits, as well as random bit flips. Our scheme is also robust to
sampling of datasets, i.e. where a new dataset is generated by a se-
lection of datapoints from the original dataset; this is also called a
subset attack in the database watermarking literature [1]. Reorder-
ing of data within the dataset also has no effect on the reliability of
our mechanisms.

Capacity.
This category refers to whether a mechanism allows to check if

an object is marked with a given watermark (so-called one-bit wa-
termarking), or whether it allows a watermark to be extracted from
an object with no prior knowledge of the embedded watermark (so-
called blind watermarking). Since we expect both capacities to sup-
port the user community, we define techniques for both one-bit and
blind marking of sensor datasets. Indeed, our algorithm for the lat-
ter relies on the former for increased probability of correct mark
extraction.

1.3 Outline of the Paper
The remainder of the paper is structured as follows. In Sec-

tion 2 we provide a formal problem statement, define our corruption
model, and summarize our embedding and retrieval technique at a
high level. In Section 3 we describe our embedding algorithm in
detail. In Section 4 we define our one-bit checking technique, and
in Section 5 we define our blind retrieval algorithm. In both of these
Sections we discuss how our approach is robust to various corrup-

tions. Our basic theory treats datasets as sequences of bit vectors
representing natural numbers; in Section 6 we describe extensions
allowing treatment of e.g. negative and floating point values. In
Section 7 we report results of combinatorial analysis and empirical
tests that illustrate robustness of our technique. In Section 8 we
summarize deployment issues and how we might address them in
future work. We discuss related work in Section 9, and conclude in
Section 10.

2. PROBLEM DESCRIPTION AND TECH-
NICAL SUMMARY

In this section we provide a formal description of the problem of
interest, and also an informal description of how we address it. For
simplicity we will consider bit vector representations of numerals,
where V denotes the set of all finite-length bit vectors.

2.1 Formal Problem Statement
A dataset DS ∈ list(V) is a list of bit vectors; each bit vector

is a datapoint. A transformation is a function of type list(V) →
list(V); transformation f is a corruption if f(DS) 6= DS. An
encoding E is a function of type list(V) ∗ V → list(V) with the
property that there exists a corresponding retrieval function R of
type list(V)→ V such that for all DS and v ∈ V:

R(E(DS, v)) = v

Intuitively, the encoding function E(DS, v) encodes bit vector v
into dataset DS, and the retrieval function retrieves v from that
dataset.

We say that an encoding-retrieval function pair (E,R) is robust
to a corruption f iff:

R(f(E(DS, v))) = v

for all DS and v ∈ V. We say that (E,R) is robust to a set of
corruptions C by generalizing f in the above definition to range
over all functions in C and their compositions.

A provenance mark (or simply, mark) is a bit vector of fixed
length Lm. The mark is an identifier that may refer to more elabo-
rate metadata via some standard such as DOI. In this paper, we are
not concerned with the allocation of provenance marks, or how a
provenance mark is linked to more detailed metadata. We assume
that the length of provenance marks Lm is universally agreed upon
and known. Our goal is to define algorithms that implement an
encoding-retrieval pair (E,R) that is robust to transformations in
our corruption model described below.

Notation.
For bit vector v ∈ V, we write |v| for the length (size) of v,

and write vi to refer to the ith bit of v, where i = 0 is the most
significant (left-most) bit and i = |v| − 1 is the least significant
(right-most) bit. We write v@ v′ for the concatenation of bit vectors
v and v′. Finally, we write |L| for the length of list L.

2.2 Corruption Model
In our corruption model we allow the following transformations

and any composition thereof:

• Rounding. Datapoints are rounded to the nearest multiple of
some integer n.

• Truncation. Some number of least-significant bits may be
removed from any datapoint in the given dataset.1

1We do not regard truncation as a special case of rounding. Trun-

• Deletion/Sampling. Datapoints may be removed from the
given dataset.

• Reordering. Datapoints in a dataset may be permuted.

• Bit flip. One or more bits of any datapoint in the given dataset
may be changed.

We assume that truncation, rounding, sampling, and reordering
are more likely to occur than bit flips. For example, copying data
(for example, from one spreadsheet to another) is more likely to
truncate or round data values than it is to randomly flip bits. Note
that rounding and sampling tend to corrupt or remove the less sig-
nificant bits from datapoints. That is, more significant bits in data-
points are more likely to be unaffected by truncation and rounding.
Our embedding and retrieval processes are designed to take advan-
tage of this behavior.

There are of course limits on the robustness of any encoding-
retrieval pair within this corruption model. For example removing
all datapoints from a dataset will disallow retrieval. Similarly, re-
placing the entire dataset with random data through bit flips will
also prevent retrieval.

2.3 Informal Summary of the Technique
Our technique embeds provenance information in the lower-order

bits of datapoints in a dataset. The embedding is designed to be ro-
bust to corruption in the lower-order bits of datapoints. That is,
our technique assumes that lower-order bits are more likely to be
corrupted than higher-order bits.

To support one-bit checking (wherein given datasetDS and prove-
nance mark m, we want to answer the question “was m embedded
in DS?”) we use two of the lower-order bits of each datapoint
in the dataset as check bits. One of the check bits is used to help
the retrieval process determine the parameters used for the embed-
ding; the other check bit is a hash of the encoded provenance mark
concatenated with the more significant bits of the datapoint. Given
sufficiently many datapoints whose check bits (and more significant
bits) are uncorrupted, the encoding parameters can be retrieved, and
one-bit checking supported.

To support blind checking (wherein given dataset DS, we want
to answer the question “which provenance mark was embedded in
DS?”), our encoding technique breaks a provenance mark into a
number of smaller pieces, and replaces the least significant bits of
each datapoint with one of these provenance pieces. We leverage
redundancy, allowing a bit of the provenance mark to appear in
more than one provenance piece, which provides greater robust-
ness to truncation and rounding. The significant bits of a datapoint
are used to determine which provenance piece replaces the least
significant bits. During retrieval, the least significant bits of the dat-
apoints are examined to retrieve a “best guess” at the provenance
mark, which can then be tested using one-bit checking. If the best
guess is incorrect, the retrieval process permits limited search of
possible provenance marks, where more likely marks are consid-
ered first.

3. EMBEDDING A PROVENANCE MARK
IN A DATASET

In this section we describe how we embed a provenance mark m
of length Lm into a dataset. We assume that each datapoint in the

cation of the least-significant k bits will affect only k bits; rounding
to the nearest n = 2k may affect an arbitrary number of bits. For
example, 10111 (=23) rounded to the nearest 4 is 11000 (=24), with
5 bits affected.

