
Authorization in Trust Management: Features
and Foundations

Peter C. Chapin
University of Vermont
and
Christian Skalka
University of Vermont
and
X. Sean Wang
University of Vermont

Trust management systems are frameworks for authorization in modern distributed systems, allowing remotely
accessible resources to be protected by providers. By allowing providers to specify policy, and access requesters
to possess certain access rights, trust management automates the process of determining whether access should
be allowed on the basis of policy, rights, and an authorization semantics. In this paper we survey modern state-
of-the-art in trust management authorization, focusing on features of policy and rights languages that provide the
necessary expressiveness for modern practice. We characterize systems in light of a generic structure that takes
into account components of practical implementations. We emphasize systems that have a formal foundation,
since security properties of them can be rigorously guaranteed. Underlying formalisms are reviewed to provide
necessary background.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]:
General—Security and protection

General Terms: Security, Design, Languages

Additional Key Words and Phrases: Distributed Authorization, Trust Management Systems

1. INTRODUCTION

Distributed applications that span administrative domains have become commonplace in
today’s computing environment. Electronic commerce, high performance scientific com-
puting, groupware, and multimedia applications all require collaborations between distinct
social entities. In such systems each administrative domain, also called a security domain,
controls access to its own resources and operates independently of other administrative
domains. The problem of how to best specify and implement access control in such an
environment has been a topic of considerable research. To address this problem the idea of
trust managementwas introduced [Blaze et al. 1996] and subsequently developed by many
authors, providing frameworks in which entities can specify independent access control
policies that are enforced upon access request.

Authors’ addresses: Peter Chapin, University of Vermont, Department of Computer Science, Burlington, VT
05405,pchapin@cs.uvm.edu . Christian Skalka, University of Vermont, Department of Computer Science,
Burlington, VT 05405,skalka@cs.uvm.edu . X. Sean Wang, University of Vermont, Department of Com-
puter Science, Burlington, VT 05405,xywang@cs.uvm.edu .

ACM Computing Surveys

2 · Peter Chapin and Christian Skalka and X. Sean Wang

At the heart of trust management systems is theauthorization procedure, which deter-
mines whether resource access should be granted or not based on a number of conditions.
The semantics of authorization provide meaning to the features supported by trust man-
agement systems, for both the policy maker and the resource requester. While a number of
techniques have been proposed to characterize authorization in trust management systems,
we argue that the most promising are those based on rigorous formal foundations. This
argument is not new, in fact it has motivated trust management research since its incep-
tion [Woo and Lam 1993]. In a security setting, entities should be able to specify policies
precisely, to have an absolutely clear idea of the meaning of their policies, and to have
confidence that they are correctly enforced by authorization mechanisms. Formally well-
founded trust management systems achieve this, providing a setting in which reliability can
be rigorously established by mathematical proof. In particular, various logics have served
as the foundation for trust management [Abadi 2003; Bertino et al. 2003]. In this paper we
survey state-of-the-art in trust management authorization, with an emphasis on formally
well-founded systems. These systems are compared to each other with respect to desirable
high-level features of trust management.

Our focus is the foundations and features of trust management systems, not their appli-
cation, though we note that trust management systems have been shown to enforce security
in many real applications. For example, the KeyNote system has been shown capable of en-
forcing the IPsec network protocol [Blaze et al. 2002; 2003]. SPKI/SDSI has been used to
provide security in component based programming language design [Liu and Smith 2002].
Cassandra has been examined in the context of the United Kingdom’s proposed nationwide
electronic health records system [Becker and Sewell 2004b]. In addition, the Extensible
Access Control Markup Language (XACML) [OASIS 2006a] and the Security Assertion
Markup Language (SAML) [OASIS 2006b], both OASIS standards, define XML policy
and assertion languages that makes use of many trust management concepts.

1.1 Authorization Frameworks

The trust management systems we survey are primarily concerned withauthorization, as
opposed toauthentication. The latter addresses how to determine or verify the identity
of actors or message signers in a distributed transaction with a high degree of confidence.
Authorization, on the other hand, is based on calculi of principals whose identities are
taken for granted. Although any real implementation of an authorization system will rely
on authentication to establish these identities, and key-to-identity bindings may even have
an abstract representation in the system, authorization generally treats authentication and
public key infrastructure as orthogonal issues. Authorization is more properly concerned
with non-trivial access control policies– how to specify them, what they mean, and how to
endow trusted principals with the credentials necessary to satisfy them.

Authorization in trust management systems is more expressive than in traditional ac-
cess control systems such as role based access control (RBAC) [Sandhu et al. 1996]. In
such simpler models, access is based directly on identities of principals. But in a large
distributed environment such as the Internet, creating a single local database of all poten-
tial requesters is untenable. Where there are multiple domains of administrative control,
no single authorizer can be expected to have direct knowledge of all users of the system.
Furthermore, the Internet is a highly dynamic and volatile environment, and no single en-
tity can be expected to keep pace with changes in an authoritative manner. Finally, basing
authorization purely on identity is not a sufficiently expressive or flexible approach, since

ACM Computing Surveys

Authorization in Trust Management: Features and Foundations · 3

security in modern distributed systems utilizes more sophisticated features (e.g. delega-
tion) and policies (e.g. separation of duty [Simon and Zurko 1997]). These problems are
addressed by the use of trust management systems. We now return to some of the appli-
cations mentioned above, to illustrate how authorization in trust management systems is
suited to enforcing security in practical computing scenarios.

IPsec. Blaze and Ioannidis [Blaze et al. 2002] describe an extension to the IPsec archi-
tecture that uses KeyNote to check if packet filters proposed by a remote host comply with
a local policy for the creation of such filters. This allows a system administrator to prevent
an attacker from negotiating a secure connection and then using that connection to attack
vulnerable services. This application is an instance of the more general idea of using a
trust management system for firewall management.

Web Page Content Ratings.Several authors describe the use of trust management sys-
tems to implement web page content rating schemes [Gunter et al. 1997; Chu et al. 1997].
This is of significant practical interest; the World Wide Web Consortium has considered
using trust management concepts in its Platform for Internet Content Selection [Resnick
and Miller 1996]. In a rating scheme a client delegates the authority to rate web pages
to a suitable ratings server. The server issues certificates that bind a web page (via its
hash value) to a rating. When a page is fetched, the web server delivers this certificate
to the browser where the browser’s policy is consulted to determine if the page should be
displayed.

Medical Records.Several trust management systems have been applied to maintaining
integrity and privacy in electronic health records [Bacon et al. 2002; Becker and Sewell
2004b], a topic of considerable importance in modern health care [Office of Technology
Assessment 1993]. Security in this setting involves policies spanning many loosely cou-
pled domains such as clinics, hospitals, laboratories, and emergency services.

1.2 Goals and Outline of the Paper

A summary and comparison of the features and formal underpinnings of authorization
procedures in trust management systems is a primary goal of this paper, grounded in a
review of their foundations in authorization logics such as ABLP [Abadi et al. 1993]. This
summary provides a useful explanation and overview of modern state-of-the-art in trust
management authorization technology. Another contribution of this survey is the charac-
terization of authorization frameworks assystemsthat include other components in addition
to the core authorization semantics. This distinguishes our presentation from a previous
survey of authorization logics [Abadi 2003]. It is important to consider these components,
since some features of trust management systems may be reflected in them rather than in
the authorization semantics, for example certificate expiration dates may be checked when
parsing wire format certificates but ignored by the authorization semantics. This also sheds
light on how much formal support is provided for these features in various systems. We
summarize the components of trust management systems, and compare them in light of
which features are supported by which components.

Because trust management is a broad and active field, it is important to restrict the scope
of our survey to provide sufficient depth as well as breadth. As the title suggests, we are
mainly concerned with the semantics and implementation ofauthorizationin trust man-
agements systems, versus other components such as certificate storage and retrieval. We
delineate our scope more precisely below in Sect. 2.1.

ACM Computing Surveys

4 · Peter Chapin and Christian Skalka and X. Sean Wang

The remainder of this survey is organized as follows. In Sect. 2 we introduce important
concepts and terminology, summarize the method we use to compare and contrast various
systems, and introduce a running example. In Sect. 3 we highlight several features offered
by trust management systems. Sect. 4 reviews in more detail the logical basis of trust
management. Sect. 5 reviews several trust management systems with a focus on those that
are logically well founded. Sect. 6 gives an overview of trust negotiation, an important
component of some trust management applications. Finally we conclude in Sect. 7.

2. OVERVIEW

In this section we provide background in trust management systems for the general reader.
We also clarify which trust management system components are relevant to the authoriza-
tion decision– there turn out to be some important subtleties in this regard. In light of the
structure of authorization decisions so described, we outline our approach to comparing
trust management systems. We also provide a longer running example, which serves to
illustrate the concepts introduced and later serves as an explicit point of comparison for the
systems we survey.

2.1 Components of Full Implementations

Trust Management Systems (TMSs) in practice comprise a number of functions and sub-
systems, which we divide into three major components:the authorization decision, cer-
tificate storage and retrieval, andtrust negotiation. Authorization decisions are relevant
to the elements and semantics of the access control decision itself. Certificate storage and
retrieval is relevant to the physical location of certificates that are the low-level represen-
tation of access control elements such as credentials and policies. For example, systems
have been proposed for storing SPKI certificates using DNS [Nikander and Viljanen 1998]
and for storing SDSI certificates using a peer-to-peer file server [Ajmani et al. 2002]. Trust
negotiation [Winsborough et al. 2000; Yu et al. 2000; Seamons et al. 2001; Yu et al. 2001;
Winsborough and Li 2002; 2004] is necessary for access control decisions where some el-
ements of access policies or the credentials used to prove authorization with those polices
should not be arbitrarily disclosed. For example, in [Winsborough et al. 2000] a scheme is
proposed whereby access rights held by requesters are protected by their own policies, and
both authorizers and requesters must show compliance with policies (i.e. negotiate) during
authorization. We provide a brief summary and overview of trust negotation in Sect. 6, to
provide a more complete view of trust management functionality and challenges in modern
practice.

The importance of these other components notwithstanding, in this survey our focus will
be on authorization decisions. This is because the authorization decision is the basis of any
trust management system. Furthermore, not all the systems proposed in the literature have
been developed sufficiently to include certificate storage implementations, nor trust nego-
tiation strategies in the presence of confidentiality. Focusing on authorization decisions
allows us to sufficiently narrow our scope, and thoroughly review components that endow
systems with their characteristic features. When we say that we consider only those TMSs
with a formal foundation in this survey as in Sect. 1, we mean that the authorization deci-
sion is based on a mathematically well-founded semantics of some sort, e.g. propositional
logic or relational algebra.

ACM Computing Surveys

Authorization in Trust Management: Features and Foundations · 5

2.2 Elements of Authorization: Glossary

To clarify the remaining presentation and identify fundamental elements of trust manage-
ment authorization decisions, we now provide a glossary of relevant terms. More in depth
discussion of these terms occurs throughout the rest of the paper, this section is intended
as a succinct reference.

Entity: an individual actor in a distributed system, also frequently called a principal.

Resource: anything that a local system might regard as worthy of access control– file
access, database lookup, web browser display area, etc.

Policy: a specification of rules for accessing a particular resource. Policy is usually
defined locally at least in part, but TMSs sometimes allow policy to be defined non-locally
as well.

Authorizer: the local authority that protects a resource, by automatically allowing access
only after an appropriate proof of authorization has been shown. Authorizers also specify
policy.

Requester: an entity (usually non-local) seeking to access a resource.

Attribute: a property of interest in some security domain, for example a role member-
ship.

Credential: endows entities with certain attributes. Local policy usually specifies that
requesters must be endowed with certain attributes before resource access is allowed, so
credentials are essential to establish access rights to resources.

Issuer: the authority that issues a particular credential.

Certificate: a certified wire format representation of a credential.

Certificate revocation: the removal of a requester’s credential, typically by the issuer.

Credential negation: Policy languages sometimes allow policy makers to specify that a
credentialnot be held. Logically, this is expressed as credential negation.

Delegation of authority: the (usually temporary) logical transfer of authority over policy
from one entity to another.

Delegation of rights: the (usually temporary) logical transfer of an access right from one
entity to another.

Authorization decision: the determination of whether a given requester possesses the
necessary attributes to access a particular resource as mediated by local policy, based on a
preferably well-defined semantics of policies and credentials.

Authorization mechanism: the automated means by which an authorization decision is
reached. Depending on context this refers to an algorithm or a module of software executed
by the authorizer.

Core authorization semantics: the mathematically well-founded theory that constitutes
the meaning of authorization decisions.

Role: an attribute that requesters can activate when requesting authorization. Authoriza-
tion is often based on the role a requester is able to assume.

ACM Computing Surveys

6 · Peter Chapin and Christian Skalka and X. Sean Wang

Role membership: an entity is said to be a member of a role if that entity is among the
group of entities that can activate the role.

Threshold policy: threshold policies require a minimum specified number of entities to
agree on some fact. Threshold policies usually support separation of duty authorization
schemes [Li et al. 2002].

Domain: the security locality administered by a given authority.

Name space: the names defined in a particular domain.

2.3 Structure of an Authorization Decision

The subsystem of a trust management system that constitutes its authorization decision
includes more than just a core authorization semantics. Bysystemwe mean the set of com-
ponents that provide an implementation, not just an abstract specification of the authoriza-
tion semantics. This distinguishes our presentation from a survey of authorization logics
[Abadi 2003]. In this section we identify the components of a generic authorization deci-
sion and characterize its structure. This provides a better understanding of authorization
decisions in general, and also a means to better categorize features of particular systems
later in the paper.

In Fig. 1 we illustrate the components of a generic authorization decision. This graphic
is meant as a rough sketch, not a formal specification, and not all TMSs contain all the
components we describe. Nevertheless, the illustration is a useful tool for categorizing
systems. The graphic is read top to bottom, and shows the flow of information through
a particular authorization process, with output computed in response to an authorization
request. The diagram is intentionally vague about the nature of the output: in the simplest
case, the output is a simple “yes” or “no” decision as to whether or not to grant resource
access, but in systems that supporttrust negotiation, the output could be a partial answer
that provides direction for additional input. This issue is better discussed in Sect. 6. Within
the scope of this survey, we mainly consider the case where the output is a boolean value,
hence our terminology authorizationdecision. The core authorization semanticsL imple-
ment the authorization decision, and may be a specialized inference system, or a proof
search in a generic programming logic such as Prolog, for example. The authorization
semantics takes as input parameters fromC, P , andQ, which we now describe in detail.

Local policyP is defined in some specification language, that is transformed into terms
understood by the core semantics by the transformation functionTP . This translation may
just consist of parsing from concrete to abstract syntax, orTP may compile statements in a
high-level policy language into lower level terms for the core semantics. For example, TPL
[Herzberg et al. 2000] provides an XML-based “trust policy language” that is compiled into
Prolog.

Credentials for a particular requester may be defined as part of local policy. But an
earmark of TMSs is their ability to extend local policies with credentials conferred by non-
local authorities. This is realized as set of available certificatesC that are transformed by a
functionTC into credentials defined in terms understood by the core semantics. The trans-
formationTC provides a level of indirection allowing systems to choose between various
certificate wire formats and PKIs, though X.509 [International Telecommunications Union
2000] or WS-Security [OASIS 2006c] are obvious choices for Internet and Web Services
settings.

ACM Computing Surveys

Authorization in Trust Management: Features and Foundations · 7

Q

P

C

P

T

D

L

Yes/No

T

T
QC

P : Policy
C : Certificates
Q : Authorization Query
V : Certificate Validation
L : Authorization Mechanism

TP : Policy Compilation
TC : Credential Encoding
TQ : Query Compilation
D : Distributed Certificate Discovery

Fig. 1. Structure of an Authorization Decision

The transformationTC also has special significance for the semantics of TMSs, since
it is often not a straight parsing or compilation procedure. Rather, certificates may be
rejected, or their credential representations enhanced, by certificate validity information.
Validity information is external to the authorization semantics in some systems, but inter-
nal to it in others, so we represent the certificate validation component of the authorization
decisionV as dashed box. For example, any given certificatec ∈ C almost always defines
a finite lifetime for the certification, also called a validity interval [Winslett et al. 1997].
Some TMSs such as PCA [Bauer et al. 2002] support lifetime information in the authoriza-
tion semantics, and in such a caseTC can map the lifetime information inc to its credential
representation. However, other systems do not represent lifetimes in the authorization se-
mantics per se (that is, inL), and in such cases the onus is onTC to filter out expired
certificates. For example, SPKI provides a mechanism for certificates to be checked on-
line to see if they have been revoked [Ellison et al. 1999], but this mechanism is not part of
SPKI’s formal structure. This means on the one hand SPKI’s revocation policy cannot be
expressed in the SPKI policy language itself, nor enforced by its authorization semantics.
On the other hand it allows a SPKI implementation to apply a different revocation policy
without changing their underlying logical structure, and in general the difficulties asso-
ciated with formalizing certificate revocation [Stubblebine 1995; Stubblebine and Wright
1996; Rivest 1998] can be avoided, while a means for certificate revocation in the system
is still available.