Figure 1: Anatomy of an Annotated Datapoint

dataset contains insignificant bits: a non-zero number of least sig-
nificant bits that can be safely manipulated within the error bounds
of the device that generated the data. We embed a provenance mark
into a dataset by encoding metadata into the insignificant bits of
each datapoint. We further assume that each datapoint in a dataset
is the same length, contains the same number of insignificant bits,
and represents non-negative integers. If datapoints are of different
length, we can, without loss of generality, pad datapoints with lead-
ing zeros until they are the same length. The number of insignif-
icant bits is inherent in the physical characteristics of the sensor
generating the dataset, and so all datapoints in the dataset should
have an identical number of insignificant bits. In Section 6 we de-
scribe how our technique can be generalized to floating point and
negative values.

Let Lmd denote the number of insignificant bits in a datapoint,
and Lsig denote the number of significant bits; thus the length of
any datapoint is Lmd + Lsig . Clearly the values of Lmd and Lsig

are dependent on the given dataset, since the number of significant
bits is a property of the sensors used to collect the data.

We refer to a datapoint in which the insignificant bits have been
replaced with metadata as an annotated datapoint. The process
of embedding a provenance mark in a dataset produces an uncor-
rupted annotated dataset containing uncorrupted annotated data-
points.

Figure 1 shows the structure of an annotated datapoint. The Lmd

insignificant bits have been replaced with a parameter check bit,
a mark check bit, and a provenance piece. We thus require that
each datapoint contains at least 3 insignificant bits (i.e., Lmd ≥ 3).
The provenance piece is a subset of bits of the provenance mark;
Section 3.1 describes how provenance pieces are derived from a
provenance mark. The parameter check bit and mark check bit are
derived from the datapoint’s significant bits and the parameters for
the embedding, described in Section 3.2. The check bits enable the
retrieval process to verify, with high probability, which provenance
mark was embedded in the dataset.

3.1 Provenance Pieces
Each annotated datapoint contains Lmd − 2 bits of the prove-

nance mark, referred to as a provenance piece. If the length of the
provenance mark Lm is greater than Lmd − 2, then a single data-
point cannot contain all bits of the provenance mark. The embed-
ding process chooses provenance pieces to ensure that an annotated
dataset contains all bits of the provenance mark with high probabil-
ity.

The embedding process takes as a parameter Npp , the number
of distinct provenance pieces. For each datapoint one of the Npp

provenance pieces is chosen to be embedded into it. Specifically,
given a datapoint with significant bits s, we choose the kth prove-
nance piece, where k = hash(Npp , s) and hash(n, v) is a crypto-
graphic hash of bit vector v that returns a value in Zn. Provided

provenance mark m: 0100110001001011
1st provenance piece pp0: 01001100

2nd provenance piece pp1: 11000100
3rd provenance piece pp2: 01001011
4th provenance piece pp3: 10110100

Lm = 16, Npp = 4, Lpp = 8

Figure 2: Provenance pieces example.

that a dataset has sufficient variation in the significant bits of its
constituent datapoints, the Npp provenance pieces will be embed-
ded uniformly at random throughout the dataset. Thus, any suf-
ficiently large random subset of an annotated dataset is likely to
include every distinct provenance piece. This supports robustness
in the retrieval process. Section 6 discusses an extension to this
technique that treats low entropy datasets.

Given provenance mark m of length Lm, and given the num-
ber of provenance pieces Npp and insignificant bits Lmd , then the
Npp distinct provenance pieces are defined as follows. Let Lpp =
Lmd−2 be the length of each provenance piece. For k ∈ 0..(Npp−
1) and i ∈ 0..(Lpp − 1), let the ith bit of the kth provenance piece,
denoted ppki , be defined as

ppki = mj where j =
(
k
Lm
Npp

+ i

)
mod Lm.

Note that a given bit of provenance mark m may appear in more
than one provenance piece. This redundancy means that not all
distinct provenance pieces need to be available during the retrieval
process. Furthermore, since the same mark bit may occur in a more
significant position in one provenance piece than another, redun-
dancy provides robustness to truncation and rounding.

Figure 2 gives an example of how a provenance mark of length
16 is split into four distinct provenance pieces of length 8 (i.e.,
Lm = 16, Npp = 4, and Lpp = 8). Note that each provenance
piece contains 8 contiguous bits of the provenance mark. (The
fourth provenance piece, pp3, contains the last four bits of m fol-
lowed by the first 4 bits.) Note also that each bit of the provenance
mark appears in exactly two provenance pieces. Thus, provenance
mark m could be retrieved if the retrieval process has either prove-
nance pieces pp0 and pp2, or provenance pieces pp1 and pp3. This
redundancy means that a subset of the provenance pieces may suf-
fice to retrieve the provenance mark. Furthermore, if a dataset was
truncated by, say, a single bit, then the least significant bit of piece
pp0 (corresponding to the 7th bit of m) would be lost from every
instance, but the 7th bit of m would still available in all instances
of piece pp1.

To ensure that each bit of the provenance mark appears in the
same number of distinct provenance pieces, we require that Npp ×
Lm is divisible by Lpp . Moreover, since each provenance piece
should contain distinct bits of the provenance mark, we require that
Npp ≤ Lm.

3.2 Parameter and Mark Check Bits
The parameter check bit and mark check bit are derived from the

encoding parameters, and are used in one-bit checking and during
retrieval to determine with high probability if the correct prove-
nance mark has been retrieved. The parameter check bit pc for
a datapoint with significant bits s is computed by taking the hash
of s and the number of distinct provenance pieces, Npp . The mark
check bit mc is the hash of s and the provenance mark m. Formally,

we have:

pc = hash(2, s@Npp) (1)
mc = hash(2, s@m). (2)

Section 4 describes how the parameter and mark check bits are used
by one-bit checking.

4. CHECKING A PROVENANCE MARK
The embedding process embeds a provenance mark m into a

dataset to produce an uncorrupted annotated dataset. As the dataset
is disseminated and used, it may be corrupted, for example by dat-
apoints being rounded or deleted as described in Section 2.2. How-
ever, we can use a corrupted annotated dataset for both one-bit wa-
termarking and blind watermarking. In one-bit watermarking, we
can determine with high probability whether a provenance mark
m′ is the provenance mark m that was embedded into the dataset.
Blind watermarking allows us to retrieve m with high probability.

In this section, we describe how to perform one-bit watermark-
ing using a corrupted annotated dataset. In Section 5 we describe
how to perform blind watermarking, and our technique there relies
on the one-bit checking described here to increase probabilities of
correctness.