In addition to policyP and certificatesC, the authorization decision takes as input a
question or goalQ that is specialized for a particular access request. As an example,
some trust management systems, such as SDSI and RT0 [Li et al. 2002; Li and Mitchell
2003b], define roles. These systems allow one to prove that a particular principal is in
a particular role. Resources are associated with roles, and the authorization decision is
based on whether the requester is a member of the relevant role. The transformationTQ

translates the goal into terms understood by the core semantics. Finally, the core semantics

ACM Computing Surveys

8 · Peter Chapin and Christian Skalka and X. Sean Wang

combines policies and credentials established by input certificates to determine whether
the authorization goal is satisfied, and outputs “yes” or “no” based on this determination.

However, as denoted by the dotted line, some systems also provide a “feedback” mech-
anismD between the semantics of authorization and certificate collection. Rather than
merely answering “no” outright in case an authorization goal cannot be reached, the sys-
tem might identify credentials that are missing and attempt to collect them. This function-
ality is sometimes calleddistributed certificate chain discovery[Li et al. 2003] orpolicy
directed certificate retrieval[Gunter and Jim 2000b]. Whatever the specifics, it is clear
that this functionality makes for a more flexible system in terms of certificate distribution
and storage, but presents a significant challenge to system designers.

2.4 Comparing Trust Management Systems

A basis for comparing the features and functionality supported by trust management sys-
tems is fundamental to our survey. Since the systems we consider have a formal foundation,
some sort of formal comparison seems appealing. Indeed, in [Weeks 2001] a framework
is presented for describing a variety of authorization semantics, including KeyNote and
SPKI/SDSI. This uniform specification of various semantics allows them to be compared
on a completely formal basis, so for example it can be shown how credentials in one system
can be faithfully encoded in another.

However, as we observe above, features of TMS authorization decisions are not entirely
realized in the authorization semanticsL, but may be realized in other components, as
for example certificate revocation is sometimes implemented as part of the translationTC

from certificates to credentials. Since the definition of these components is not included in
the formal specification of the authorization semantics, these system features can only be
compared on an informal basis. We will therefore compare systems in light of the features
they possess. In addition, we will observe whether the features are realized formally as
part of the authorization semantics, or whether they are implemented by some other system
component; this will clarify in what sense particular TMSs “possess” a certain feature. As
a concrete point of comparison, we will also show how various systems encode the running
example introduced next.

2.5 A Running Example

Suppose Alice is a cancer patient at a hospital being treated by Bob, a doctor. Alice grants
Bob access to her medical records and also allows Bob to delegate such access to others as
he sees fit.

Bob defines his team as a particular collection of individuals together with the people
supporting them. A person supporting one of Bob’s team members becomes a team mem-
ber herself so Bob’s definition is open ended and can potentially refer to a large number of
people he does not know directly. Here we assume that Bob’s team includes both medical
and non-medical personnel (for example other doctors as well as receptionists). Bob then
delegates his access to Alice’s medical records to only the medical staff on his team– that
is, people on his team that are also on the medical staff, as opposed to e.g. administrative
staff.

Suppose further that Bob consults with another doctor, Carol, on Alice’s condition. Bob
modifies his policy to add Carol temporarily to his team. Carol orders some blood tests
that are then analyzed by Dave, a lab technician and one of Carol’s support people. The

ACM Computing Surveys

Authorization in Trust Management: Features and Foundations · 9

policy described allows Dave to access Alice’s medical records, for example to input the
test results.

Dave signs the test results when he uploads them to the hospital database. He also in-
cludes appropriate credentials so that the database will authorize his access. The precise
credentials needed depend on the trust management system in use and on the way creden-
tials and policy statements are distributed and located by that system, however we imagine
that these credentials should be able to express the following relations in some form:

—Bob has delegated his access to Alice’s medical records to people on his team who are
members of the medical staff.

—Carol is on Bob’s team.

—If someone is on Bob’s team, than any person on their support staff is also on Bob’s
team.

—Dave is one of Carol’s support people.

—Dave is a member of the hospital’s medical staff.

On the basis of these relations, one may deduce that Dave has access to Alice’s medical
records. Realistically, Dave may not know to submit all of this information, or have any
knowledge of Bob’s policy. If the trust management system used by the hospital supports
distributed credential chain discovery, the hospital database would locate Bob’s policy au-
tomatically in order to complete the authorization decision.

Complex access control scenarios such as this are difficult to express using traditional
methods. Neither Alice nor Bob realize that Dave needs to be granted access to Alice’s
medical records. Although Dave’s role as one of Carol’s support people might be enough
to grant him access to the records of Carol’s patients, Dave’s relationship to Bob, and hence
to Alice, is indirect; it is Bob’s act of adding Carol to his team that causes Dave to gain
access to Alice’s records. Observe also that Bob’s team policy is recursive. A primary
purpose of trust management systems is to provide language features and authorization
semantics that support such complex policies.

3. FEATURES OF TRUST MANAGEMENT SYSTEMS

In this section we describe and discuss features relevant to trust management. We do not
intend this listing to be exhaustive, rather we intend to focus on features that are gener-
ally considered important for trust management applications. Our goal is to more deeply
characterize trust management systems, and to provide a means for comparison of various
systems later in the paper.

We name and discuss features below, commenting on their relevance to trust manage-
ment and noting important implementation issues. Particular trust management systems
will be discussed in detail in Sect. 5, but in anticipation of that and in order to provide
a thumbnail reference, Table I and Table II summarize feature sets for the collection of
trust management systems we survey. Recall from the previous section that we understand
trust management systems to include more than just the core authorization semantics, but
also ancillary components such as translation from certificates to credentials. Thus, some
systems are said to possess features that are realized in ancillary components instead of
the core semantics. Also, while some systems are not explicitly designed to support cer-
tain features, their semantics is sufficiently expressive to simulate them, and such instances
are listed in the table. The order in which the systems are listed is intended to follow an

ACM Computing Surveys

10 · Peter Chapin and Christian Skalka and X. Sean Wang

approximate chronological order of their development. The order is approximate because
some of the systems were developed over a considerable span of time and it is difficult to
specify precisely when they reached a mature state.

3.1 Discussion of Features

We now briefly describe trust management features at a conceptual level. Specific exam-
ples of these features in systems are given in Sect. 5.

3.1.1 Formal Foundation.Since authorization systems are used in security-sensitive
contexts, mathematically precise descriptions of their behavior and formal assurances of
their correctness is essential. A variety of formalisms serve as effective foundations for
the definition of trust management authorization semantics. As we describe later in this
survey, these can be divided into three main categories: logics, database formalisms, and
graph theory.

In the case of trust management systems based on logic, the authorization problem is ex-
pressed in terms of finding a proof of a particular formula representing successful resource
access, with a collection of suitable axioms representing policy. Credentials relevant to a
particular decision become additional hypotheses to be used in the proof. Trust manage-
ment systems based on database formalisms (e.g. relational algebra) see the authorization
decision as a query against a distributed database. The certificates issued by a principal
contain, in effect, tuples from relations that a principal controls. Trust management sys-
tems based on graph theory define the authorization decision in terms of finding a path
through a graph. The request is represented by a particular node in the graph. Principals
are also graph nodes and the certificates they issue denote edges.

It is not unusual for a particular trust management system to be described by more than
one formalism. In fact, some aspects of trust management are more naturally expressed
using one formalism or another. Also, Datalog serves as both a database formalism and a
programming logic, and several trust management systems have been specified in Datalog.

3.1.2 Authorization Procedure. Authorization Complexity.Trust management sys-
tems differ in exactly how the authorization decision is implemented. In a broad sense
this is due to differences in the way the systems are described; systems using the same
style of formalization tend to use similar authorization procedures. This is particularly ev-
ident among the systems using programming logics such as Datalog as both their formal
foundation and implementation. However, some differences between systems result in sig-
nificant differences in how authorization is computed even when the underlying formalism
is the same, if certificate revocation is present in one system but not another for example.
In some cases no authorization procedure is given; the details of computing authorization
is entirely left to the implementors.

The computational complexity of the authorization decision is clearly of practical inter-
est. Authorization should be decidable and tractable, but there is a trade off between the
expressiveness of the certificate and policy language and the complexity of the authoriza-
tion decision. For example, the systems that use Datalog with constraints (DatalogC) can
have various levels of computational complexity depending on the constraint domain used
[Li and Mitchell 2003a]. Yet even trust management systems with undecidable decision
procedures can be potentially useful; realistic policies may be decidable even if the general
policy language is not.

ACM Computing Surveys

Authorization in Trust Management: Features and Foundations · 11
P

ol
ic

yM
ak

er
K

ey
N

ot
e

S
P

K
I/S

D
S

I
R

E
F

E
R

E
E

Q
C

M
O

A
S

IS

F
or

m
al

F
ou

nd
at

io
n

G
ra

ph
th

eo
ry

G
ra

ph
th

eo
ry

S
et

th
eo

ry
.

F
irs

to
rd

er
lo

gi
c

N
ot

fo
rm

al
iz

ed
R

el
at

io
na

l
al

ge
br

a
F

irs
to

rd
er

lo
gi

c

A
ut

ho
riz

at
io

n
P

ro
ce

du
re

G
ra

ph
se

ar
ch

G
ra

ph
se

ar
ch

T
up

le
re

du
ct

io
n

A
rb

itr
ar

y
D

is
tr

ib
ut

ed
da

ta
ba

se
qu

er
y

U
ns

pe
ci

fie
d

A
ut

ho
riz

at
io

n
C

om
pl

ex
ity

U
nd

ec
id

ab
le

U
nd

ec
id

ab
le

P
ol

yn
om

ia
l

P
ot

en
tia

lly
un

de
ci

da
bl

e
U

np
ub

lis
he

d
U

nd
ec

id
ab

le

P
ub

lic
K

ey
In

fr
as

tr
uc

tu
re

E
xt

er
na

l
E

xt
er

na
l

E
xt

er
na

l
In

te
rn

al
In

te
rn

al
E

xt
er

na
l

(u
nd

efi
ne

d)
T

hr
es

ho
ld

P
ol

ic
ie

s
Y

es
Y

es
Y

es
N

o
N

o
N

o

Lo
ca

lN
am

e
S

pa
ce

s
C

an
be

si
m

ul
at

ed
N

o
Y

es
N

o
Y

es
Y

es

R
ol

e-
B

as
ed

A
cc

es
s

C
on

tr
ol

C
an

be
si

m
ul

at
ed

C
an

be
si

m
ul

at
ed

Y
es

C
an

be
si

m
ul

at
ed

Y
es

Y
es

D
el

eg
at

io
n

of
R

ig
ht

s
Y

es
Y

es
Y

es
(b

oo
le

an
de

pt
h)

Y
es

N
o

Y
es

C
er

tifi
ca

te
Va

lid
ity

D
ep

en
ds

on
as

se
rt

io
n

la
ng

ua
ge

In
te

rn
al

E
xt

er
na

l
In

te
rn

al
E

xt
er

na
l

In
te

rn
al

C
re

de
nt

ia
l

N
eg

at
io

n
N

o
N

o
N

o
Y

es
N

o
N

o

C
re

de
nt

ia
l

R
ev

oc
at

io
n

E
xt

er
na

l
E

xt
er

na
l

O
n-

lin
e

re
vo

ca
tio

n
ch

ec
k

E
xt

er
na

l
In

te
rn

al
In

te
rn

al

D
is

tr
ib

ut
ed

C
ha

in
D

is
co

ve
ry

N
o

N
o

N
o

Y
es

Y
es

N
o

Ta
bl

e
I.

S
um

m
ar

y
of

T
ru

st
M

an
ag

em
en

tS
ys

te
m

s,
P

ar
tI

ACM Computing Surveys

12 · Peter Chapin and Christian Skalka and X. Sean Wang

P
C

A
T

P
L

S
D

3
B

inder
R

T
C

assandra
P

R
O

T
U

N
E

F
orm

al
F

oundation
H

igher
order

logic
P

rolog
D

atalog
D

atalog
S

ettheory.
D

atalogC

D
atalogC

S
tratified

logic
program

s
A

uthorization
P

rocedure
N

one
N

otpublished
D

atalog
query

D
atalog

query
G

raph
search.

D
atalog

query
M

odified
S

LG
resolution

Logic
program
evaluation

A
uthorization

C
om

plexity
D

ecidable
proof
checking

U
ndecidable

P
olynom

ial
P

olynom
ial

P
olynom

ial
D

epends
on

constraint
dom

ain

P
otentially

undecidable

P
ublic

K
ey

Infrastructure
Internal

E
xternal

E
xternal

E
xternal

E
xternal

E
xternal

Internal

T
hreshold

P
olicies

N
o

C
an

be
sim

ulated
N

o
N

o
Y

es
(R

T
T

)
Y

es
C

an
be

sim
ulated

LocalN
am

e
S

paces
C

an
be

sim
ulated

N
o

Y
es

Y
es

Y
es

Y
es

C
an

be
sim

ulated
R

ole-B
ased

A
ccess

C
ontrol

C
an

be
sim

ulated
Y

es
C

an
be

sim
ulated

C
an

be
sim

ulated
Y

es
Y

es
C

an
be

sim
ulated

D
elegation

of
R

ights
C

an
be

sim
ulated

Y
es

(integer
depth)

C
an

be
sim

ulated
C

an
be

sim
ulated

Y
es

(R
T
D

)
Y

es
C

an
be

sim
ulated

C
ertificate

Validity
Internal

E
xternal

E
xternal

E
xternal

E
xternal

Internal
Internal

C
redential

N
egation

N
o

Y
es

N
o

N
o

N
o

N
o

M
onotonic

C
redential

R
evocation

M
onotonic

revocation
Internal

E
xternal

E
xternal

E
xternal

Internal
E

xternal

D
istributed

C
hain

D
iscovery

N
o

Y
es

(ad
hoc)

Y
es

N
o

Y
es

Y
es

Y
es

Table
II.

S
um

m
ary

ofT
rustM

anagem
entS

ystem
s,P

artII

ACM Computing Surveys

Authorization in Trust Management: Features and Foundations · 13

3.1.3 Public Key Infrastructure (PKI).It is common for trust management systems to
treat keys directly as principals. This creates a conceptually clean design. In contrast some
systems regard the human or machine participants as the principals and encode a relation-
ship between principals and the keys that identify them. In the former case key bindings
are not represented in the authorization semantics, where in the latter case they are. Al-
though PKIs underpin the implementation of trust management systems, the question here
is: to what extent does a particular trust management system directly concern itself with
the details of key management.

3.1.4 Threshold and Separation of Duty Policies.Many systems support threshold
policies, where at leastk out of a set ofn entities must agree on some point in order
to grant access. Threshold policies are appealing since agreement provides confidence in
situations wherein no single authority is trusted by itself. The concept of separation of
duty is related to threshold policies. In the case of a separation of duty policy entities from
different sets must agree before access is granted.

For example a bank might require that two different cashiers approve a withdrawal (same
set—threshold policy). The bank might also require that a cashier and a manager, who are
not the same person, approve a loan (different sets—separation of duty policy). In general
threshold policies and separation of duty policies cannot be implemented in terms of each
other, although some trust management systems provide support for both [Li et al. 2002].

3.1.5 Local Name Spaces.It is desirable for trust management systems to allow each
administrative domain to manage its own name space independently. Requiring that names
be globally unique is problematic and, in general infeasible. Although there have been
attempts at creating a global name space [International Telecommunications Union 2001],
these attempts have at best only been partially successful. The ability to reference non-
local name spaces is also a keystone of modern trust management, in that it allows local
policy to consider requesters that may not be directly known to the local system.

3.1.6 Role-Based Access Control.In a large system with many principals it is often
convenient to use role based access control (RBAC) [Ferraiolo and Kuhn 1992; Sandhu
et al. 1996]. In such a systemrolesare used to associate a group of principals to a set of
permissions. The use of roles simplifies administration since the permissions granted to
a potentially large group of principals are defined in a single place. RBAC is a concep-
tual foundation of modern authorization technologies, so many trust management systems
provide features to support RBAC policies.

3.1.7 Delegation of Rights.All trust management systems allow an authorizer to dele-
gate authority. In other words, an authorizer can specify third parties that have the authority
to certify particular attributes. We take this as one of the defining characteristics of a trust
management system. In many applications a requester will also want to delegate some or
all of his or her rights to an intermediary who will act on that requester’s behalf.

Delegation of rights is important in a distributed environment. For example a request
may be made to an organization’s front end system that accesses internal servers where
the request is ultimately processed. The classic three-tier architecture of web applications
follows this approach. In many environments the back end servers may have their own
access control requirements, in which case the requester will need to delegate his or her
rights to the front end system for use when making requests to the internal servers.

ACM Computing Surveys

14 · Peter Chapin and Christian Skalka and X. Sean Wang

Trust management systems differ in their support for rights delegation. Delegation cer-
tificate forms may be formally provided, or delegation can be simulated via more primitive
forms. Also, delegationdepthcan be modulated in some systems– rather than being purely
transitive, delegation of rights may only be allowed to be transferred between fixedn prin-
cipals. In some cases rights can be delegated arbitrarily or not at all. A system that has this
latter feature is said to support boolean delegation depth.

3.1.8 Certificate Validity.Since an authorizer receives certificates from unknown and
potentially untrustworthy entities, the validity of those certificates must be checked. Usu-
ally, signatures must be verified and the certificate must not have expired, since in practice
certificates will almost always have a finite lifetime to ensure that obsolete information
cannot circulate indefinitely. In some systems certificate validity is explicitly treated as
part of the structure of the trust management authorization semantics– the componentL
described in Sect. 2.3. In such cases sufficient expressivity may exist in the policy lan-
guage to specify authentication policies [Abadi et al. 1993], or, in a simpler (and currently
more popular) scenario, certificate lifetimes can be directly represented in credentials and
taken into account in policy [Bauer et al. 2002; Li and Feigenbaum 2002; Skalka et al.
2007]. In other systems, certificate validity is defined externally and checked as part of the
translation of certificates into credentials– the componentTC– and not formally reflected
in the authorization semantics [Ellison et al. 1999]. We note that it is a topic of lively
debate whether authorizers [Rivest 1998] or certificate authorities [McDaniel and Rubin
2001] should determine validity intervals for authorization decisions.

3.1.9 Credential Negation.Policy languages sometimes allow policy makers to spec-
ify that a credentialnot be held. For example, access to a resource may require that re-
questers not possess a credential endowing them with a felon role. In systems using logic
as a foundation for the semantics of authorization, this is expressed as credential negation.
That is, authorization is predicated on the negation of a role attribute expressed as a cre-
dential. Note that this makes the semantics nonmonotonic– as more credentials (facts) are
added to the system, it is possible that fewer authorizations succeed. As noted in [Sea-
mons et al. 2002], this makes credential negation a generally undesirable feature, since
nonmonotonic systems are potentially unsound in practice. For example, if a certificate is
not discovered due to a network failure, access might be granted that would otherwise have
been denied.

3.1.10 Certificate Revocation.Certificate revocation is similar to credential negation,
but allows previously granted access rights to be explicitly eliminated [Rivest 1998]. Like
certificate validity, this can be implemented in the translationTC from certificates to cre-
dentials. For example, in SPKI/SDSI [Ellison et al. 1999] online revocation lists can be
defined that filter out revoked certificates prior to embedding as credentials for the au-
thorization decision. At first glance it may appear that certificate revocation entails non-
monotonicity, as does credential negation. However, it has been demonstrated that cer-
tificate revocation can encoded monotonically in both the Proof Carrying Authorization
framework [Bauer et al. 2002] and a logic-based PKI infrastructure [Li and Feigenbaum
2002]; we describe how in Sect. 5.4.5. The technique points out a relation between cer-
tificate revocation and certificate validity, in that monotonic revocation can be based on
lifetimes and the requirement to renew certificates. Various high-level approaches to and
nuances of certificate revocation are discussed in [Rivest 1998].

ACM Computing Surveys

Authorization in Trust Management: Features and Foundations · 15

3.1.11 Distributed Certificate Chain Discovery.Where do certificates for a particular
access request come from? In the example in Sect. 2.5, it was assumed that the requester
presents all relevant certificates upon access request. It is also easy to imagine settings
in which authorizers maintain local databases of certificates. More generally, certificates
could be stored anywhere in the network, as long as the local system has some way of
finding them. Of course, given the potentially enormous number of certificates on the
network, it is necessary to define some means of selectively retrieving only certificates
that might pertain to a particular authorization decision. This problem is sometimes called
distributed certificate chain discovery[Li et al. 2003] orpolicy directed certificate retrieval
[Gunter and Jim 2000b]. In both of these approaches the process of obtaining certificates
is formally well founded and not left to ad hoc techniques.

4. FOUNDATIONS OF AUTHORIZATION

Although trust management systems comprise a number of components as discussed in
Sect. 2.3, the heart of any system is its authorization semantics, denotedL in Fig. 1, where
the authorization decision is realized. The semantic foundations of authorization are well
studied, having evolved from logical formalisms originally developed for verifying distrib-
uted authentication protocols [Burrows et al. 1990; Abadi et al. 1993], and early work on
access control as a distinct concern in distributed systems [Woo and Lam 1993]. While for-
malisms other than logic have been used to specify authorization semantics, notably graph
theory and relational algebra as discussed at various points in this paper, logic is proba-
bly the most popular, and logical approaches have had a broad impact on the foundations
and practice of authorization and security [Bonatti and Samarati 2003]. Thus, a review of
logical foundations provides historical perspective and insight into standard features and
themes of authorization. To this end we now review BAN [Burrows et al. 1990] logic,
the so-called logic of authentication [Abadi et al. 1993] which is commonly abbreviated
ABLP, and aspects of programming logics such as Prolog and Datalog that are relevant to
the issue.

4.1 BAN Authentication Logic

The first thorough study of a logic for specifying and verifying security protocols was pre-
sented in [Burrows et al. 1990] where a logic, commonly called BAN logic, was introduced.
In that paper the authors analyze several authentication protocols, including Kerberos, An-
drew Secure RPC, Needham-Schroeder Public-Key, and X.509. Although BAN was not
intended as a foundation for authorization semantics, it is instructive to observe how it
became so. From an authorization perspective, BAN is historically and technically signifi-
cant because it introduces the ideas of representing beliefs, statements, and capabilities of
participants in a distributed protocol using a formal logical framework.

BAN logic is a many-sorted modal logic that distinguishes between atomic principalsP
and encryption keysK. Formulae are created from propositional conjunction along with
several additional constructs. These constructs include the following forms.

— P believesX: principalP might act as if statementX were true.

— P seesX: principalP has received a message containing statementX.

— P said X: at some point in the past (not necessarily during the current authentication
session) principalP sent a message containing statementX.

— P controls X: principalP is an authority overX and should be trusted on it.

ACM Computing Surveys

16 · Peter Chapin and Christian Skalka and X. Sean Wang

MESSAGE-MEANING-1

P believes(P
K←→ Q) P sees{X}K

P believes(Q said X)

MESSAGE-MEANING-2

P believes(
K7−→ Q) P sees{X}K−1

P believes(Q said X)

JURISDICTION
P believes(Q controls X) P believes(Q believesX)

P believesX

SIGNATURE-CHECK

P believes(
K7−→ Q) P sees{X}K−1

P seesX

Fig. 2. Some Inference Rules of BAN Logic

— fresh(X): statementX is fresh. It has not been asserted during any previous authenti-
cation session.

— P
K←→ Q: principalsP andQ can communicate using the shared keyK.

—
K7−→ P : principalP has public keyK. The private key corresponding toK is called

K−1.

— {X}K : statementX is encrypted under keyK. A statement encrypted under a private
key is a signed statement.

BAN logic allows representation of statements a given principal says and believes as
well as statements over which a principal has authority; these same ideas are used in au-
thorization logics as well. In addition BAN logic allows one to talk about encryption keys,
incorporating key security into the logic.

Inference rules formally specify the proof theory of BAN language constructs. A sam-
pling of these inference rules is given in Fig. 21. For exampleMESSAGE-MEANING-1 says
that if P shares a keyK with Q, andP receives a message encrypted withK, thenP can
concludeQ is the source of the message. TheMESSAGE-MEANING-2 rule allows a similar
inference for signed messages. These rules form the connection between the principals
and the keys they use. Later authorization logics that consider interactions of principals
and keys use similar rules to characterize these interactions.

The JURISDICTION rule formalizes a notion of delegation of authority, an essential in-
gredient in all trust management systems. The rule says that ifP regardsQ as an authority
overX andP believesQ is assertingX, thenP will acceptQ’s authority and believeX
as well.

TheSIGNATURE-CHECK rule encodes signature authentication and message encryption,
allowing one to unwrap a signed message. IfP believes keyK is Q’s public key and
K successfully checks the signature on{X}K−1 , thenP sees the message contentX. A
similar rule exists for extracting the message content of a symmetrically encrypted message
{X}K . Inference rules that accept a message thatP sees as a premise require that message
to be signed or encrypted. Since the details of key signatures and encryption are generally
hidden from the authorization component of most trust management systems as discussed
in Sect. 1, these features of BAN make it more appropriate as a logic of authentication.

1The rule names in Fig. 2 and Fig. 3 have been made up by us to ease discussion.

ACM Computing Surveys

Authorization in Trust Management: Features and Foundations · 17

WEAKEN
` A says(s ⊃ s′)

` A sayss ⊃ A sayss′

SPEAKSFOR
` A⇒ B

` (A sayss) ⊃ (B sayss)

ASCRIBE
` s

` A sayss

AS

` (A asB ⇒ A|B) ∧ (A|B ⇒ A asB)
QUOTING

` A|B sayss ≡ A saysB sayss

Fig. 3. Some Inference Rules and Axioms of ABLP Logic

As an example of representations in BAN logic, the statement:

A believes(A Kas←→ S)

expressesA’s belief that she shares a keyKas with some authentication serverS. The
statement:

A sees{A Kab←→ B}Kas

represents a message sent toA containing a key intended to be shared betweenA andB
and encrypted using a key shared betweenA and some authentication serverS. The goal
of the analysis might be to prove a formula such as

(A believes(A K←→ B)) ∧ (B believes(A K←→ B))

for some keyK. Such a formula asserts that bothA andB believe they have a key they
share with each other.

4.2 ABLP Distributed Authorization Logic

The logical basis of many trust management systems is due to a general calculus for dis-
tributed access control called the logic of authentication and commonly abbreviated ABLP
logic [Abadi et al. 1993]. (ABLP is an acronym for the author list of the seminal paper that
develops the logic [Abadi et al. 1993]). ABLP develops many ideas introduced with BAN
logic, but is intended less as a low-level specification language for authentication protocols,
and more as a logic for reasoning about access control in general. As the authors discuss,
this includes authorization issues– groups, roles, delegation, etc. Hence, ABLP logic for-
malizes a rich authorization semantics, and has inspired much subsequent development in
trust management.

Full ABLP logic is sufficiently expressive to be undecidable. However, [Abadi et al.
1993] describes a number of restrictions to ABLP logic that allow for decidable access
control decisions while still retaining enough expressivity to be useful. In practice, it has
been used to support access control in the Taos operating system [Wobber et al. 1993].

In ABLP logic principalsP can be users, roles, machines, I/O channels, encryption keys
or any other convenient abstraction. In addition to atomic principals, denotedA,B, C, etc.,
compoundprincipals can constructed with the use of connectives:

—A ∨B: this principal represents the group containingA andB.

—A ∧B: this principal issues statements signed jointly byA andB.

—A|B: pronounced “A quotingB”, this principal issues statements said byA to originate
from B.

ACM Computing Surveys

18 · Peter Chapin and Christian Skalka and X. Sean Wang

—A for B: this principal representsA speaking on behalf ofB, which is a stronger notion
thanA|B.

—A asR: this principal representsA assuming the roleR.

ABLP formulaes are then built from principals, standard logical connectives, and special
connectives for representing authorization concepts:

—p, ¬s, s ∧ s, s ⊃ s: propositional atoms, negation, conjunction, and implication.

—P1 ⇒ P2: pronounced “P1 speaks forP2”, this denotes thatP1 speaks with all the
authority ofP2.

—P sayss: this denotes thatP has uttered the statements.

In addition to the usual inference rules of propositional logic, inference rules and axioms
are provided for the authorization-specific connectives, including those defined in Fig. 3.
Notably, rule SPEAKSFORsays that ifA speaks forB andA has asserted somes, then
implicitly B has also asserteds. Rule AS establishes that the principal connectiveas can
be defined as a derived form of (|). These rules together comprise a proof theory, where
consequences can be deduced from assumptions.

In particular, resources can be represented as atomic propositionspriv, and access to
the resource can be granted if the associated proposition can be proved given assumptions
about policy and credentials. For example, withA controlss defined as syntactic sugar
for (A sayss) ⊃ s, access control lists may be modeled as conjunctions of assertions
A controlspriv. An access request forpriv by A is represented as the assumption`
A sayspriv. Observe that assumptions̀ A sayss and` A controlss together imply
` priv by modus ponens, allowing access to the denoted resource.

The ABLP formula language can express a rich collection of authorization features.
In addition to access control list encodings as described above, role membership can be
modeled. To specify thatA is a member of a roleR, policy can include the assumption
` A ⇒ R. Then, whenA assumes the roleR to make an assertions, represented as
assumptioǹ A asR sayss, rules AS, SPEAKSFOR, and QUOTING allow deduction of
` A saysR sayss, from which can be derived̀ R saysR sayss by SPEAKSFOR, hence
` R|R sayss by QUOTING, and finallyR sayss follows by assuming idempotence of (|)
for roles [Abadi et al. 1993]. Note that ACL representations in this model need only take
into account roles, e.g.R controlspriv allows any specified member ofR to gain access
to priv.

A variety of delegation idioms can also be modeled [Abadi et al. 1993]. An assertion of
the formA for B sayss means thatA has asserteds on behalf ofB, and denotes thatB has
delegated the assertion ofs to A. In contrast,A saysB sayss merely representsA’s claim
that B assertss, and requires no verification of the statement. The meaning ofA for B
can be altered according to desired delegation policies, for exampleA for B sayss can be
taken as syntactic sugar for the formulaA ∧ D sayss, whereD represents a delegation
server.

4.3 Programming Logics

Programming logics such as Prolog and Datalog have played an important role in the devel-
opment of trust management systems. As discussed above, logics provide useful abstrac-
tions for authorization semantics, furthermore specifications in executable programming

ACM Computing Surveys

Authorization in Trust Management: Features and Foundations · 19

logics provide prototype implementations for free. Programming logics have served as tar-
get languages for the compilation of higher-level authorization languages [Li and Mitchell
2003a; Woo and Lam 1993], have served as the foundation for enriched authorization lan-
guages [Li and Mitchell 2006; Jim 2001; DeTreville 2002a; Li et al. 2002; Li et al. 2003],
and have been used for the formalization and study of trust management systems [Li and
Mitchell 2006; Polakow and Skalka 2006].

Both Prolog and Datalog areHorn-Clauselogics, in which all formulae are restricted to
the formhead← body, where← is a right-to-left implication symbol,headis a proposi-
tion, andbodyis a conjunction of propositions. If variablesX appear in a rule, the rule is
implicitly universally quantified over those variables. The head of each rule is the conse-
quent of the body. Ifbodyis empty then the rule is afact.

As a simple example of how logics can apply in a trust management framework, imagine
that delegation should be transitive. Suppose thatdelegation(X, Y) is defined to mean
that the rights ofX have been delegated toY . Suppose also thatcert(X, Y) represents
a delegation certificate passing rights directly fromX to Y . The following Horn clauses
obtain transitivity of delegation:

delegation(X, Y)← cert(X, Y)

delegation(X, Y)← cert(X, Z), delegation(Z, Y)

Lettinga, b, c, ... denote constants, the following represents a collection of delegation cer-
tificates:

cert(a, b) cert(b, c) cert(b, d) cert(c, e)

From these facts and the definition ofdelegation, the querydelegation(a, e) will succeed
while delegation(d, e) fails.