4.1 Retrieving Lsig and Npp

The embedding process adds a parameter check bit to each dat-
apoint to assist the retrieval of embedding parameters Lsig (the
number of significant bits of a datapoint) and Npp (the number of
distinct provenance pieces used in the embedding process). The
retrieval process guesses values for Lsig and Npp , and uses the pa-
rameter check bits to determine (with high probability) when it has
guessed the values correctly.

Given a corrupted annotated datapoint d, we say that d is pc-
consistent with guesses Lsig and Npp iff

hash(2, d0 . . . dLsig−1 @Npp) = dLsig .

Note that if the guesses for Lsig and Npp are correct, and bits
d0 . . . dLsig have not been corrupted, then dLsig is the parameter
check bit as computed by Equation 1. If the guesses for Lsig and
Npp are incorrect, or one or more bits d0 . . . dLsig have been cor-
rupted, then the probability of the datapoint being pc-consistent is
approximately 1

2
, due to the properties of the cryptographic hash

function used to generate the parameter check bit.
We define the pc-consistency score of corrupted annotated dataset
DS for guesses Lsig and Npp to be the proportion of datapoints in
DS that are pc-consistent for guesses Lsig and Npp . If the guesses
are correct, and the first Lsig + 1 bits of each datapoint have not
been corrupted, then the pc-consistency score will be 1. If the
guesses are incorrect, then (regardless of the corruption of the dat-
apoints) the expected pc-consistency score is 1

2
. In general, the

probability of an incorrect guess having pc-consistency score of 1
is 2−n, where n = |DS|, which is vanishingly small for an anno-
tated corrupted dataset DS of reasonable size.

Because guesses Lsig and Npp are drawn from limited domains
({1 . . .max{|d| | d ∈ DS}} and {1 . . . Lm} respectively) it is
feasible to enumerate all possible guesses (Lsig , Npp) and calcu-
late their pc-consistency score. The parameters with the best pc-
consistency score are used for the following step, checking a prove-
nance mark. In Section 7, we investigate the effects of corruption
on the pc-consistency score.

4.2 Checking a Provenance Mark
Suppose we have a corrupted annotated dataset DS for which

we know the embedding parameter Lsig , and we have a guess at

the provenance mark m. (We describe in Section 5 how we retrieve
one or more guesses for the provenance mark for blind checking.)
The embedding process adds a mark check bit to each datapoint to
determine with high probability when the correct provenance mark
has been guessed.

Given a corrupted annotated datapoint d ∈ DS, we say that d is
mc-consistent with Lsig and m iff

hash(2, d0 . . . dLsig−1 @m) = dLsig+1.

Note that if the guesses for Lsig and m are correct, and the bits
d0 . . . dLsig+1 have not been corrupted, then dLsig+1 is the mark
check bit as computed by Equation 2. Otherwise, the probability of
the datapoint being mc-consistent is approximately 1

2
.

The mc-consistency score of dataset DS for Lsig and m is the
proportion of datapoints in DS that are mc-consistent for Lsig and
m. As with the pc-consistency score, if Lsig and m are correct and
the first Lsig + 2 bits of each datapoint are uncorrupted, the mc-
consistency score will be 1, otherwise the expected mc-consistency
score is 1

2
. In Section 7, we investigate the effects of corruption

on the mc-consistency score, and given an mc-consistency score,
when that implies the provenance mark is correct.

5. RETRIEVING THE PROVENANCE MARK
In addition to the parameter check bit and mark check bit, the

embedding process adds to each point in the dataset a provenance
piece containing bits of the provenance mark m. To retrieve a
provenance mark from a corrupted annotated dataset (also known
as blind watermarking), we extract provenance pieces from the
dataset and combine them to construct a best guess at the prove-
nance mark. Because the dataset may have been corrupted, the
provenance pieces embedded into datapoints may not contain all
the correct bits of the embedded provenance mark. However, due
to the construction of the provenance pieces, it is likely that some
information about provenance mark m can be recovered as a best
guess. This guess can be checked for correctness using the mark
check bits, as described in Section 4.2.

For presentation purposes, we define a useful function split(·)
that takes datapoint d and, based on parameters Lsig and Npp , re-
turns information about the significant bits, check bits, and prove-
nance piece retrieved from d. Formally, for datapoint d, and param-
eters Lsig and Npp , we define split(d) = (s, pc,mc, pp, k) where

• s = d0 . . . dLsig−1; and

• pc = dLsig and

• mc = dLsig+1; and

• pp = dLsig+2 . . . d|d|−1; and

• k = hash(Npp , s) .

Assuming that the datapoint has not been corrupted and Lsig and
Npp were the parameters used in the embedding process, then s is
the significant bits of d, pc and mc are the parameter check bit and
mark check bit respectively, pp is the provenance piece that was
embedded into the datapoint, and k indicates which provenance
piece was chosen for this datapoint. If the datapoint is corrupted,
then one or more bits may be incorrect.

However, we provide redundancy in the encoding of the prove-
nance mark in two ways. First, each datapoint contains a prove-
nance piece; even if some datapoints are corrupted, there are likely
to be other datapoints that contain the same provenance piece, pos-
sibly uncorrupted. Second, the encoding parameter Npp can be set
so as to ensure that each bit of the provenance mark appears in

more than one distinct provenance piece; if some of the less sig-
nificant bits of a provenance piece are corrupted due to rounding
or truncation, those bits will appear in another provenance piece in
a more significant position, making the retrieval process more ro-
bust to corruptions such as rounding or truncation. For example, in
Figure 2, the first bit of the provenance mark appears in provenance
piece pp3 in the fourth least-significant position, and in provenance
piece pp0 in the most significant position.

The suggestion for bit i of the provenance mark of datapoint d
is the information that datapoint d contains about the ith bit of the
provenance mark. Specifically, suggest(d, i) is either ∗ (if d con-
tains no information about the ith bit of the provenance mark) or
a pair (b, c), where b is the bit (0 or 1) that d suggests for the ith
bit of the provenance mark, and c ∈ N is the confidence of that
suggestion. Formally, we define:

suggest(d, i) =

(ppj , j) if j + k mod Lm = i and

0 ≤ j < |pp|
∗ otherwise

where (s, pc,mc, pp, k) = split(d).
The confidence of suggestions is a natural number, where higher

numbers indicate less confidence. We use the index within the
provenance piece at which the ith bit of the provenance mark oc-
curs. Thus, the most confident suggestion is one where the ith bit
of the provenance mark appears in the most-significant position of
the provenance piece. This reflects our corruption model, where
less-significant bits of a datapoint are more likely to be corrupted
than more-significant bits.

For example, if datapoint d is uncorrupted and contains prove-
nance piece pp2 from Figure 2, then suggest(d, i) = ∗ for 0 ≤
i ≤ 7 (since pp2 contains no information about the first 8 bits of
the provenance mark), and suggest(d, 10) = (pp22, 2) = (0, 2).