Datalog was developed as a query language for databases. It is not a full programming
language. In contrast Prolog is Turing complete and thus more expressive than Datalog.
This extra expressivity is useful in certain contexts. For example, a full-featured autho-
rization logic called Delegation Logic has been defined as a strict extension of Datalog at
a high level, that is ultimately compiled to Prolog for practical implementation [Li et al.
2003]. However, Datalog has certain advantages in the authorization setting: the combi-
nation of monotonicity, a bottom-up proof strategy, and Datalog’ssafety condition(any
variable appearing in the head of a rule must also appear in the body) guarantee program
termination in polynomial time. In contrast, Prolog’s top-down proof search can cause
non-termination in the presence of cyclic dependencies. For example, if we added the cer-
tificatecert(e, b) to the above fact set, some queries would not terminate. This problem is
resolved bytabling as in XSB [XSB Inc. 2006], but it has been argued that this solution
adds too much size and complexity to the implementation for authorization decisions [Li
et al. 2002]. And while Datalog is not capable of expressing structured data, Datalog with
constraints (DatalogC), a restricted form of constraint logic programming [Jaffar and Ma-
her 1994], has been shown sufficiently expressive for a wide range of trust management
idioms [Li and Mitchell 2003a].

Prolog is able to express negation-as-failure, and so-called Disjunctive Datalog is like-
wise able to express a restricted form of negation [Eiter et al. 1997]. Therefore non-
monotonic authorization features such as credential negation can be provided in systems
where programming logics are intended to serve as a basis for semantic interpretation or

ACM Computing Surveys

20 · Peter Chapin and Christian Skalka and X. Sean Wang

implementation [Woo and Lam 1993; Bonatti and Samarati 2003]. However, as discussed
in Sect. 3, nonmonotonicity in authorization semantics is generally considered undesir-
able, since it introduces the possibility of unsoundness in practice [Seamons et al. 2002].
Also, while certificate revocation seems at first blush to entail nonmonotonicity, it has been
shown to be definable monotonically with appropriately constructed logical inference rules
[Li and Feigenbaum 2002; Bauer et al. 2002]. Or, as discussed in Sect. 3, revocation can
be handled by components external to the authorization semantics (via componentTC in
Fig. 1), for example by filtering certificates through certificate revocation lists prior to au-
thorization decisions as in SPKI/SDSI. For these reasons previous authors have argued that
monotonic (subsets of) programming logics are adequate foundations for trust management
applications, such as safe Datalog with constraint domains [Li and Mitchell 2003a].

Recently, more expressive programming logics have been proposed to address restric-
tions in the Horn-clause formula languages of Datalog and Prolog. Relevant work has pro-
posed use of the higher-order linear logic programming language LolliMon as a foundation
for trust management systems [Polakow and Skalka 2006]. LolliMon is not restricted to
a Horn-clause form, and the availability of hypothetical (vs. strictly literal) subgoals and
linear assumptions in particular allow the formal modeling of distributed certificate chain
discovery (componentD in Fig. 1), as interleaved with the authorization semantics of a
trust management system.

5. REVIEW OF TRUST MANAGEMENT SYSTEMS

In this section we review a collection of trust management systems. We cover three systems
in depth– SPKI/SDSI, QCM and its successor SD3, and RT– and more briefly summarize a
number of others. We focus on SPKI/SDSI, RT, and QCM and SD3 because together they
represent a fairly encompassing variety of approaches to trust management. Our entire
review is not intended to be exhaustive, but rather representative of the breadth of trust
management systems.

For each of the three systems we cover in depth, we begin by providing a summary
overview of that system. We then describe the system’s features, as enumerated in Table I
and Table II, with an emphasis on those features that are unique to the system or otherwise
worthy of attention. We then express the running example introduced in Sect. 2, in terms
of the system’s facilities. We follow this with a discussion of the semantics of the system’s
core logic and finally observations about system implementations.

5.1 SPKI/SDSI

The Simple Distributed Security Infrastructure (SDSI) [Rivest and Lampson 1996a; 1996b]
is a system for managing distributed name spaces. In addition to global names, a primary
contribution of SDSI is linked local name space management, where name spaces are de-
fined and structured locally, but can be referenced non-locally. An authorizer associates
access rights with a particular local name, and any principalsboundto that name by SDSI
name certificatesare authorized for access. By signing access requests with names, an au-
thorization logic is obtained based on name-to-key bindings, and linking relations between
names.

The Simple Public Key Infrastructure (SPKI) was developed concurrently with SDSI to
provide more complex authorization policies in distributed systems without the need for
managing identities. These technologies merged into SPKI/SDSI version 2.0 [Ellison et al.
1999]. SPKI adds to SDSI the ability to directly bind a capability, called anauthorization

ACM Computing Surveys

Authorization in Trust Management: Features and Foundations · 21

certificate, to a name or key. Such bindings are only meaningful if the issuing principal
has a superset of the capabilities being bound. Thus SPKI/SDSI allows a principal to
explicitly delegate a subset of his or her rights to another principal or to a name representing
a collection of principals, resulting in a rich authorization language.

5.1.1 Features of SDSI.In SDSI public keys have the status of principals, and there
is no attempt to associate public keys with individual people, machines, or other entities,
this being regarded as an external consideration. When discussing SPKI/SDSI we use
the terms “principal” and “public key” interchangeably. The system implicitly assumes
that private keys are secure and that statements signed by those keys reflect the intentions
of the corresponding principal. Thus the SDSI authorization semantics does not concern
itself with certificate signature checking, rather such checking is handled entirely by the
processing of certificates prior to authorization (that is, by componentTC in Fig. 1).

In SDSI each principal defines a structured name space local to that principal by issuing
name certificates, binding names to principals in a manner that confers the rights of the
name to the principal. A SDSI name is of the formK A, whereK is a key identifying a
name space andA fully qualifies the name. Intuitively, we may readK A as “K ’s A”, i.e.,
a local nameA in K ’s name space. In addition, SDSI providesextended namesof the form
K A1 · · ·An that allows linkage to non-local name spaces as discussed below. A name
certificate is abstracted as a 4-tuple of the form(K, A, S, V) [Ellison et al. 1999] where:

—K is the principal issuing the certificate.

—A is the name inK ’s name space being defined.

—S is the subject of the certificate (the name being bound toA).

—V is certificate validity information.

Certificate subjectsS can be other principals, names, or linked names. The certificate
validity field V contains expiration times or information about where to obtain revocation
or revalidation information on-line. An authorizer can use this information to check if a
certificate has been revoked in real-time. A SDSI system disregards any certificates that
are expired or have been revoked so validity information does not play a direct role in
authorization decisions.

Since validity informationV is not relevant to the SDSI authorization semantics, the
following useful syntactic sugar can be defined for the consideration of SDSI authorization
logic:

KA→ S , (K, A, S, V) V is valid

Informally this means that the nameA in K ’s name space is being defined as a local name
for the subjectS. For example, the certificateKa robert → Kb indicates thatKb is
bound toKa’s robert .

The meaning of a SDSI name is the set of principals bound to that name by valid name
certificates. Using only the above certificate, the meaning ofKa’s robert is the set
{Kb}. SDSI specifically allows multiple name certificates to define the same name, so if
Ka issued a second name certificate assertingKa robert → KB′ then the meaning of
Ka’s robert would be the set{Kb,KB′}. Thus SDSI names are essentially group names.
When an authorizer associates access rights to a local name, that name behaves similarly
to a role as defined by the role-based access control (RBAC) community [Ferraiolo and
Kuhn 1992]. In this way SDSI provides support for RBAC.

ACM Computing Surveys

22 · Peter Chapin and Christian Skalka and X. Sean Wang

An important aspect of SDSI is that it allows certificate subjects to refer to non-local
names. This can be done via a certificate of the formK1 A1 → K2 A2 denoting that the
meaning ofK1 A1 subsumes that ofK2 A2, i.e. all names bound toK2 A2 are also bound
to K1 A1. Certificate subjects can also be an extended nameK A1 · · · An. Forn = 2, the
extended nameK A1 A2 has a meaning that is based on the meaning ofK A1: it is the set
of all names bound toKx A2 such thatKx is bound toK A1. Iterating this idea obtains
meaning for extended names with higher values ofn.

5.1.2 Running Example (SDSI).Here we show how to encode the policies described
in the medical records example in Sect. 2.5 using SDSI. Assuming thatKa, Kb, Kc, and
Kd are Alice, Bob, Carol, and Dave’s keys respectively, Alice’s policy is expressed as:

—Ka records → Kb

—Ka records → Kb alice_delegates

Although the original SDSI definitions provided a way to define groups of principals using
set intersections, SDSI version 2.0 lacks this facility. This presents a problem in the exam-
ple as originally stated since Bob would then be forced to grant his entire team, including
non-medical personnel, access to Alice’s medical records. To work around this Bob can
distinguish between his overall team and his medical team, so his policy is:

—Kb medical_team → Kb medical_team support

—Kb alice_delegates → Kb medical_team

—Kb medical_team → Kc

Carol’s policy includesKc support → Kd defining Dave as a member of her support
staff. Again because SDSI 2.0 lacks intersections the hospital’s assertion that Dave is a
medical staff member is not used; we must presume that Carol will only add medical staff
members to her support staff. In a more realistic situation Carol may want to distinguish
between her medical support staff and her non-medical support staff by using two distinct
names.

5.1.3 Features of SPKI.SPKI extends the SDSI framework with authorization cer-
tificates, allowing authorization rights to be delegated from principal to principal. Such
certificates have the form of a 5-tuple,(K, S,D, T, V) where:

—K is the principal issuing the certificate.

—S is the subject of the certificate.

—D is a boolean delegation flag.

—T is the authorization tag.

—V is certificate validity information.

TheK, S, andV fields are the same as for SDSI name certificates. TheT field of the certifi-
cate is theauthorization tag. It is formatted as an s-expression with specific rules regarding
its structure. The meaning of the tag is left undefined by SPKI and is application specific.
For example a tag such as(http (port 8080) (read (url /downloads)))
might represent the capability of being able to read from thedownloads directory on the
HTTP server at port 8080. In this way, SPKI authorization tags provide a way to make
statements about structured resources.

ACM Computing Surveys

Authorization in Trust Management: Features and Foundations · 23

The D field of the certificate is the delegation flag. If set the subject is allowed to
further delegate the authorization to others by issuing new authorization certificates as
appropriate. SPKI provides only boolean delegation control where authorizations can be
delegated arbitrarily or not at all. SPKI’s design does not allow a principal to specify
an integer delegation depth because of the inherent difficulty in specifying an appropriate
depth. The argument for this is that in general principals can’t easily know how many
levels of delegation an authorization might reasonably need. Also since controlling the
depth of delegation does not restrict the width of the delegation tree, a limited depth does
not necessarily prevent rampant delegation [Ellison et al. 1999].

5.1.4 Running Example (SPKI).In the SDSI example above, a request signed by a
keyK is granted access to Alice’s records if the nameKa records can be resolved toK.
SPKI/SDSI version 2.0 contains SDSI and so this approach would apply in a SPKI/SDSI
setting as well. However, SPKI also provides authorization certificates.

So far the example has treated Alice’s medical records as a single entity. If access
is granted to any part of Alice’s records, access is granted to all of Alice’s records. If
Alice’s medical records contain many components one could assert access control over
each component individually using separate names to represent the different components.
However, for indefinitely large structured resources such an approach is infeasible. SPKI
authorization tags allow an indefinite subset of a structured resource to be specified and
thus offers a granularity of control that is not possible using SDSI alone.

For example, Alice might issue a SPKI authorization certificate that grants Bob access
to her medical records (or some portion thereof) and the power to delegate that access to
others. Such a certificate might look like:

(Ka,Kb, true , (records Alice (rw *)))

Here the authorization tag(records Alice (rw *)) is assumed to convey full (read
and write) access to all of Alice’s records. Although the precise format of this string is ap-
plication dependent, as long as the hospital database acting on behalf of Alice understands
its meaning, authorizations will only be carried out according to Alice’s wishes.

Bob could delegate the authorization he received from Alice to his medical team by
issuing another authorization certificate:

(Kb,Kb medical_team , false , (records Alice (rw *)))

Here Bob prevents further delegations of the authorization. In this example, Bob passes
his entire set of permissions to his medical team. Assuming Bob understands the format
of the authorization tag, he could optionally pass a subset of his permissions to his team.
When a request is made the hospital database would intersect the authorization tags to find
the overall set of permissions allowed in the request.

In this example, no further authorization certificates are necessary. When Dave submits
his test results to the hospital database, he must sign his request with his key and provide
SDSI name certificates to prove his key’s association withKb medical_team . He must
also provide the two authorization certificates showing thatKb medical_team is autho-
rized to access Alice’s medical records. Notice that one of these authorization certificates
is signed by Alice and thus authority over her records ultimately comes from her.

ACM Computing Surveys

24 · Peter Chapin and Christian Skalka and X. Sean Wang

5.1.5 Semantics.The original presentations of SPKI and SDSI [Rivest and Lampson
1996a; 1996b; Ellison et al. 1999] provide a thorough informal specification of its seman-
tics and also sketch an operational meaning of certificates via rewrite rules as discussed
below in Sect. 5.1.6, but a rigorous formal specification has been a distinct project carried
out after the initial development of the system. The problem is surprisingly subtle, with a
number of authors proposing alternate solutions.

The semantics proposed by Clarke et al. [Clarke et al. 2001] is constructed as the least
solution of a system of containment constraints imposed by a given set of certificates. Let
K be the set of principals mentioned in a given collection of name certificatesC. LetNL be
the set of local names of the formK A whereK ∈ K, andA is one of the name identifiers
mentioned inC. LetNE be the set of extended names of the formK A1 A2 . . . An, n ≥ 2
whereK ∈ K and theA1, A2, . . . , An are all name identifiers mentioned inC. Finally let
T = K∪NL∪NE be the set of alltermsthat can be formed using the principals and name
identifiers inC. Then the semantics of name spaces is defined via thevaluation function
V : T → P(K) satisfying the equations:

V(K) = {K} for all K ∈ K
V(KA1A2 . . . An) =

⋃
K′∈V(KA1)

V(K ′A2A3 . . . An)

Furthermore,V is defined to be the least function satisfying the above equalities and the
following system of inequalities:

V(K A) ⊇ V(S) (K, A, S, V) ∈ C

This is a succinct and intuitive description, well-suited to modeling the meaning of name
certificates.

In contrast to this approach, Abadi developed a logic of SDSI’s linked local names
[Abadi 1998]. The model theory of the logic plays a role similar to that of Clarke’s se-
mantics, but the proof theory is technically closer to the certificate rewrite rules proposed
in RFC-2693 [Ellison et al. 1999], allowing characteristics of names such as associativity
to be clarified, and relations between the rewrite rules and semantic model to be drawn
more easily. In particular, Abadi shows the rewrite rules are sound with respect to the
logic. However, Abadi’s logic does allow conclusions about names to be drawn that would
not be possible in Rivest and Lampson’s Scheme.

Abadi uses the notationn 7→ v to indicate a binding (akamapping) of namen to the
valuev in the name space of somecurrent principal. Intuitively n 7→ v means “v speaks-
for n”: any statement asserted byv is implicitly a statement asserted byn, a relation
similar to⇒ in ABLP logic (Sect. 4). Here values are terms consisting of local names,
public keys akaglobal names, and extended names. Some bindings are published by the
assumed current principal as signed certificates. For example a binding such asalice 7→
(bob mother) maps the current principal’s local namealice to the extended name
(bob mother). Abadi also extends the notion of mapping so that arbitrary principal
expressions can map to other arbitrary principal expressions. For example(n1 n2) 7→ K
conveys that the extended namen1 n2 is bound to the keyK.

Abadi’s logic for SDSI names is a modal logic with an obvious debt to ABLP logic.
Formulae of the formp sayss formalize certificates asserting propositions that are signed
by p. The standard axioms and rules of inference from propositional logic and modal logic
are then extended to include the axioms in Fig. 4. Sets of certificates are represented as

ACM Computing Surveys

Authorization in Trust Management: Features and Foundations · 25

Reflexivity:p 7→ p Transitivity: (p 7→ q) ⊃ ((q 7→ r) ⊃ (p 7→ r))

Left-monotonicity:(p 7→ q) ⊃ ((p r) 7→ (q r)) Globality: (p g) 7→ g if g is a global identifier

Associativity:((p q) r) 7→ (p (q r)) Associativity:(p (q r)) 7→ ((p q) r)

Linking: (p says(n 7→ r)) ⊃ ((p n) 7→ (p r)) if n is a local name

Speaking-for:(p 7→ q) ⊃ ((q sayss) ⊃ (p sayss))

Fig. 4. Axioms of Abadi’s Logic for SDSI Names

contains([A0, M0, M1|T], B)← contains([A0, M0], A1), contains([A1, M1|T], B).

contains([A0, M0], B)← includes([A0, M0], SN), contains(SN, B).

contains([A0, B], B)← isPrincipal(B).

contains([B], B)← isPrincipal(B).