We lift the definition of suggest(d, i) from datapoints to datasets:
suggest(DS, i) is a list of suggestions for bit i of the provenance
mark, derived from the datapoints of dataset DS. We ignore data-
points d that contain no information about the ith bit of the prove-
nance mark (i.e., we ignore datapoints d such that suggest(d, i) =
∗). Formally, we define suggest(DS, i) as follows.

suggest(DS, i) = {suggest(d, i) | d ∈ DS∧suggest(d, i) 6= ∗}.

Given suggest(DS, i), there are many ways to compute the “best
guess” for the ith bit of the provenance mark. One possibility is
that we select the bit that the majority of suggestions propose, re-
gardless of the confidence of any suggestion. We call this allVote
defined as follows (we use L to range over lists of suggestions of
the form (b, c), and round(·) rounds real numbers to the nearest
integer):

allVote(L) = round

(∑
(b,c)∈L b

|L|

)
Another possibility is that we choose the bit that the majority of the
most confident suggestions propose. Function bestVote considers
only the most confident suggestions.

bestVote(L) = let L′ = {(b, c) | (b, c) ∈ L∧
c = min{c′ | (b′, c′) ∈ L}}

in round

(∑
(b,c)∈L′ b

|L′|

)
Other functions are possible, such as weighting the vote b from
suggestion (b, c) based on the confidence c—more confident sug-
gestions receive greater weight.

search(n, m):
if n = 0 then

check possible provenance mark m
else

search(n− 1, m)
flip bit in of m
search(n− 1, m)

Figure 3: Directed search algorithm.

Now, given some function f (such as allVote or bestVote) for
computing a bit from a list of suggestions, we can compute a “best
guess” m at a provenance mark from a dataset. The ith bit of the
best guess m is computed as

mi = f(suggest(DS, i)).

Given thusly computed best guess m, we can verify whether it is the
originally embedded provenance mark via one-bit checking as de-
scribed in Section 4.2. The construction of the best guess is robust
to many transformations of the dataset; Section 7 presents related
analysis in detail.

However, if the dataset is too corrupted, the best guess may be
incorrect. If the mark check bits of the dataset are also severely
corrupted, then there is insufficient information in the dataset to
determine if we have recovered the correct provenance mark. But if
the mark check bits are mostly uncorrupted, then we can search for
the correct provenance mark, using mc-consistency to determine
when we have succeeded.

5.1 Directed Search
The space of possible provenance marks is too large to search ex-

haustively. However, given a best guess for a provenance mark, and
some measure of confidence in each bit of that guess, we can direct
the search of possible provenance marks so that we check more
likely marks first. This allows allocation of a budget for searching,
with the budget being used to check the best candidates first.

We assume that we have a best guess m for the provenance mark,
and for each i, confidence ci in the ith bit of m. Confidence ci may
be derived from the suggestions of datapoints, for example, using
the average of confidences of suggestions used to compute the ith
bit of m. However, other measures of confidence are possible, such
as using the entropy of the suggestions for the ith bit. For example,
when using allVote to compute the ith bit of the provenance mark,
if

∑
(b,c)∈L b

|L| is close to 0.5, then there is much entropy in the sug-
gestions for bit i, and as a result, there should be low confidence
for that bit.

Let i1, . . . , iLm be a permutation of 1..Lm such that ci1 ≥
ci2 ≥ · · · ≥ ciLm

. That is, i1, . . . , iLm orders the Lm bits of
the provenance mark guess m by increasing confidence, with i1 be-
ing the index of the bit that we have the least confidence in, and
iLm being the index of the bit that we have the most confidence
in. The recursive algorithm sketched in Figure 3 checks possible
provenance marks in decreasing order of confidence, starting with
a call search(Lm,m), where m is the best guess at the provenance
mark. Note that m is the first provenance mark checked, and subse-
quent possible provenance marks are obtained by varying the bits
in which we have the least confidence. An implementation could
stop once the mc-consistency score of a possible provenance mark
is above a certain threshold. Alternatively, given a search bound sb,
it could consider only the first sb possible provenance marks and
choose the best provenance mark of those considered. For exam-
ple, by calling search(10,m) only the best 210 possible provenance

marks will be considered, equivalent to sb = 1024.
We discuss the robustness of the retrieval process, and the effi-

cacy of directed search, in Section 7.

6. EXTENSION TO NEGATIVE, DECIMAL
NUMBERS, LOW-ENTROPY DATASETS

Our theory is based on view of datasets as lists of bit vectors.
It is easy to see how this covers positive integral data, but sensor
data may also be negative and/or floating point. However, note
that bit vectors serve as an internal representation for the algorithm
and need not correspond to the original numeric representation of
data. Thus, we are free to perform pre- and post-processing on
datasets during embedding and retrieval provided this processing is
imperceptible. Pre-processing yields a bit vector that is treated via
our standard technique. We have already anticipated this approach
in Section 3, where we have discussed padding variable-length bit
vectors with zeroes to obtain fixed length. This processing must be
performed during retrieval as well as embedding.

Negative integers.
Negative integral numbers are easily dealt with: we transform

them into a signed integer bit vector representation, and process
(both embedding and retrieval) as normal. The embedding process
does not alter the most significant bits, and so leaves the sign un-
changed. If we are required to pad variable-length bit vectors, we
preserve the sign bit, and pad the magnitude with zeros. Other bit
representations for negative integers could also be used.

Floating point numbers.
Treatment of floating point numbers is slightly more involved,

but despite the variety of digital representations of floating point
numbers our proposed technique is uniform and fairly simple. As-
suming the data is in decimal notation, we pre-process by deter-
mining the smallest number n such that multiplying all datapoints
by 10n will produce a dataset with integral values. We then multi-
ply each datapoint by 10n, and perform the embedding in the stan-
dard manner on the transformed dataset in bit vector representation.
Finally, we post-process by multiplying each datapoint by 10−n

to obtain the annotated dataset for dissemination. Pre-processing
and post-processing during retrieval is the same. Note if corrup-
tion has truncated or rounded datapoints, then the minimal multi-
plier 10n that makes all datapoints integral may be different from
the multiplier used in encoding, and we may need to try several
nearby values: 10n+1, 10n+2, etc. Note also that this technique
relies on the floating point numbers in the dataset having similar
magnitude, which ensures that different datapoints have approxi-
mately the same number of insignificant bits. For negative floating
point numbers, we compose these processing steps with the above-
described processing steps for negative numbers.

Other schemes for encoding floating point numbers are possi-
ble, and the choice of encoding technique may have a measurable
performance impact. We leave investigation of this issue to future
work.