Fig. 5. Li’s Logic Program for SDSI Name Resolution

logical assumptions, and name-to-key bindingsn 7→ v are considered valid iff they can
be deduced from these assumptions given the rules of inference. Abadi shows that the
rules of deduction required to simulate the name resolution algorithm given by Rivest and
Lampson are sound in this setting.

However, Abadi’s general logic is more powerful than the name resolution rules allow.
Consider the following example given by Abadi wheref1, f2, andh are global names
(keys). The assumptions are

m 7→ f1 m 7→ f2 f1 says(n1 7→ n2) f2 says(n2 7→ h)

The logic allows one to deduce(m n1) 7→ h whereas this result can not be obtained by the
name resolution rules. Abadi suggests that such results may not be harmful.

Halpern and van der Meyden present an alternative to Abadi’s logic [Halpern and van der
Meyden 1999] that attempts to avoid some of the surprising conclusions in Abadi’s logic
while maintaining the correspondence between name resolution and proof. In the logic of
Halpern and van der Meyden formulae of the formp 7→ q intuitively express the idea that
all keys bound toq are also bound top. This intuition is very similar to that expressed by the
valuation functionV described in [Clarke et al. 2001]. Halpern and van der Meyden avoid
using “q speaks forp” as an intuitive explanation forp 7→ q, regarding such a meaning
as one about delegation and thus outside the scope of their study. Halpern and van der
Meyden distinguish between general principal expressions and keys, restricting some of
Abadi’s axioms to operate only over keys rather than general principal expressions. These
authors later accounted for additional features in SPKI/SDSI [Halpern and van der Meyden
2001], including authorization certificates and certificate lifetime and revocation issues.
Howell and Kotz also provide a logical accounting of SPKI/SDSI [Howell and Kotz 2000;
Howell 2000] building on Abadi’s concepts for SDSI names but with a restricted speaks-for
relation.

Li provides yet another formulation of the logic of SDSI local names [Li 2000], but
based on general purpose programming logics rather than special purpose authorization

ACM Computing Surveys

26 · Peter Chapin and Christian Skalka and X. Sean Wang

logics. Li regards the handling of7→ in Abadi as too general and observes that even under
the more restricted axioms of Halpern and van der Meyden there are some undesirable con-
sequences. Instead Li presents the Prolog logic program in Fig. 5 that performs SDSI name
resolution. In this program an extended SDSI name(am1m2 . . .mk) is represented by a
list [a,m1,m2, . . . ,mk] 2. Name certificates are translated into facts using theincludes
predicate, such thatK A → S becomesincludes([K, A], [S]). In related work Li and
Mitchell show the equivalence of a logic programming semantics for SPKI/SDSI and a
set-theory semantics in the style of Clarke [Li and Mitchell 2006].

Jha and Reps describe a connection between SPKI/SDSI and pushdown systems [Jha
and Reps 2002], and show how to use model checking techniques to compute a proof of
authorization. Existing model checking algorithms allow a variety of other questions to
be answered as well, for example given a resource one might ask what names are able to
access that resource.

5.1.6 Implementation.RFC-2693 [Ellison et al. 1999] defines a 4-tuple reduction rule
that can be used to combine two related name certificates into a third certificate. This rule
involves replacing a local name in one certificate with a key binding established by another.
So, letting◦ be an infix denotation of the rewrite operation, we have that:

K1 A→ K2 B1 B2 B3 ◦K2 B1 → K3

results in:

K1 A→ K3 B2 B3

A similar reduction is defined for authorization certificates, describing how an authoriza-
tion is explicitly delegated from one subject to the next. For example:

(K1, S1, true , T1, V1) ◦ (S1, S2, D2, T2, V2)

results in:

(K1, S2, D2, AI(T1, T2), VI(V1, V2))

whereAI computes the intersection of the two authorizations andVI computes the inter-
section of the two validity conditions. Rules for computing these intersections are given in
RFC-2693. Finally a similar reduction rule describes how the subject of an authorization
can be rewritten according to bindings specified in a name certificate.

Note that RFC-2693 does not give a specific algorithm for finding which reductions
should be used, given a set of certificates for a particular access request. Instead the re-
quester is required to send the appropriate certificates in the correct order. This puts the
burden of constructing the proof of authorization on the requester; the authorizer merely
checks this proof. This general concept is extended in Proof Carrying Authorization which
we discuss in more detail in Sect. 5.4.5.

To relieve the access requester of the burden of proof, Clarke et al. describe a creden-
tial chain discovery algorithm, that will automatically check for authorization given a set
of certificates and a particular request [Clarke et al. 2001]. The algorithm uses a graph
construction to search for a particular sequence of reductions to a certificate delegating the
requested permission from the local name space to the requester. This algorithm runs in

2Note that the Prolog syntax[X, Y |T] represents a list whose first and second elements areX andY respectively,
andT is the rest (the tail) of the list.

ACM Computing Surveys

Authorization in Trust Management: Features and Foundations · 27

O(n3L) time (worst case) wheren is the number of input certificates andL is the length
of the longest extended name in any of the certificates.

In both Clarke et al.’s scheme and that proposed by RFC-2693, it is assumed that all
certificates are on hand when the authorization decision is made. To our knowledge no
method for retrieving non-local SPKI/SDSI certificates dynamically has been described in
the literature, in other words there are no distributed certificate chain discovery techniques
developed for SPKI/SDSI in the sense described in Sect. 2.3.

5.2 RT

The RT trust management framework is not a single trust management system but rather
a collection of trust management systems with varying expressiveness and complexity [Li
et al. 2002; Li et al. 2003; Li and Mitchell 2003b]. The base system, RT0, is similar to
SDSI except that it limits extended names to one level of indirection and provides inter-
section roles. The limitation of linked roles to one level of indirection does not reduce the
expressiveness of the language since additional indirections are possible by introducing
intermediate roles.

RT1 is an extension of RT0 providing parameterized roles.RTC
1 further extendsRT1

to allow for the description of structured resources [Li and Mitchell 2003a; 2003b]. The
system RTD provides a mechanism to describe the delegation of rights and role activations,
and RTT provides support for threshold and separation of duty policies. RTT and RTD can
be used in combination with RT0, RT1, or RTC

1 to create trust management systems such
as RTT0 , RTTD

1 , and so forth. A rich complexity analysis has also been developed for
the RT framework for problems beyond simple authorization, e.g. role inclusion and role
membership bounds [Li et al. 2005].

5.2.1 Features.Like SPKI/SDSI, the RT framework represents principals as public
keys and does not attempt to formalize the connection between a key and an individual.
The RT literature usually refers to these principals asentities. Also like SPKI/SDSI, the RT
framework allows each entity to define roles in a name space that is local to that entity. An
authorizer associates permissions with a particular role; to access a resource a requester
must prove membership in the role. In this way the RT framework provides role based
access control.

To define a role, an entity issues credentials that specify the role’s membership. Some
of these credentials may be a part of private policy, others may be signed by the issuer and
made publicly available as certificates. The overall membership of a role is taken as the
union of the memberships specified by all the defining credentials.

Let A,B,C, . . . range over entities and letr, s, t, . . . range over role names. A roler
local to an entityA is denoted byA.r. RT0 credentials are of the formA.r ←− f , where
f can take on one of four forms to obtain one of four credential types:

(1) A.r ←− E

This form asserts that entityE is a member of roleA.r.

(2) A.r ←− B.s

This form asserts that all members of roleB.s are members of roleA.r. Credentials
of this form can be used to delegate authority over the membership of a role to another
entity.

(3) A.r ←− B.s.t

ACM Computing Surveys

28 · Peter Chapin and Christian Skalka and X. Sean Wang

This form asserts that for each memberE of B.s, all members of roleE.t are mem-
bers of roleA.r. Credentials of this form can be used to delegate authority over the
membership of a role to all entities that have the attribute represented byB.s. The
expressionB.s.t is called alinked role.

(4) A.r ←− f1 ∩ · · · ∩ fn

This form asserts that each entity that is a member of all rolesf1, . . . , fn is also a
member of roleA.r. The expressionf1 ∩ · · · ∩ fn is called anintersection role.

For all credential formsA.r ←− f , the principalA is called theissuerof the credential.
RT1 enhances RT0 by allowing roles to be parameterized. For example, the second

credential form above is extended toA.r(h1, h2, . . . , hn)←− B.s(k1, k2, . . . , km) where
thehi andkj are parameters. Role parameters are typed and can be integers, floating point
values, dates and times, enumerations, or finite sets or ranges of these datatypes. An RT1

credential iswell formedif the parameters given to the roles have the right type and if each
variable in the credential appears in the body of that credential.

As an example of an RT1 credential [Li et al. 2002], suppose companyA has a policy
that the manager of an entity also evaluates that entity. This can be expressed in RT1 using
a policy statement such as

A.evaluatorOf (?Y)←− A.managerOf (?Y)

This policy can’t be feasibly expressed inRT0 because the role parameters might take on
an arbitrarily large number of values. InRT0 individual credentials would be needed for
each possible value of the role parameter.

RTC
1 further enhances the expressive power ofRT1 by allowing structured constraints

to be applied to role parameters. In addition the restriction on variables only appearing in
the body of a rule is lifted [Li and Mitchell 2003a; 2003b]. For example, suppose a hostH
wishes to grant access to a particular range of TCP ports to those entities that are employed
by the information technology department. The host might have as its local policy:

Host .p(port ∈ [1024..2048])←− IT .employee

This example assumes that an entity is granted access to a particular TCP port if that entity
is a member of theHost .p role with the port specified as a parameter.

To accommodate threshold structures, representing agreement between a group of prin-
cipals, the system RTT interprets roles as sets of sets of entities, calledprincipal sets.
These principle sets can be combined with role product operators� and⊗. The features
introduced by RTT allow threshold policies and separation of duty policies to be written
[Li et al. 2002].

RTD adds the concepts of role activations and delegations toRT0, via the delegation cre-

dential formA
C as D.r−→ B. In this caseA delegates toB the role activationof C as D.r.

Empowered with this role activationB can then access whatever facilitiesC can access
from roleD.r. This presupposes thatA has been delegated the activationC as D.r, which
holds whenA = C andA is a member of roleD.r in the basic case. Hence, delegated acti-
vations don’t carry any authority unless there is a chain of delegation credentials where the
credential at the head of the chain was issued by the entity mentioned in the role activation.

While the original RT framework does not support revocation in its policy language, it
is proposed to incorporate revocation [Li et al. 2002] by leveraging a monotonic approach
developed in [Li and Feigenbaum 2002] based on certificate lifetimes. While lifetimes and

ACM Computing Surveys

Authorization in Trust Management: Features and Foundations · 29

the requirement for freshness are encoded logically, the proposal suggests the use of exter-
nal certificate revocation lists to implement verification; this is an interesting example of
the possible interplay between the semantics of authorization per se and components exter-
nal to them. In addition, a variant of the RT framework has been developed that associates
risk values with credentials [Skalka et al. 2007]. These risks are tracked through the au-
thorization process so that the role membership is parameterized by the total membership
risk. The set of risks and their ordering is left abstract, and can be specialized to a num-
ber of applications, e.g. risk can be defined as remaining certificate lifetime, so that role
membership is parameterized by the minimal lifetime of certificates used for authorization.

5.2.2 Running Example.To express the medical records example using RT, only the
facilities of RT0 are necessary. Alice defines a rolerecords whose members are able to
access her medical records. She creates the policy

—Alice.records ← Bob

—Alice.records ← Bob.alice_delegates

The first rule grants her doctor, Bob, access to her records. The second rule allows Bob to
further delegate that access by defining the membership of analice_delegates role.

Bob’s standing policy is

—Bob.team ← Bob.team.support

—Bob.alice_delegates ← Hospital.medical_staff ∩ Bob.team

The first rule defines Bob’s team as including all the support personnel specified by the
members of his team. In the second rule, Bob uses an intersection role to specify that only
the medical personnel on his team should have access to Alice’s medical records.

When Bob consults with Carol he addsBob.team ←Carol to his policy to add Carol,
and indirectly all of Carol’s support people, to his team.

The only part of Carol’s policy relevant to this example places Dave in hersupport
role: Carol.support ← Dave. Finally Dave has a credential from the hospital as-
serting his membership in themedical_staff role. RT0 can use these credentials to
prove that Dave is a member ofAlice.records and thus able to access Alice’s medical
records.

5.2.3 Semantics.The original formal semantics of RT is based on Datalog [Li et al.
2002]. Specifically each RT credential is translated into a Datalog rule. The meaning of a
collection of RT credentials is defined in terms of the minimum model of the corresponding
Datalog program. In the case of the RTC

1 , Datalog with constraints is used [Li and Mitchell
2003a].

The translation from RT0 to Datalog requires only a single predicateisMemberto as-
sert when a particular entity is a member of a particular role. The translation rules are
shown below where Datalog variables are shown prefixed with ‘?’ to distinguish them
from constants.

(1) A.r ←− E

isMember(E,A, r).
(2) A.r ←− B.s

isMember(?x, A, r)← isMember(?x, B, s).
ACM Computing Surveys

30 · Peter Chapin and Christian Skalka and X. Sean Wang

(3) A.r ←− B.s.t
isMember(?x, A, r)← isMember(?y, B, s), isMember(?x, ?y, t).

(4) A.r ←− B1.s1 ∩ · · · ∩Bn.sn

isMember(?x, A, r)← isMember(?x, B1, s1), . . . , isMember(?x, Bn, sn).

The authorizer associates a permission with a particular role, sayA.g, called thegoverning
role. Access is granted to an entityE iff the Datalog queryisMember(E,A, g) succeeds.

An alternative set-theory semantics has also been defined for RT0 [Li et al. 2003]. In
this semantics each roleA.r is represented as a set of entities rmem(A.r) that are members
of that role. For a given set of credentialsC these sets are the least sets satisfying the set of
inequalities

{rmem(A.r) ⊇ expr[rmem](e) |A.r ←− e ∈ C}

where expr[rmem](e) is the set of entities in a particular role expressione. A role expres-
sion includes both linked roles and intersection roles. In particular:

expr[rmem](B) = {B}
expr[rmem](A.r) = rmem(A.r)

expr[rmem](A.r1.r2) =
⋃

B∈ rmem(A.r1)

rmem(B.r2)

expr[rmem](f1 ∩ · · · ∩ fk) =
⋂

1≤j≤k

expr[rmem](fj)

The set-theory semantics for RT0 was developed primarily to provide theoretical support
for a distributed credential chain discovery algorithm [Li et al. 2003]. The set-theory se-
mantics facilitate proving soundness and completeness of that algorithm.

Another approach to the semantic specification of RT is taken by Polakow and Skalka,
who propose the LolliMon linear logic programming language as a foundation [Polakow
and Skalka 2006]. Like the set-theoretic specification, this approach has the advantage of
being easily extended to the problem of distributed certificate chain discovery, while en-
joying the additional benefit of scalability to the full RT framework. The encoding closely
resembles the original DatalogisMemberpredicate defined above, and the logic of certifi-
cate discovery can be expressed by additional clauses in LolliMon’s rich formula language.

5.2.4 Implementation.Li et al. describe an implementation strategy for RT0 in terms
of a construct called a credential graphGC [Li et al. 2003]. Each node inGC represents a
role expression with directed edges corresponding to each credential. In addition,derived
edgesare added to represent the indirect relationships between roles that are introduced by
linked roles and intersections. An entity is a member of a role iff there exists a path from
the entity to the role inGC . Li et al. prove that credential graphs are sound and complete
with respect to the set-theory semantics of RT0.

In addition Li et al. describe a distributed credential chain discovery algorithm that finds
a path inGC given initially incomplete credentials [Li et al. 2003]. The algorithm assumes
that either the issuer or subject of a credential can be contacted on-line and queried for
more credentials on demand. In this way missing credentials can be found as needed to
complete a proof of authorization. The algorithm can work either backward, starting at the
governing role and following credentials from issuer to subject, or forward, starting at the
entity representing the requester and following credentials from subject to issuer. In general

ACM Computing Surveys

Authorization in Trust Management: Features and Foundations · 31

both approaches are useful. In some cases a certificate authority will maintain a database of
all credentials issued, making the backward discovery algorithm effective. In other cases
credentials will be held by the subjects, making the forward discovery algorithm more
appropriate. To ensure that searches always succeed when possible, a type system can be
used to assign appropriate types to role names. These types restrict the way credentials can
be formed and specify where credentials must be stored [Li et al. 2003].

The complexity of credential chain discovery in RT0 has been shown to be log-space
P-complete using a reduction from the monotone circuit value problem [Li et al. 2003].

5.3 QCM and SD3

Many trust management systems have focused on authorization decisions while setting
aside issues of certificate storage and retrieval. In contrast, Query Certificate Manager
(QCM) [Gunter and Jim 1997; Gunter et al. 1997; Gunter and Jim 2000b] and its suc-
cessor Secure Dynamically Distributed Datalog (SD3) [Jim 2001; Jim and Suciu 2001]
address the issue head-on, by treating trust management as essentially a distributed data-
base problem. An advantage of their approach is that well-studied database techniques and
abstractions can be leveraged. In particular, the system provides applications programmers
with high-level database query languages for defining authorization policy over a transpar-
ent PKI infrastructure, where authorization is implemented as a query processed automat-
ically over a distributed database. Among the implementation benefits of their distributed
database approach are a variety of optimization techniques and a natural incorporation of
distributed certificate retrieval. SD3 also introduces a novel certified evaluation mechanism
that reduces the size of its trusted computing base.

5.3.1 Features.QCM hides from end-users the complexity of distributed query evalu-
ation and certificate retrieval. Instead it presents a high level abstraction of a secure, local
database. The original presentation of QCM proposed a policy language based on relational
algebra [Gunter and Jim 1997]. Consider the following example of a web page content fil-
tering application taken from Gunter and Jim [Gunter and Jim 1997]. Here a ratings server
r1 maintains a relationratings containing rating information for a large collection of web
pages. An independent serverr2 maintains a similar relation. A web browser then defines
a local relation in terms of these other two using relational algebra expressions:

ratings = r1.ratings ∩ r2.ratings

ok = πhash(σrating=Gratings)

The browser will only accept ratings for which the two rating servers agree. In addition,
the browser’sok table contains only the page hashes for the pages with aG rating.

Now, suppose that the browser was governed by the policy that it would only display
web pages with aG rating. Formally, assuming thath is the hash of a web page, it would
only be displayed ifσhash=hok is not null. In the simplest scenario, the browser could
enforce this by submitting the queryσhash=hok to a local QCM processor, and the processor
would in turn queryr1 andr2 remotely. However, a more efficient and flexible scheme is
allowed in QCM– tuples in a database relation can be certified by the relation authority, and
distributed as certificates. Such certificates, calledinclusions, are denoted via an ABLP-
style saysconnective. For example, the web server that hosts a page with hashh can
obtain certificates from the rating servers for that page. Each certificate is signed by the

ACM Computing Surveys

32 · Peter Chapin and Christian Skalka and X. Sean Wang

corresponding rating server:

r1 saysr1.ratings ⊇ {(hash: h, rating : G)}
r2 saysr2.ratings ⊇ {(hash: h, rating : G)}

When the page is requested by a browser, the two certificates are sent as well, and from
there to the local QCM processor along with the queryσhash=hok. Now the processor does
not need to contact the remote servers because the certificates contain enough information
to answer the query directly, and can even cache the certificate contents for future use.
This scheme is clearly more efficient, and has the additional benefit that not all relation
authorities need to be online during authorization.

Also notable is QCM’s support for certificate revocation [Gunter and Jim 2000a]. This is
done by allowing a set of revoked tuples to be subtracted from a set of otherwise potentially
useful tuples. QCM provides for explicitnon-membership certificatesthat can be used to
assert that a tuple is not an element of the revoked set. This later work adopts a set-theoretic
model of the QCM database to accommodate the notion of non-membership, and a new
language of set comprehension is defined for QCM programming.

As an example of this set comprehension language, consider the earlier example of web
page content filtering. Rating serverr1 maintains a relation that binds page hashes to
rating valuesr1.ratings(hash, rating), and similarly for rating serverr2. The browser’s
policy then defines a setok of acceptable page hashes with the statement

ok = {h | 〈hash= h, rating= G〉 ← r1.ratings,

〈hash= h, rating= G〉 ← r2.ratings }

This defines a set of hash values for pages that both ratings servers agree areG rated.
Queries also have the form of set expressions. When the browser retrieves a page it asks
its local QCM processor to evaluate the query{p | p ← ok, p = h} whereh is the hash of
the retrieved page. If this set evaluates to the singleton{h} then the browser can display
the page asG rated.

Secure Dynamically Distributed Datalog (SD3) is the successor of QCM. It adds to
QCM an extended version of Datalog as its policy and credential language, allowing re-
cursive policies to be defined. In SD3 predicates are scoped by public keys; rules can
refer to predicates in other name spaces by prepending the key to the predicate name. For
example, suppose that the predicateE under control of keyK defines the edge relation
of a particular graph. The following SD3 program computes the transitive closure of that
graph.

T (X, Y) ← K$E(X, Y).
T (X, Y) ← T (X, Z), T (Z, Y).

SD3 also adds other notable implementation features, including intentional responses and
certified evaluation, discussed below.

5.3.2 Running Example.Here we demonstrate how SD3 would express the medical
records example. We need to first express the information to be processed as a collection
of relations. Alice maintains a one-place relationrecords with tuples storing the keys of
those principals who can access her medical records. We can then represent Alice’s policy
as the following two SD3-style Datalog rules.

ACM Computing Surveys

Authorization in Trust Management: Features and Foundations · 33

—Ka$records(Kb)

—Ka$records(X) ← Kb$alice_delegates(X)

Datalog has no problems expressing either recursion or intersections (conjunctions). Bob’s
policy becomes

—Kb$team(X) ← Kb$team(Y), Y$support(X)

—Kb$alice_delegates(X) ← Kh$medical_staff(X), Kb$team(X)

—Kb$team(Kc)

The remaining assertions made by the hospital and by Carol are

—Kh$medical_staff(Kd)

—Kc$support(Kd)

This example only hints at the expressivity of the general SD3 policy language.
SD3 distinguishes between global names that are key-qualified and local names that are

not. In this way SD3 supports multiple, independent name spaces. If the hospital database
evaluates Dave’s request to update Alice’s medical records in the context of Alice’s name
space, then theKa prefix on Alice’s policy is superfluous. The tuples from relations in
other name spaces would be signed by the corresponding key and obtained from some
source external to Alice’s name space.

5.3.3 Semantics.The authors of QCM and SD3 have used a variety of formal seman-
tics for different aspects and versions of the system. In the original presentation of QCM
[Gunter and Jim 1997], the core authorization semantics are the semantics of the relational
algebra. Additionally, an I/O automata model of network communication is developed to
verify that certain checks during updates guarantee data consistency [Gunter et al. 1997].
In this model each QCM node maintains a set of pending queries, a set of inclusions that
it accepts (initialized to the definitions known directly by the node), and a set of requests
that the node has made. The automaton specifies how this state changes for each possible
input or output action. A corresponding automaton models the network itself. This allows
different network models, including potentially hostile models, to be studied in a straight
forward way.

In later work that addresses certificate revocation, a set-theoretic model of the more re-
cent QCM language of set comprehension is developed as a denotational semantics [Gunter
and Jim 2000a]. QCM expressions are interpreted as set operations in a universe of QCM
values, which include numbers, strings, keys, and finite and cofinite sets of values. An
operational semantics describing the behavior of QCM evaluation is defined, and is shown
to be sound with respect to the denotational semantics. It is important for the operational
semantics that QCM objects are only modeled as single values or finite or cofinite sets,
since this means that they can be finitely represented.

The semantics of SD3 are based on the semantics of Datalog in a fairly straightforward
manner; the only complication is the interpretation of key-qualifiers on predicate names.
To describe the semantics of a distributed SD3 program, first aglobal Datalog program
is constructed from a given SD3 program by replacing eachn-ary predicateR with an
(n + 1)-ary predicateRg, and each atom of the forms$R(t1, . . . , tn) with an atom of the
form Rg(s, t1, . . . , tn). The semantics of an SD3 program is the minimum model of the
resulting Datalog program [Jim and Suciu 2001].

ACM Computing Surveys

34 · Peter Chapin and Christian Skalka and X. Sean Wang

While the formal meaning of QCM and SD3 programs has evolved throughout devel-
opment of these systems, the authors argue that their interpretation has been essentially
consistent, since relational algebra, set comprehension, and Datalog are “roughly equiva-
lent by variations of Codd’s Theorem” [Jim 2001].

5.3.4 Implementation.Algorithms for query processing in the QCM and SD3 systems
has been defined and proven correct [Gunter and Jim 2000a; Jim 2001] with respect to a
number of safety and security requirements, e.g. soundness of the algorithms with respect
to the denotational meaning of programs. The distributed database approach also allows
a number of standard optimization techniques to be applied, notably magic set rewriting
[Jim and Suciu 2001]. Beyond this, QCM and SD3 also offer several novel implementation
features.

When a QCM node is queried the result is a collection of signed tuples, possibly obtained
indirectly from other nodes, forming anextensionalresponse to the query. SD3 extends
this by allowing a node to instead return anintensionalresponse consisting of one or more
rules, perhaps in terms of relations held by other nodes, that define the result of the query.
In such a case the query originator could contact the other nodes if necessary to obtain the
information needed to fully evaluate the query.

An example from Jim and Suciu [Jim and Suciu 2001] illustrates this distinction. Sup-
pose that an SD3 server has the ruleR(x, y) :- E(x,w, z), w$R(z, y) and it receives from
the client the queryR(1, y). Suppose also that the server has the tuplesE(1, s2, 2) and
E(1, s3, 3) in its local table. The server could return the intensional response of

R(1, y) :- s2$R(2, y)
R(1, y) :- s3$R(3, y)

The client could then contact sitess2 ands3 to complete the query based on these rules.
Jim describes a prototype SD3 system that implements the DNSSEC protocol [Jim

2001]. In order to obtain the performance needed in DNS applications, Jim’s implemen-
tation uses a number of elaborate optimization techniques. These optimizations add com-
plexity to the implementation and increase the size of the trusted computing base. To deal
with this Jim’s implementation usescertified evaluation. The output of the SD3 query
evaluator is checked by a relatively simple proof checker. If the check fails, the results of
the query are considered erroneous. Since proof checking is easier than proof construction,
the proof checker can be small and simple, thus reducing the size of the trusted computing
base.

QCM supports distributed credential chain discovery, which the QCM authors refer to
aspolicy-directed certificate retrieval[Gunter and Jim 2000b]. Such distributed queries
are satisfied extensionally. For example if a QCM nodea defines a relationratings =
b.ratings that node would answer queries about the membership ofratings by querying
b. If b defined itsratings relation in some complex way it might query other nodes as
appropriate. However, nodeb would return signed tuples from itsratings relation rather
than a signed policy rule.

QCM’s system of distributed credential chain discovery should be contrasted with that
described earlier for RT0. In the RT0 case distributed queries are satisfied intentionally:
policy rules are passed back to the authorizing node where the entire credential chain is
computed. This allows RT0 to make direct use of credentials provided with the request
without having to transmit those credentials to other nodes.

ACM Computing Surveys

Authorization in Trust Management: Features and Foundations · 35

5.4 Other Trust Management Systems

In this section we review several other trust management systems more briefly, highlighting
their most significant features and contributions.

5.4.1 PolicyMaker. Blaze et al. first introduced trust management systems per se as
a subject of study [Blaze et al. 1996], by presenting the PolicyMaker system. In Policy-
Maker, policies, credentials, and trust relationships between principals are implemented as
arbitrary programs in a suitable safe programming language. In this context “safe” means
that the interpreter for the language is restricted in terms of the I/O operations and re-
source consumption permitted. Such restrictions are necessary to prevent attacks against
the authorization mechanism and to ensure that the authorization decision will terminate.

PolicyMaker statements, calledassertions, have the form:SourceASSERTSAuthority
WHERE Filter. HereSourceandAuthorityare public keys andFilter is a program taking
an application specific “action string” as a parameter and returning a boolean result. Policy
statements have the same form except thatSourceis replaced by the keywordPOLICY to
indicate that the assertion is not a signed credential but rather locally trusted policy. More
complexAuthoritystructures are also possible, allowing one to express threshold policies.

The semantics of PolicyMaker is graph theoretic. Each assertion is represented as a la-
beled edge in directed graphG where the vertexes ofG are public keys orPOLICY . There
is an edgev1 → v2 labeled withf in G iff there is an assertion whereSourcecorresponds
to v1, Authoritycorresponds tov2 andFilter corresponds tof . An access request in Pol-
icyMaker has the form:keyREQUESTS ActionString. Authorization requires to find a
path in the graphG that starts atPOLICY , ends at the vertex corresponding tokey, and for
whichf(ActionString) returns true on every edge in the path.

The form and meaning of the action strings are not defined by PolicyMaker but must
be agreed upon by the authorizer and the requester. For example an action string might
describe a particular operation, such as read or write, on a particular file. Each assertion
either allows or rejects the action according to the program contained in its filter. If the
action is allowed, authority for that action is passed from theSourcekey to theAuthority
key. If there is a path inG that passes rights fromPOLICY to the requesting key, those
rights are granted.

Blaze et al. formalized the PolicyMaker authorization decision and analyzed its compu-
tational complexity in later work [Blaze et al. 1998]. The general system is undecidable
since the programs contained in the assertions can be written in a Turing complete lan-
guage. However, Blaze et al. consider several restrictions on the system. With suitable re-
strictions, the authorization algorithm has polynomial complexity while retaining enough
expressiveness to be useful.

5.4.2 KeyNote.KeyNote [Blaze et al. 1999a; 1999b] is a direct descendant of Policy-
Maker. In KeyNote principals are either public keys or opaqueprincipal identifierswith
an application-defined meaning. In KeyNote the authorization mechanism is given a col-
lection of assertions together with the key or identifier of the requester. The authorization
mechanism returns an application definedpolicy compliance valuerepresenting the degree
to which the request complies with policy.

Each KeyNote assertion specifies an authorizer and alicensee. As with PolicyMaker, the
assertion represents a transfer of authority from the authorizer to the licensee. However,
unlike PolicyMaker where the language used in the assertions is left open, KeyNote defines

ACM Computing Surveys

36 · Peter Chapin and Christian Skalka and X. Sean Wang

a specific language. This language includes support for simple mathematical computations
and string matching via regular expressions.

Although there is no formal description of KeyNote in the original presentation [Blaze
et al. 1999a], KeyNote has been formally analyzed [Weeks 2001; Li and Mitchell 2003a].
Using Datalog with constraints Li and Mitchell find that KeyNote’s assertion language
is, in some respects, too expressive. To capture KeyNote’s computational ability, a rich
constraint domain is necessary. As a result, certain authorization problems are undecidable,
such as determining the set of all requests that a collection of KeyNote assertions authorize.

It is instructive to consider our running example (Sect. 2.5) in KeyNote. Here the hospi-
tal database could write a policy assertion that grants all rights to Alice’s medical records
to Alice’s key. Such an assertion might look like3:

Authorizer: POLICY
Licensees: "RSA:123abc" # Alice’s key.
Conditions: (name == "Alice")

A KeyNote application passes a collection of name, value pairs calledaction attributes
containing information about the context of the request to the authorization mechanism. In
this case, we assume the hospital database application will pass a “name” attribute identify-
ing whose records are being accessed. It is likely that the application would pass additional
attributes to KeyNote as well that provide more specific information about the request. In
the KeyNote assertion above, the hospital is authorizing all requests made by Alice’s key
for which the name attribute is “Alice.” This policy gives Alice total control over her own
medical records. A more realistic policy might restrict Alice in certain ways by using more
complicated conditions involving more action attributes.

Alice passes her authority over her medical records to her physician Bob by issuing (and
signing) a credential such as:

Authorizer: "RSA:123abc" # Alice’s key.
Licensees: "RSA:456def" # Bob’s key.
Conditions: (name == "Alice")
Signature: "DSA-SHA1:8912aa"

Again, in a more realistic situation, Alice might wish to pass only a portion of her authority
to Bob.

The limitations of KeyNote (and also PolicyMaker) become apparent when Bob tries to
delegate access to Alice’s records to his medical team. KeyNote does not provide a lan-
guage for defining and manipulating groups of principals. Thus Bob is forced to explicitly
list all the keys corresponding to his medical team in the Licensees field of any assertion he
writes. Without the indirection made possible by roles, policy administration in KeyNote
is much more difficult than in SPKI/SDSI or RT, for example. Furthermore, when Bob
consults with Carol about Alice’s condition, Bob can easily write an assertion conveying
his access to Alice’s records to Carol. However, Carol must now write a new assertion of
her own conveying that access on to Dave, her lab technician. Linked names in SDSI or
linked roles in RT allow policies where this last step happens automatically; under those
systems, once Carol has been granted access, she need not do anything in order for her
technicians to also access Alice’s records.