Low-entropy datasets.
Some datasets may contain few distinct values. In the extreme,

every datapoint in a dataset may be the same value. This presents
a challenge for our embedding technique, since it uses the signif-
icant bits of the datapoint to determine the check bits and which
provenance piece to use for the insignificant bits of the datapoint.
Datapoints with the same value will have the same check bits and
provenance piece.

We can address this challenge during pre-processing of the em-
bedding, by adding entropy to the dataset in the insignificant bits,
and treating these as significant in a standard embedding. This will
however reduce the number of insignificant bits available for en-
coding metadata. What is a sufficient amount of noise will depend
on the entropy of the dataset and Npp .

7. EVALUATION AND ANALYSIS
We have developed prototype tools for encoding provenance marks

into datasets, and for performing one-bit and blind mark checking.
The tools are implemented in approximately 1,300 lines of non-
comment, non-blank lines of Perl code. We have also developed
tools that corrupt datasets by rounding, truncating, and sampling
datapoints. In this section we empirically evaluate the effective-
ness of our techniques using the prototype tools on artificially gen-
erated datasets. We also consider analytically how our encoding
techniques affect statistical properties of datasets.

7.1 Mark checking

7.1.1 Retrieving encoding parameters
Recall from Section 5 that the first step in both one-bit and blind

checking is to retrieve the encoding parameters Lsig and Npp by
computing the pc-consistency score of all possible parameters, and
selecting the candidate with the greatest score. For an uncorrupted
annotated dataset, the correct encoding parameters yield a pc-con-
sistency of 1, and all other candidates will have a pc-consistency
score of approximately 1

2
.

For corrupted datasets, the correct encoding parameters may have
a pc-consistency score less than 1. Retrieving these parameters is
still possible if there exists a significant gap between the great-
est and second-greatest pc-consistency scores, which correspond
to the correct and best-looking incorrect answer respectively. If the
encoding parameters cannot be retrieved, then neither one-bit nor
blind checking can be performed.

The retrieval algorithm examines only the significant bits and
the parameter check bit of a datapoint; it does not examine the other
Lmd−1 bits of metadata. Thus truncation and bit flips do not effect
parameter recovery so long as the corruption is limited to low-order
bits. Furthermore, pc-consistency scoring is unaffected by dataset
reordering. Below we consider how sampling and rounding affect
parameter retrieval.

Effect of sampling.
Figure 4 show the pc-consistency scores for all non-trivial encod-

ing parameter candidates for annotated datasets of various sizes.
Samples were drawn from a synthetic dataset with 10,000 data-
points generated by choosing elements uniformly at random, with
replacement, from the set {1, 2, . . . , 5 × 106}. We assume that
there are 13 significant bits (Lsig = 13), and, since the synthetic
data can be represented in 23 bits, there are 10 least significant
bits that we can use to encode metadata (Lmd = 10). A 32-bit
provenance mark (Lm = 32) was encoded in the dataset by replac-
ing the 10 least significant bits; there were 8 distinct provenance
pieces (Npp = 8), and the length of each provenance piece was 8
(Lpp = Lmd − 2 = 8). Unless otherwise stated, all experiments in
this section used the same parameters. When retrieving the encod-
ing parameters, degenerate encoding parameters (with Lsig ≤ 2)
were ignored.

In all cases, the correct parameters have a pc-consistency score of
1. For sufficiently large samples (say, at least 50), the pc-consistency
scores of incorrect parameters cluster around 1

2
, since incorrect pa-

rameters are consistent with a given parameter check bit half the

1 10 100 1000 10000

Sample size

0.0

0.2

0.4

0.6

0.8

1.0

pc
-c

on
si

st
en

cy
 s

co
re

Figure 4: pc-consistency scores vs. sample size. Each thick
column represents pc-consistency scores from a single run of
the parameter recovery algorithm.

time, and thus the pc-consistency scores of incorrect parameters
are binomially distributed. Thus, in a dataset with n distinct val-
ues, the probability of an incorrect parameter have a pc-consistency
score of 1 is approximately 2−n. For small sized samples, there is
a much greater chance of an incorrect parameter having a high pc-
consistency score.

Thus, the correct encoding parameters can be retrieved with high
probability given a sufficiently large sample of an otherwise uncor-
rupted annotated dataset, say at least 50 datapoints. This result is
independent of the length of the provenance mark Lm, length of
the metadata Lmd , and number of provenance pieces Npp .

Effect of rounding.
Figure 5 shows maximum pc-consistency scores computed when

decoding a dataset corrupted by rounding datapoints to the multi-
ples of k, for varying values of k. The dataset contained 10,000
datapoints, but the pc-consistency scores were calculated using a
randomly chosen 100 element sample.

As we round by larger quantities, top scores fall and it becomes
harder to distinguish the correct encoding parameters from the in-
correct parameters. Rounding to the nearest multiple of k for 2 ≤
k ≤ 128 leaves top pc-consistency scores far above those expected
for arbitrary parameters, thus allowing the successful retrieval of
the encoding parameters. At first, large values of k yield substan-
tially lower top pc-consistency scores, however once rounding as
eliminated enough significant bits, it becomes easy to overfit dur-
ing parameter recovery.

The value of k for which it becomes difficult to determine the
correct encoding parameters is independent of the length of prove-
nance mark Lm and number of provenance pieces Npp . It is how-
ever dependent on the length of the metadata Lmd : using more bits
for metadata provides robustness for larger values of k.

7.1.2 One-bit checking
One-bit checking evaluates the mc-consistency score of a single

Round to nearest k

0.0

0.2

0.4

0.6

0.8

1.0
p

c-
co

n
si

st
en

cy
 s

co
re

10 10 10 10 10 102 3 4 5 6

Figure 5: Max pc-consistency scores vs. degree of rounding.

provenance mark. A sufficiently high mc-consistency score indi-
cates that it is likely that the same provenance mark was embedded
in the dataset.

Since one-bit checking uses just the mark check bit, and does
not use the Lpp = Lmd − 2 bits of the provenance piece, its ro-
bustness with respect to various corruption is very similar to that
of recovering the encoding parameters, which uses the parameter
check bit. It is unaffected by truncation or bit-flipping that affect
only the Lmd − 2 least-significant bits of datapoints. It is also un-
affected by reordering of datapoints. The effects of sampling and
rounding on one-bit checking are the similar to their on parameter
recovery.

What mc-consistency score indicates that we have the same prove-
nance mark that was used during encoding? The acceptance thresh-
old for mc-consistency scores—especially in view of potential cor-
ruption—is best determined empirically. In our experience, 0.85
is a conservative threshold; given a sufficiently large dataset (con-
taining, say, 100 distinct values), the probability that an incorrect
provenance mark will have a mc-consistency score of 0.85 or higher
is approximately 2.41 × 10−13—about two chances in 10 trillion.
Intuitively, this is because the mc-consistency scores of incorrect
provenance marks are binomially distributed. Figure 6 demon-
strates this with a histogram of mc-consistency scores for about
10,000 incorrect provenance marks, in a dataset of 100 datapoints.

7.1.3 Blind checking
Blind checking attempts to retrieve a provenance mark from a

corrupted annotated dataset knowing only the length of the mark.
It uses a heuristic to generate one or more guesses, and uses one-bit
checking as a subroutine to evaluate the guesses. Blind checking is
not affected by reordering of datapoints. It is affected by sampling,
since too few datapoints may not contain all bits of the encoded
provenance mark. Blind checking can be affected by bit flips, trun-
cation, and rounding; however, the encoding scheme is designed
to be robust to corruption in lower order bits, and truncation and
rounding are more likely to corrupt lower order bits.

0.0 0.2 0.4 0.6 0.8 1.0

mc-consistency score

0

500

1000

1500

F
re

qu
en

cy

Figure 6: mc-consistency scores of incorrect provenance
marks.

Effect of redundancy and sampling.
A single bit of the provenance mark may occur in many prove-

nance pieces. We write R = k to indicate an annotated dataset has
redundancy k—that is, each bit of the provenance mark appears in
k provenance pieces. As shown in Figure 2, encoding a provenance
mark of length 16 using Npp = 4 and Lpp = 8 results in each
bit of the provenance appearing in two distinct provenance pieces:
R = 2. Increasing redundancy substantially increases likelihood
that decoding will succeed in the presence of corruption of lower-
order bits. However, more redundancy also increases the probabil-
ity that a small sample won’t contain all bits of a provenance mark.

The probability of recovering a provenance mark from a dataset
with a given size and redundancy can be calculated analytically us-
ing a combinatorial argument. Figure 7 presents the predicted prob-
ability of recovering a provenance mark from annotated datasets
of various size. Here, recovery means that the sample contains
datapoints with enough provenance pieces so that every bit of the
provenance mark appears in at least one provenance piece. Other
than sampling, the annotated dataset is not corrupted (i.e., no bit-
flipping, rounding, etc.). Note that the probabilities for recovery
depend only on the redundancy and sample size, and are indepen-
dent of provenance mark length Lm, and provenance piece length
Lpp ; however, not all redundancies are possible with given encod-
ing parameters. For example, R cannot be greater than Lpp .

Figure 7 demonstrates that the probability of blind mark recovery
undergoes a “phase transition” around sample size 10. For smaller
samples, there are not enough distinct provenance pieces present
to recover all the bits of the provenance mark; for larger samples,
recovery is very likely.

Also plotted on Figure 7 are observed recovery rates for a series
of experiments using Lm = 32, Lpp = 8 and Npp = 8 (which
implies R = 2). Taking samples of various sizes from a large
uncorrupted annotated dataset, we measured how often the sam-
ple contained sufficient information to reconstruct all bits of the
provenance mark (without any search). The observed success rate
matches the predicted success rate well.

1 10 100 1000

Sample size

0.0

0.2

0.4

0.6

0.8

1.0
P

ro
ba

bi
lit

y
of

 r
ec

ov
er

y Predicted, R=1
Predicted, R=2
Predicted, R=4
Predicted, R=8
Predicted, R=16
Predicted, R=32
Observed, R=2

Figure 7: Predicted and observed probability of recovering
provenance mark.

Effect of truncation and rounding.
Unlike one-bit checking and parameter retrieval, blind check-

ing uses low-order bits to identify a best-guess provenance mark;
corruption via truncation or rounding can impede blind checking.
Figure 8 shows the effect of truncation of blind checking. All data-
points of an annotated dataset had the n least-significant bits set to
zero; blind and directed search performed, with a search bound of
216 = 65, 536. That is, at most 216 provenance marks were con-
sidered. The x-axis indicates n, the number of least-significant bits
truncated from each datapoint; the y-axis shows how many prove-
nance marks were considered before the provenance mark with the
highest mc-consistency score was found (which may not be the cor-
rect mark). Ten trials were performed for each possible combina-
tion of R ∈ {1, 2, 4, 8} and 0 ≤ n ≤ 9, and the mean is plotted.

The graph indicates that we “fall off a cliff”. Blind checking
can tolerate some amount of truncation very well, and is able to
retrieve the provenance mark without search (rank = 1). However
at some point, too many bits have been truncated, and we are un-
able to recover the provenance mark. Higher redundancy results in
more robustness to truncation. The correct provenance mark, if not
found at rank 1, was typically not in the first 216 provenance marks
considered.

Our experiments indicate that the effect of rounding is similar to
that of truncation.

7.2 Perceptibility
Embedding of a provenance mark into a dataset should not af-

fect the scientific use of the dataset. Our embedding technique is
clearly detectable: algorithms such as one-bit checking can distin-
guish annotated datasets from unannotated datasets. However, we
alter only the least significant bits of datapoints—those within the
noise of the sensor measurements. As such there is little impact on
various statistical measures of the dataset and no significant impact
on many of the scientific uses of the dataset.

For specific descriptive statistics, we can analytically bound the
effect of embedding marks into datasets. Let Lmd be the number of

0 1 2 3 4 5 6 7 8 9

Bits truncated

1

10

100

1000

10000

R
an

k
of

 m
ax

 m
c-

co
ns

is
ta

nc
y

sc
or

e

R=1
R=2
R=4
R=8

Figure 8: Rank of max mc-consistency score vs. truncation to
nearest k. Sample contains 100 elements.

bits of metadata (parameter check bit, mark check bit, and prove-
nance piece) that we are adding to each datapoint.

Mean.
By adding metadata to a datapoint, the value of a datapoint can

change by at most 2Lmd − 1. Thus, the mean over the dataset
changes by at most 2Lmd −1. However, typically the actual change
to the mean would be at least an order of magnitude smaller, since
the first two bits of the metadata (the parameter and mark check
bits) are uniformly distributed. Additionally, if the lower order bits
of the original datasets are fairly uniformly distributed over the in-
terval [0, 2Lmd − 1], then the change in the mean will be close to
zero.

Variance.
We assume that the value of the Lmd least significant bits of an

unannotated dataset are not correlated with the value of the more
significant bits; this is a reasonable assumption since the error of
the sensor measurements are greater than 2Lmd .

Let X be the random variable corresponding to the distribution
from which the unannotated datapoints are sampled. Let ε = 2Lmd .
The following equivalence holds.