3In this example keys and signatures are abbreviated for easy presentation.

ACM Computing Surveys

Authorization in Trust Management: Features and Foundations · 37

5.4.3 REFEREE.The REFEREE system [Chu et al. 1997] was originally considered
as a trust management language by the World Wide Web Consortium’s PICS (Platform
for Internet Content Selection) working group [Resnick and Miller 1996] for possible use
in content selection applications. The PICS effort is now subsumed by RDF (Resource
Description Framework).

Like PolicyMaker, policies and credentials in REFEREE contain executable programs.
However, REFEREE differs from PolicyMaker in that the execution of policies and cre-
dentials is itself put under the control of policy. In this manner REFEREE attempts to
mitigate the risks associated with executing arbitrary programs as part of the authorization
decision. The policy can prohibit the execution of credentials from untrustworthy sources.
In addition REFEREE places signature verification and the fetching of remote credentials
under policy control as well. The idea is that such actions are potentially dangerous, or at
least require a certain amount of trust, and thus should be explicitly governed by the autho-
rizer’s policy. In this respect REFEREE represents some of the earliest work in automated
trust negotiation, although it wasn’t called that at the time.

Policy programs in REFEREE can return one of “yes”, “no”, or “unknown.” An affir-
mative value implies that the policy is definitely satisfied. A negative value implies that
the policy is definitely not satisfied. An “unknown” value implies that there is insufficient
information to decide compliance with the policy. In this way REFEREE does not auto-
matically deny a request when the compliance with policy is ambiguous. The application
must decide how to react to an “unknown” result. Although a high security application
might want to grant access only if the policy program returns an affirmative result, the
web applications for which REFEREE is targeting might want a more flexible approach to
ambiguous requests.

Unlike PolicyMaker, REFEREE lacks a formal specification and does not appear to
have been formally analyzed in the literature. Its model of evaluation is different than
PolicyMaker’s in that assertions can directly invoke each other rather than executing in
isolation. This allows for more complex interactions between the assertions and makes the
graph-theory explanation used with PolicyMaker inapplicable.

5.4.4 OASIS.In OASIS [Hayton et al. 1998; Hine et al. 2000; Bacon et al. 2002; Dim-
mock et al. 2004] clients are classified into named roles by appropriate certificate author-
ities. An authorizer uses membership in a particular role as the basis for deciding access.
The client collects role membership certificates from various certificate authorities ahead
of time. To obtain such a certificate the client must show compliance with the authority’s
policy for role membership. This might require the use of previously obtained certificates
or a proof of identity by way of some authentication protocol, or both. Once an appropriate
role membership certificate has been obtained no further authorization computations need
to be done. The authorizer simply checks the validity of the role membership certificate and
grants access accordingly. Thus OASIS effectively moves the authorization computation
off-line and distributes it to the various certificate authorities.

A certificates may become invalid because a certificate authority’s policy might change.
Alternatively the client might no longer have the necessary characteristics to be eligible
for membership in a critical role. To deal with this OASIS requires that servers maintain
information about every place where their certificates are used. If a certificate needs to
be revoked later, the issuing server proactively contacts all servers using the certificate to
inform them. In this way OASIS provides rapid response to changing conditions.

ACM Computing Surveys

38 · Peter Chapin and Christian Skalka and X. Sean Wang

OASIS usesappointment certificatesto provide delegation of authority and delegation
of rights. A principal issues an appointment certificate to allow another principal the ability
to activate a role. For example, a principal who can activate a roler can delegate the rights
implied by r to another principal by issuing an appointment certificate that allows that
other principal to also activater. OASIS appointments are a generalization of normal role
delegation because the issuer can appoint a subject to a role that the issuer can not activate.
For example, a human resources director at a hospital can appoint a doctor without having
the privileges of a doctor.

OASIS also allows arbitraryenvironmental constraintsto be used in rules for enabling
role activations and for maintaining role membership. The logical core of OASIS treats
environmental constraints as atomic propositions. They are intended to allow the expres-
sion of policies based on time of day, local machine identity, or other similar factors. Since
the environmental constraints are left unspecified, arbitrary amounts of computation could
be done to evaluate them. As a consequence, the question of the tractability of access
control decisions under OASIS can’t be definitively answered without first making some
assumptions about the nature of the environmental constraints being used.

Role activation and role maintenance rules in OASIS are definite Horn clauses and thus
represent a subset of first order logic. In particular, role activation rules have the form
∆ ` r wherer is the role that may be activated and the conditions in∆ are elements
in the union of roles, appointment certificates, and environmental constraints. All of the
components of a rule can be parameterized. In the case of role activation such a rule means
that a principal may activate roler if that principal has activated all of the roles in∆,
holds all the appointment certificates in∆, and if all the environmental constraints in∆
are satisfied. In the case of role maintenance, such a rule means that a principal may remain
in role r as long as all the conditions in∆ are satisfied. The requirements for maintaining
a role activation may be less stringent than the requirements for activating the role in the
first place.

OASIS does not provide a language for specifying appointments, leaving that instead to
individual applications. The presumption is that a principal should have to be in a particular
role to issue particular appointments but OASIS does not describe how to express that
detail. For example the human resources director at a hospital would first have to activate
a special role that allows her to appoint doctors. Most likely, she would be able to activate
this role due to an appointment certificate she has been given by the hospital administration.
However, OASIS does not provide a way to specify what appointments a principal can
make in terms of the roles that principal has activated.

To encode the running example of section Sect. 2.5 in OASIS one must presuppose the
existence of a policy outside of the OASIS system that defines the conditions under which
appointment certificates can be issued. For example, the hospital database might specify an
OASIS rule such asrecords_user(X) ` records(X) allowing any entity with an
appointment certificaterecords_user(X) for patientX to activate a role providing ac-
cess toX ’s medical records. The hospital can then define a policy allowing Alice to issue
appointment certificates of the formrecords_user(Alice) , although OASIS does
not define what this policy would look like. Alice would use this ability to issue an ap-
pointment certificate for Bob who could then use the appointment certificate to activate the
records(Alice) role when necessary. In order for Bob to delegate his access to Carol,
Bob would need to be able to create an appointment certificaterecords_user(Alice)
that Carol can use. His ability to do this depends on the hospital’s policy regarding the cre-

ACM Computing Surveys

Authorization in Trust Management: Features and Foundations · 39

ation of appointment certificates.

5.4.5 PCA. Proof Carrying Authorization (PCA) uses a higher order logic to specify
both policy and credentials [Appel and Felten 1999; Bauer et al. 2002; Bauer 2003]. This
logic is, in general, undecidable. However, this does not cause a problem for the authorizer
because in PCA it is the requester who must construct a proof of authorization. The au-
thorizer only needs to check this proof, something that is both decidable and tractable, to
verify that the requester does have the requested access. PCA thus borrows concepts from
proof carrying code [Necula 1997] where untrusted code must be accompanied by a safety
proof that is checked by the consumer of that code.

This approach seems to put a significant burden on requesters. However, each requester
normally only needs to work with a subset of the full logic. For any particular application,
an application-specific logic can be defined where the rules of inference in that logic are
lemmas in the general higher order logic. The requester can construct a proof using this
limited logic but the authorizer does not need to be aware of the particular application-
specific logic being used. The requester provides proofs of the necessary application-
specific lemmas as part of the proof of authorization.

Many application-specific logics are possible. Other trust management systems such
as SPKI can be encoded as an application-specific logic for use with PCA. Thus a PCA
authorizer is able to work with requesters using a variety of trust management methods in
a uniform way. In this respect PCA is a generalization of the other systems reviewed here.

Principals in PCA are modeled as sets of formulae the principal regards as true and thus
can be represented as a higher order predicate taking a formula as an argument.P is a
principal if both∀F.F ⊃ P (F) and∀F1∀F2.(P (F1) ∧ P (F1 ⊃ F2)) ⊃ P (F2). In other
words,P is a principal ifP admits true statements and any statement that is implied by
other statementsP admits.

The logic contains a primitivesigned connective used to represent digitally signed
statements, and constants used to represent keys. As an example, consider the following
three formulae.

(1) Kca signed(∀F.(Ka signedF) ⊃ (Alice(F)))
(2) ∀F.(Kca signedF) ⊃ CA(F)
(3) ∀k.∀p.CA((∀S.(k signedS) ⊃ p(S))) ⊃ ∀S.(k signedS) ⊃ p(S)

The first formula describes the binding of the keyKa to the principalAlice made by
an authority with keyKca. It asserts that any formula signed byKa is admitted by the
principalAlice. This formula plays the role of an identity certificate. The second formula
is part of the authorizer’s policy. It asserts that any formula signed byKca can be attributed
to theCA principal. In other words,Kca is the correct key. The final formula is how the
authorizer delegates authority toCA. It asserts that if the certificate authority asserts thatk
is principalp’s key, then the authorizer will take any statement signed byk as a statement
admitted byp.

The beauty of the PCA system is that formula such as the ones above are not built into
the system but instead are constructed to suit the needs of a particular application. For this
reason most of the features we describe for trust management systems are supported by
PCA indirectly.

The inference rules of PCA those of higher order logic along with a few additional rules
that talk about keys and digital signatures. These additional rules are shown in Fig. 6. The

ACM Computing Surveys

40 · Peter Chapin and Christian Skalka and X. Sean Wang

NAME_I

F

N (k)(F)

NAME_IMP_E

N (k)(F) N (k)(F ⊃ G)

N (k)(G)

SIGNED
digital_signature(s, k, F)

N (k)(F)

Fig. 6. Some Inference Rules of PCA Logic

functionN takes a string, for example a public key, and returns the principal corresponding
to that key. TheNAME_I and NAME_IMP_E rules embody the definition of a principal
mentioned above. TheSIGNED rule says that a formula signed by keyk is a statement
admitted by principalN (k).

PCA uses an interesting mechanism to handle certificate revocation [Bauer 2003], that
is an example of how this feature can be handled while preserving monotonicity; their
approach is inspired by previous work [Li and Feigenbaum 2002] proposed for use in the
RT framework [Li et al. 2002].

In particular, a PCA implementation only treats a certificate as valid if there is an appro-
priate certificate revocation list available. The presence of a revocation list does not remove
a previously valid certificate, rather it enables a certificate that was previously invalid to be
used. The relevant inference rule is as follows, though the PCA authors note that this rule
is derivable as a theorem:

CERT-E
cert(A,F, N) A signed(revlist(T1, T2, L)) localtime< T2 N /∈ L

A saysF

This rule states that principalA saysF provided there is a certificate asserting it and a re-
vocation list signed byA that is currently valid and which does not include the certificate’s
serial number. If the revocation list is not available,A saysF can not be deduced from the
certificate alone.

5.4.6 TPL. In Trust Policy Language (TPL) [Herzberg et al. 2000] the policy language
and the certificate language are distinct. Certificates bind attributes to public keys and
can be translated from other certificate formats, such as X.509v3. The policy language
allows authorizers to define rules, based on certificate attribute values, by which an entity,
represented by a public key, can enter a role. As with RT but unlike SPKI, the system does
not directly express authorizations. Instead only role memberships are computed. The
permissions granted to an entity depend on the resulting role memberships and are defined
externally.

TPL uses an XML syntax for its policy language. The example in Fig. 7 [Herzberg et al.
2000] illustrates a policy statement that defines the members of a group (or role) named
“Hospitals.” In such statements multiple rules are allowed; if any of the rules are satisfied
then the policy is satisfied. A rule contains one or more INCLUSION elements, each of
which represents a certificate or, if the REPEAT attribute is present, multiple certificates.
In the example a subject is a member of the Hospitals group if that subject has been recom-
mended by two other hospitals. The FUNCTION element describes additional conditions
on the various certificates in the rule. In the example, the recommendation certificates must
have a “Level” field with a value greater than one.

TPL policies can be compiled to Prolog, using appropriate functions in Prolog to capture
the full expressiveness of the policy language. However the implementation does not use

ACM Computing Surveys

Authorization in Trust Management: Features and Foundations · 41

<GROUP NAME="Hospitals">
<RULE>

<INCLUSION
ID="reco" TYPE="Recommendation" FROM="Hospitals" REPEAT="2"/>

<FUNCTION>
<GT>

<FIELD ID="reco" NAME="Level"/>
<CONST>1</CONST>

</GT>
</FUNCTION>

</RULE>
</GROUP>

Fig. 7. Example TPL Policy Statement

Prolog directly but instead provides its own policy engine. Unlike an ordinary Prolog
theorem prover, this engine is capable of fetching remote certificates as needed and thus
provides a form of distributed chain discovery. For example, supposeX issues a certificate
about some subjectY . The certificate contains anissuerCertRepositoryfield where the
policy engine can find more information aboutX (for example, the groups of whichX
is a member) and asubjectCertRepositoryfield where the policy engine can find more
information aboutY (for example, the groups defined byY).

The general form of TPL allows for credential negation and is therefore nonmonotonic.
Since the requester cannot be expected to willingly provide information that would deny
access, such certificates are fetched from repositories defined by the authorizer, instead of
by the issuer or subject.

5.4.7 Binder. Like SD3, Binder [DeTreville 2002a; 2002b] uses an extended version
of Datalog as its foundation. The authorizer writes Datalog rules and facts to describe the
local policy. These rules and facts exist in acontextthat is associated with a public/private
key pair. Rules and facts can be exported from a context by signing them. Thus signed
Datalog statements form the credentials in the Binder system. An importing context quotes
the credentials usingsaysin a way similar to other ABLP inspired logics. Special rules in
the policy must be provided to relate quoted predicates to local predicates.

The following example [DeTreville 2002a] allows all members ofbigco to readre-
source_r . The authorizer’s local policy is

can(X, read , resource_r) ← employee(X, bigco).
employee(X, bigco) ← Kb saysemployee(X, bigco).

This policy grants read access to all objectsX for which the local predicateemployee-
(X, bigco) is true. The policy then connects the predicateemployeein the context con-
trolled by keyKb to the local predicate with the same name. When a signed credential
Kb saysemployee(john , bigco) is presented to the authorizer, the authorizer can then
compute thatcan(john , read , resource_r).

In effect Binder distributes a large Datalog program over many contexts and allows each
context to explicitly decide which statements from other contexts it will accept. Like SD3
this gives Binder the full expressivity of Datalog.

Binder makes no attempt to treat negative information and revocation is handled inTC

(Fig. 1) by controlling certificate lifetimes or by requiring the use of on-line revocation

ACM Computing Surveys

42 · Peter Chapin and Christian Skalka and X. Sean Wang

checks. In addition an authorizer’s policy can be, at least potentially, signed and published.
Thus a Binder based system could require clients to find the necessary proofs with the
authorizer simply checking the results as is done with PCA. This can help off-load work
from the authorizer but the technique is not specific to Binder.

5.4.8 Cassandra.Cassandra [Becker and Sewell 2004a; 2004b; Becker 2005] uses
a semantics based on Datalog with constraints but allows the constraint domains to be
selected independently of the base system. This allows an application to tune Cassandra
by trading off expressiveness in the policy language for computational efficiency without
having to modify the core implementation.

In a Cassandra system, each host runs a Cassandra service. In addition to requesting
access to resources, clients of the service can activate or deactivate roles in that service as
well as request credentials for use with Cassandra services on other nodes. Each Cassan-
dra service runs an authorization mechanism that consults local policy and that also makes
remote queries to other Cassandra services to obtain relevant policy information. Infor-
mation about where remote credentials can be found is encoded in the rules themselves;
credential chain discovery is not completely automatic.

Cassandra is role based and allows roles and actions (permissions) to be parameterized.
The base system uses only a few predicates including:permits(entity , permission),
canActivate(entity , role), andhasActivated(entity , role). Users are able to in-
troduce application specific predicates as well. Whenever a role is activated in a particular
Cassandra service, that service adds an appropriatehasActivatedfact to its policy. Thus
the set of policy rules available to the authorization mechanism varies as roles are activated
and deactivated.