X = ε

⌊
X

ε

⌋
+X mod ε.

Let M be the random variable corresponding to the distribution
from which the metadata is taken, which ranges over the interval
[0, ε− 1]. Note that since the metadata is selected using hash func-
tions, the metadata added to a datapoint is independent of the data-
point.

The annotated dataset is obtained by replacing the last Lmd bits
of each datapoint with metadata. The annotated dataset is modeled
by random variable A where

A = ε

⌊
X

ε

⌋
+M.

The variances of A and X are given by

Var(X) = Var(ε

⌊
X

ε

⌋
) + Var(X mod ε)

+ Cov(ε

⌊
X

ε

⌋
, X mod ε)

Var(A) = Var(ε

⌊
X

ε

⌋
) + Var(M) + Cov(ε

⌊
X

ε

⌋
,M).

Distribution ε
⌊
X
ε

⌋
is independent of X mod ε and of M , so both

covariance terms are 0. Thus,

Var(X)−Var(A) = Var(X mod ε)−Var(M).

Both X mod ε and M sample {0, . . . , ε − 1}, so their variances
are at most (ε − 1)2/4] (see [11]). Thus the worst case change in
variance is Var(X)−Var(A) = ±(ε−1)2/4. If bothX’s low or-
der bits and distribution M are uniformly random, then Var(X)−
Var(A) = 0.

8. DEPLOYMENT ISSUES AND
FUTURE WORK

In this paper we develop a foundational theory comprising an ab-
stract notion of “dataset,” but our scheme is intended for real-world
deployment and this raises a variety of issues. Here we discuss
salient ones and how they can be approached in future work.

Social issues.
As we have stressed, our scheme is not a security mechanism

per se, but rather is intended to (1) support the “fair use” policies
typical of publicly available sensor network data, and (2) provide
a means to mark data with its own metadata. The importance of
both fair use policies and metadata in the environmental sciences
community is evidenced by online archives such as the aforemen-
tioned HBES [18] and the Sagehen Creek Field Station repositories
[15]. Both incorporate policies expecting that data producers and
archivers should be acknowledged in and informed of publications
that use their data. These sites also clearly associate metadata with
datasets, which is crucial to contextualize environmental data.

Thus, the tools and techniques we propose should be freely avail-
able and “open source,” and our provenance encoding need not be
irreversible in a cryptographic sense; they are intended to support
scientists and promote good citizenship. In particular, we envision
publicly accessible web-based tools for embedding and retrieving
provenance marks. Indeed, probably the most sensitive aspect of
our scheme is that it alters datasets themselves. Data producers of-
ten have strong feelings about the integrity of their data and may
look askance at manipulation of their data, arguments about imper-
ceptibility notwithstanding. However, in our scheme it is always
the case that unmarked data is available to the data producer and
can be privately archived.

The meaning of provenance marks.
Intuitively, provenance encoding provides a means to answer

the questions “where did this data come from?” and “is this data
mine?”, given just a dataset. Analogously to typical watermarking
schemes, blind checking addresses the former question, while one-
bit checking addresses the latter. Which question is more important
may determine what meaning is carried by the provenance marks.
That is, if checking data ownership is paramount, then it would suf-
fice that each data producer uses a unique provenance mark, and a
producer’s single mark may be embedded in many datasets. On the
other hand, if provenance is the dominant issue, then marks would

more appropriately encode or point to the dataset’s metadata. For
example, a mark could be a url for a webpage containing extensive
provenance information for the marked dataset; a level of indirec-
tion allows marks to be shorter than metadata, allowing a more
robust encoding.

Embedding and data lifecycles.
A central issue is at what point in the data lifecycle should prove-

nance marks be embedded. In particular, note that raw sensor data
is usually obtained as a straight voltage reading or as a ratio to
a benchmark voltage. Some formula is then applied to obtain a
standard unit measurement based on the calibration of the instru-
ment. Since this transformed reading is typically the data that is
actually disseminated, we argue that transformed data in standard
units is more appropriate to be marked than raw sensor data. Oth-
erwise, our provenance encoding scheme would have to be robust
to arbitrary algebraic transformations, or the retrieval algorithm
would need to “know” the precise transformation function, neither
of which is realistic.

At what point the embedding occurs is also a function of who in-
tends to mark the data; when data is included as part of a larger
repository then both the producer and the archiver may wish to
mark it with provenance information. If the latter, the embedding
could be performed upon data entry into or retrieval from the repos-
itory in a straightforward manner. If the former, it may be desirable
to perform the embedding before the data is introduced to the repos-
itory. This may require that the embedding be performed within the
sensor network itself. Given empirical observations regarding the
efficiency of our scheme we believe this is practical. The most com-
putational expensive component of our embedding technique is the
computation of a hash; MD5, a commonly-used cryptographic hash
function, has been implemented as a MAC algorithm for TinyOS
[19]. Indeed, since our scheme is not a security mechanism, we do
not require our hash to be hard to invert, and could just as well use
a block cipher algorithm instead of a hash; implementations of, for
example, both AES and Skipjack are available in TinyOS.

Retrieval: format and efficiency.
We have implemented a retrieval algorithm that takes as input

newline-separated lists of numeric values that would be straightfor-
ward to provide as a form-based tool on the web. This would allow
users to copy-paste lists of data for automated provenance mark
retrieval. However, a more realistic option is to develop a simple
parsing tool that takes as input data in standard domain-specific
formats such as EML.

Another problem related to retrieval tools is larger datasets. Ob-
viously, the larger the dataset, the longer the retrieval process. Very
large datasets could pose a significant problem for our technique
unmodified. However, we have observed that our technique is ro-
bust to sampling in both our combinatorial analysis and empirical
observations. In particular, Figure 7 shows that approximately 100
datapoints with 10 bits of metadata provides high reliability of re-
covery of a 32-bit provenance mark. Thus, one-bit and blind check-
ing could be implemented efficiently for large datasets by sampling
a relatively small subset of datapoints.

9. RELATED WORK
The issue of how to represent and manage metadata and prove-

nance in sensor network data repositories has received increasing
attention as these repositories grow in size and popularity. Previ-
ous related work has considered tracking provenance of data as it is
republished [14] and during curation of large-scale, interconnected

data repositories [2], as well as leveraging provenance information
to increase the utility of sensor data [12]. Research has resulted in
online tools for sensor data storage such as SensorBase [17] which
have even introduced the notion of “slogging”, or logging of sen-
sor data via systems that automate metadata annotation and support
sharing with the broader community. While this previous work re-
flects the importance of issues we have addressed in our work, it
mainly considers management and dissemination of metadata and
provenance annotations, rather than introducing means to directly
associate data with its metadata as in our system.

Our provenance encoding technique can be viewed as a new type
of digital watermarking [9, 7]. A vast amount of research exists in
this field, with watermarking techniques proposed for a variety of
media; most related to our work are techniques for watermarking
relational databases [1]. However, relational database watermark-
ing typically relies on schema structure, whereas our technique
treats unstructured datasets. The watermarking literature has also
considered the use of watermarks to associate data with its prove-
nance information. Previous work has treated this issue in multime-
dia DBMS [5] and in raw video data [10]. Our work accomplishes
similar goals for sensor datasets. However, a key difference with
most work on watermarking is that we do not regard the user of the
data as an adversary who is attempting to detect or remove the wa-
termark. As such, our technique does not aim to be imperceptible
(although we do ensure that embedding does not affect scientific
uses of the data), and we do not aim for the metadata to be inalter-
able. A notable exception is the VEIL system for certifying video
provenance [10], which allows an adversary to remove metadata,
but aims to make it difficult for an adversary to introduce false
metadata, or to alter data while still associating it with the same
metadata.

Tracking provenance in curated databases [4] is another related
problem of burgeoning interest. Here the issue is keeping track of
the provenance of data originating from multiple sources, manu-
ally constructed by domain experts. But work in this area treats
structured data and focuses on the “history” of data and how it is
manipulated to obtain the curated database. Somewhat more re-
lated is work on tracking provenance in automatically-generated
data warehouses [3, 6, 8, 13, 16, 20]. This body of work is mostly
focused on combining provenance annotations on data warehouses
in a systematic manner; by contrast, we aim to directly associate
provenance information with unstructured data.

10. CONCLUSION
In this paper we have a presented a system for generating self-

identifying data, which is sensor network data marked with its own
metadata in an automatically recoverable manner. Our system is
intended to support fair-use policies in the scientific community.
Our technique for marking data is similar to previous watermark-
ing techniques for other media, in that we define mark embedding
and both one-bit and blind retrieval algorithms that are robust to a
number of transformations. Since our system is not intended as a
security mechanism per se, the transformations we consider are be-
nign and comprise modifications we expect data users to make in
the course of normal study, including sampling, reordering, trun-
cation, and rounding of data. We have performed combinatorial
and empirical analysis of our system characterizing its robustness
in various scenarios and providing insight into its best use.

Acknowledgments
We thank James Cheney for inviting us to a meeting at the Univer-
sity of Edinburgh where we started this work, and are grateful for

travel support from the UK eScience Institute Theme Program on
Principles of Provenance. Thanks also to Jeff Brown of Sagehen
Field Station for inspiring the idea, and to the reviewers and shep-
herd for useful feedback. Christian Skalka’s work was supported
by a grant from the Air Force Office of Scientific Research.

11. REFERENCES
[1] Rakesh Agrawal and Jerry Kiernan. Watermarking relational

databases. In VLDB ’02: Proceedings of the 28th
international conference on Very Large Data Bases, pages
155–166. VLDB Endowment, 2002.

[2] Karen S. Baker and Lynn Yarmey. Data stewardship:
Environmental data curation and a web-of-repositories. The
International Journal of Digital Curation, 4(2), 2009.

[3] Deepavali Bhagwat, Laura Chiticariu, Wang Chiew Tan, and
Gaurav Vijayvargiya. An annotation management system for
relational databases. VLDB J., 14(4):373–396, 2005.

[4] Peter Buneman, Adriane Chapman, and James Cheney.
Provenance management in curated databases. In SIGMOD
’06: Proceedings of the 2006 ACM SIGMOD international
conference on Management of data, pages 539–550, New
York, NY, USA, 2006. ACM.

[5] Richard Chbeir and David Gross-Amblard. Multimedia and
metadata watermarking driven by application constraints. In
MMM. IEEE, 2006.

[6] Wang chiew Tan. Containment of relational queries with
annotation propagation. In In Proceedings of the
International Workshop on Database and Programming
Languages (DBPL, pages 37–53, 2003.

[7] Ingemar J. Cox and Matt L. Miller. The first 50 years of
electronic watermarking. EURASIP J. Appl. Signal Process.,
2002(2):126–132, 2002.

[8] Yingwei Cui and Jennifer Widom. Lineage tracing for
general data warehouse transformations. In 27th
International Conference on Very Large Data Bases (VLDB
2001), 2001.

[9] Jessica Fridrich and Miroslav Goljan. Comparing robustness
of watermarking techniques. In Security and Watermarking
of Multimedia Contents, volume 3657 of Proceedings of
Spie–the International Society for Optical Engineering,
1999.

[10] Ashish Gehani and Ulf Lindqvist. Veil: A system for
certifying video provenance. In ISM ’07: Proceedings of the
Ninth IEEE International Symposium on Multimedia, pages
263–272, Washington, DC, USA, 2007. IEEE Computer
Society.

[11] Harold I. Jacobson. The maximum variance of restricted
unimodal distributions. Ann. Math. Statist.,
40(5):1746–1752, 1969.

[12] Jonathan Ledlie, Chaki Ng, David A. Holland, Kiran-Kumar
Muniswamy-Reddy, Uri Braun, and Margo Seltzer.
Provenance-aware sensor data storage. In Proceedings of the
1st IEEE International Workshop on Networking Meets
Databases, 2005.

[13] Thomas Lee, Stéphane Bressan, and Stuart E. Madnick.
Source attribution for querying against semi-structured
documents. In Sadri [16], pages 33–39.

[14] Unkyu Park and John Heidemann. Provenance in sensornet
republishing. In Proceedings of the 2nd International
Provenance and Annotation Workshop, pages 208–292, Salt
Lake City, Utah, USA, June 2008. Springer-Verlag.

[15] Sagehen Creek Field Station Data Repository.
http://sagehen.ucnrs.org/resources.htm.
Last visited 10/29/09.

[16] Fereidoon Sadri, editor. CIKM’98 First Workshop on Web
Information and Data Management (WIDM’98), Bathesda,
Maryland, USA, November 6, 1998. ACM, 1998.

[17] SensorBase. http://sensorbase.org/. Last visited
10/29/09.

[18] Hubbard Brook Ecosystem Study.
http://www.hubbardbrook.org/. Last visited
10/29/09.

[19] UbiSec&Sens Hmac-MD5 Implementation.
http://www.ist-ubisecsens.org/downloads/
hmac-md5/hmac-md5.php. Last visited 10/29/09.

[20] Jennifer Widom. Trio: A system for integrated management
of data, acuray and lineage. In Proc. of the International
Conference of Data Systems Research (CIDR), 2005.