The predicates in a rule can be annotated with information about the location where
specific certificates can be obtained. These annotations can be variables that are instan-
tiated during the evaluation process. Using side-effect free functions in an integer order
constraint domain, Cassandra can directly express rules regarding credential validity. For
example:

canActivate(X, Doc())←
canActivate(X, CertDoc (T)), CurTime ()− Years (1) ≤ T ≤ CurTime ()

This rule says thatX can activate the doctor role provided thatX was certified at time
T (X can activate theCertDoc role for T), and thatT is not more than one year old.
In this case the authorizer defines a validity period onX ’s certification and won’t accept
certifications that are too old. Notice that in most systems the lifespan of a certificate is
set by the issuer. However, since the authorizer is the principal assuming the risk of using
an invalid certificate it makes sense in many applications for the authorizer to define the
acceptable lifespans [Rivest 1998].

Cassandra uses an authorization procedure that is a variation of Toman’s memoing al-
gorithm for Datalog with constraints [Toman 1997]. This approach is based on SLG res-
olution and is goal oriented (top down) while avoiding the non-termination problems that
might arise using a traditional SLD style evaluation.

6. OTHER COMPONENTS: TRUST NEGOTATION

In this survey we have focused specifically on authorization in trust management. However,
modern trust management systems include other major components, to address problems

ACM Computing Surveys

Authorization in Trust Management: Features and Foundations · 43

other than the semantics of authorization. While space considerations prevent a complete
review of issues and approaches, in this section we provide a brief overview oftrust ne-
gotiation, which is a topic of considerable interest in modern trust management research.
Along with providing a more complete view of trust management, the purpose of this sec-
tion is to provide a better practical context for the topics covered in this survey, and a better
picture of current research directions.

When considering the semantics of authorization, it is simplest to assume that requesters’
credentials are publicly available, so that authorizers have full access to them as well as
their own policy. We call this thebasic model, and it is typically assumed in most of
the systems we survey here for the initial development of an authorization semantics. In
the basic model authorizers do not directly disclose their policy to any requester while
requesters are assumed to disclose their credentials freely. Requesters either send their
credentials with each request or, in some cases, make their credentials available on public
servers where authorizers can locate them using some form of credential chain discovery.

Furthermore, the result of the authorization decision in the basic model is a simple
boolean value specifying if access is allowed or not. If access is allowed the requester
does not know which credentials were actually necessary to gain that access. If access is
denied the requester does not know why the denial occurred and has no way of knowing
how to obtain missing credentials.

However, in practice the basic model is not always sufficient. For example, rather than
expending overhead on distributed chain discovery, an authorizer may associate additional
information with credentials that associates them with particular resources, so requesters
can supply a subset of their credentials in an informed manner. But a deeper issue is that a
requester may regard some of her credentials as sensitive and have a complex access policy
for them. The requester may require an authorizer comply with that policy before she is
willing to disclose those credentials. In addition the authorizer may wish to control access
to his resource access policy, allowing some or all of that policy to be disclosed to suitable
requesters. In this situation, the requester and authorizer can engage in a process called
trust negotiation during which credentials and policy statements are shared incrementally
between the authorizer and requester as the parties gain increasing trust in each other.

An example in [Seamons et al. 2002] illustrates the concepts. Alice, a university stu-
dent, orders her textbooks from an online bookstore. She requests a student discount not
knowing what credentials the bookstore will require. In response the bookstore asks to
see her digital student ID and her digital credit card. Alice is willing to disclose her ID
but will only disclose her credit card to web sites that have been certified by the Better
Business Bureau; accordingly she requests this credential from the bookstore site. Once
the bookstore discloses its Better Business Bureau credential, Alice’s access policy on her
credit card is satisfied and she discloses her credentials as well.

Many trust negotiation systems have been described in the literature [Winslett et al.
2002; Gavriloaie et al. 2004; Bonatti and Olmedilla 2005b]. Some, such as PeerTrust
[Gavriloaie et al. 2004], are extensions of other trust management systems, including sys-
tems we have surveyed here. For example, PeerTrust extends SD3 with trust negotiation,
a trust negotiation framework has been developed for the RT system [Winsborough and
Li 2002]. In other cases, such as with Protune [Bonatti and Olmedilla 2005b], support
for trust negotiation and trust management were designed together from scratch. In either
case trust negotiation systems build on trust management concepts and thus have many
overlapping concerns.

ACM Computing Surveys

44 · Peter Chapin and Christian Skalka and X. Sean Wang

In a survey of trust negotiation systems a list of requirements on trust negotiation policy
languages is given in [Seamons et al. 2002]. Because trust negotiation systems include
trust management functionality that we survey here, many of the these policy language
requirements overlap with or are embedded in our list of trust management features. For
example, Seamons et al. note the importance of using languages with well defined seman-
tics, and discuss features such as monotonicity, credential chains, delegation depth, and
local name spaces. However, Seamons et al. also require trust negotiation policy languages
to have the power to express access control information on the policies themselves. This is
the essence of trust negotiation.

In addition [Seamons et al. 2002] gives requirements on compliance checkers. In a trust
negotiation context compliance checkers can no longer return a simple yes/no result. If
the request for access fails, the checker must provide information about what additional
credentials are needed to gain that access. The authorizer can use this information to
request those credentials from the requester. Furthermore the requester uses a compliance
checker to control access to her credentials, and in some cases to locally process policy
information provided by the authorizer to determine which of her credentials might be
relevant to a particular request.

Some of the earliest work on trust negotiation focused on how the requester could select
precisely the credentials necessary for the desired access and thus avoid sending sensitive
credentials unnecessarily. In [Seamons et al. 1997]credential acceptance policieswritten
in a restricted form of Prolog are downloaded from the authorizer by the requester and
then executed with the requester’s database of credentials as part of the collection of facts
available to the Prolog program. The result is a list of required credentials that the re-
quester must send to the authorizer to gain access to the protected resource. The authorizer
executes essentially the same program to check the access request.

Later work generalizes this process by allowing the requester to assigncredential access
or credential disclosurepolicies to control the conditions under which those credentials can
be revealed [Winsborough et al. 2000; Yu et al. 2000]. In addition authorizers might want
to control the disclosure of their access policies as well [Seamons et al. 2001]. When a
negotiating party sends all the credentials or policy statements for which the access policy
has been met, that party is said to follow aneagerstrategy. On the other hand if the
negotiating party only sends a more narrowly focused collection of credentials in response
to specific requests from the negotiating partner, that party is said to follow aparsimonious
strategy. In this later case, however, a negotiating party can inadvertantly reveal sensitive
information about her credentials indirectly by way of her reactions to specific requests
[Winsborough et al. 2000; Winsborough and Li 2002; 2004]. Fundamentally this problem
arises because credential access policies are only associated with credentials a negotiating
party actually has. To address this issueack policiescan be created that cause a negotiating
party to enter into a negotiation about attributes she considers sensitive even if she lacks
any specific credentials about those attributes [Winsborough and Li 2002; 2004].

The PeerTrust system is an example of a fully developed trust negotation policy system.
PeerTrust extends SD3 to provide trust negotiation [Gavriloaie et al. 2004]. The Horn
clauses used in SD3 are enhanced to allow guards. Essentially the body of a clause is
broken into sections where the successful evaluation of one section is required before the
evaluation of the next section is allowed to begin. An example in [Gavriloaie et al. 2004]
shows a rule Alice might use to specify that she will only reveal her signed credential that
she is a California state police officer to web sites that are members of the Better Business

ACM Computing Surveys

Authorization in Trust Management: Features and Foundations · 45

Bureau:
policeOfficer(alice) @ CSP←
member(Requester) @ BBB @ Requester | signedBy[CSP].

In this rule the “@” is used to indicate a non-local predicate. The ability to evaluate non-
local predicates nests so that, for example, “member(Requester) @ BBB @ Requester”
means that the requester must show that he is a member of the Better Business Bureau.
In this context the requester is a web server asking Alice if she is a police officer. This
predicate must be validated before the evaluation of the rule can proceed beyond the “|”
and Alice can send the necessary signed certificate to the web server.

For another example, PROTUNE is a particularly rich trust negotiation system providing
support for authentication, policy rules with actions and side effects (provisional rules),
as well as hierarchical services and credentials [Bonatti and Samarati 2000; Bonatti and
Olmedilla 2005b]. Metapolicies are used to arbitrate trust negotiation; as credentials are
gathered a negotiating party’s metapolicies activate new policy rules as appropriate. PRO-
TUNE has also been extended to provide support for advanced queries allowing users to
ask high level questions about authorization decisions such as, for example,why?, what
if?, andhow to?queries [Bonatti et al. 2006].

While PROTUNE provides extensive support for trust negotiation, at its core it also con-
tains support for many of the authorization features we discuss in this work. PROTUNE

libraries can be created that simulate the semantics of other trust management systems. For
example, PROTUNE can encode the four credential forms of RT0 [Bonatti and Olmedilla
2005a], thus providing all the capabilities of that system such as local name spaces, role-
based access control, and delegation of rights. In addition PROTUNE’s features can be used
to encode a public key infrastructure [Bonatti and Samarati 2000] and distributed chain
discovery [Bonatti and Olmedilla 2005a]. The last column in Table II compares PROTUNE

with the other systems we review in terms of its authorization semantics.

7. CONCLUSION

Trust management technology responds to the security demands of modern distributed
systems– or in the words of previous authors [Blaze et al. 1999b], “the trust management
approach to distributed system security was developed as an answer to the inadequacy of
traditional authorization mechanisms”. Compared to other simpler systems such as iden-
tity or role-based access control, trust management systems provide modern distributed
applications programmers a more effective and scalable means of specifying and enforc-
ing authorization policies. At the heart of any trust management system is a language
for expressing policy and access rights, comprising a mixture of features that address the
character and requirements of modern distributed security. We have reviewed a number of
language features, and summarized which systems possess which features (see especially
Tables I and II). Overall, we conclude that a subset of them are fundamental to any trust
management system:

Linked local namespaces.No single, monolithic namespace exists on the Internet. In-
stead, distinct security domains define their own namespaces. Any trust management sys-
tem language must provide some means to refer to non-local namespaces, within the local
namespace.

Roles.Role membership is a fundamental abstraction in trust management systems. The
specification of authorization via roles allows policies to be defined independently of iden-

ACM Computing Surveys

46 · Peter Chapin and Christian Skalka and X. Sean Wang

tities, so that addressing the needs of unknown future users does not require policy to be
rewritten.

Delegation of authority.No single, monolithic policy authority exists on the Internet.
Rather, distinct security domains define their own local policies, and security domains
commonly delegate authority over local policy to trusted non-local authorities; any trust
management system language must provide some way to express this.

Delegation of rights.In many cases, the users of a system desire to delegate their access
rights to other entities, to act on their behalf. trust management system languages should
address this need, including important nuances such as whether certain rights should be
specified as undelegatable by local authorities.

Certificate revocation.Access rights should never be permanently granted, rather au-
thorities should be able to revoke them or set finite lifetimes for their use. While certificate
revocation appears to be an essentially nonmonotonic feature, this has been disproven, as
the authors of both PCA [Bauer 2003] and RT [Li and Feigenbaum 2002] have developed
monotonic inference rules for incorporating revocation in authorization. Some systems
such as SPKI/SDSI offer a simpler implementation-based solution [Ellison et al. 1999],
where revocation is not featured in the authorization language but processed during the
parsing of certificates into credentials.

At a higher level, we argue that rigorous formal foundations are a necessary design fea-
ture of trust management systems, since they allow rigorous guarantees of security. We
have shown that graph theories, logics, and database formalisms are the most common
formalisms for trust management system design, though logic stands out as the most popu-
lar. Indeed, previous authors have argued that monotonic programming logics are uniquely
well-suited as trust management languages [Li and Mitchell 2003a], and in general the rich
semantic domains available in logic provide a great deal of flexibility and scalability in
trust management system applications [Polakow and Skalka 2006]. A variety of trust man-
agement system foundations use domain-specific logical constructs originally developed
for authentication settings [Burrows et al. 1990], witnessing the evolution of authorization
systems from earlier access control systems based mainly on authentication.

Many of the systems surveyed in this paper exist primarily in theory, and have not yet
been deployed. As trust management systems become more commonplace, and theory de-
velops into practice, we believe a major challenge will be whole-system assurances. As
we have discussed, trust management systems comprise more than just a semantics for
their core authorization language, including a collection of features for storing, collect-
ing, and processing certificates. Significantly, some trust management system features are
sometimes implemented in these other components, such as when certificate revocation or
expiration is realized during certificate parsing. And of course, correctness of an entire
system depends on correctness of all of its components, as well as their interaction. Thus,
formalisms for assurances of correctness ofsystemsmust transcend the core authorization
semantics, and address the myriad components of trust management systems. In many
ways QCM and SD3 set the standard in this regard [Gunter and Jim 1997; Jim 2001],
by using database theory and technology as a uniform setting for implementing certifi-
cate storage and retrieval, defining the semantics of authorization, and formally modeling
systems. As trust management systems mature into vital components of Internet commu-
nications and commerce, a holistic formal view that takes into account the variety of trust

ACM Computing Surveys

Authorization in Trust Management: Features and Foundations · 47

management system components will be essential to coherence and reliability of these sys-
tems.

REFERENCES

ABADI , M. 1998. On SDSI’s linked local name spaces.Journal of Computer Security 6,1–2, 3–21.

ABADI , M. 2003. Logic in access control. InProceedings of the 18th IEEE Symposium on Logic in Computer
Sciennce.

ABADI , M., BURROWS, M., LAMPSON, B., AND PLOTKIN , G. 1993. A calculus for access control in distributed
systems.ACM Transactions on Programming Languages and Systems 15,4 (September), 706–734.

AJMANI , S., CLARKE , D. E., MOH, C.-H.,AND RICHMAN , S. 2002. ConChord: Cooperative SDSI certificate
storage and name resolution. InInternational Workshop on Peer-to-Peer Systems.

APPEL, A. W. AND FELTEN, E. W. 1999. Proof-carrying authentication. InProceedings of the 6th ACM
Conference on Computer and Communications Security. ACM Press, New York, NY, USA, 52–62.

BACON, J., MOODY, K., AND YAO, W. 2002. A model of OASIS role-based access control and its support for
active security.ACM Transactions on Information and System Security 5,4 (November), 492–540.

BAUER, L. 2003. Access control for the web via proof-carrying authorization. Ph.D. thesis, Princeton University.

BAUER, L., SCHNEIDER, M. A., AND FELTEN, E. W. 2002. A general and flexible access-control system for
the web. InProceedings of the 11th USENIX Security Symposium. 93–108.

BECKER, M. Y. 2005. Cassandra: Flexible trust management and its application to electronic health records.
Tech. Rep. 648, University of Cambridge. October.

BECKER, M. Y. AND SEWELL, P. 2004a. Cassandra: Distributed access control policies with tunable expres-
siveness. InProceedings of the 5th IEEE International Workshop on Policies for Distributed Systems and
Networks.

BECKER, M. Y. AND SEWELL, P. 2004b. Cassandra: Flexible trust management, applied to electronic health
records. InProceedings of the 17th IEEE Computer Security Foundations Workshop.

BERTINO, E., CATANIA , B., FERRARI, E., AND PERLASCA, P. 2003. A logical framework for reasoning about
access control models.ACM Transactions on Information and System Security 6,1 (February), 71–127.

BLAZE , M., FEIGENBAUM, J., IOANNIDIS, J.,AND KEROMYTIS, A. D. 1999a.RFC-2704: The KeyNote Trust-
Management System Version 2. Internet Engineering Task Force.

BLAZE , M., FEIGENBAUM, J., IOANNIDIS, J.,AND KEROMYTIS, A. D. 1999b. The role of trust management
in distributed systems security. InSecure Internet Programming: Security Issues for Mobile and Distributed
Objects. Springer-Verlag, London, UK, 185–210.

BLAZE , M., FEIGENBAUM, J., AND LACY, J. 1996. Decentralized trust management. InProceedings of the
1996 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 164–173.

BLAZE , M., FEIGENBAUM, J.,AND STRAUSS, M. 1998. Compliance checking in the policymaker trust manage-
ment system. InProceedings of the Second International Conference on Financial Cryptography. Springer-
Verlag, 254–274.

BLAZE , M., IOANNIDIS, J., AND KEROMYTIS, A. D. 2002. Trust management for IPsec.ACM Transactions
on Information and System Security 5,2 (May), 95–118.

BLAZE , M., IOANNIDIS, J., AND KEROMYTIS, A. D. 2003. Experience with the keynote trust management
system: Applications and future directions. InProceedings of the First International Conference on Trust
Management. Springer-Verlag, Keraklion, Crete, Greece, 284–300.

BONATTI , P. AND OLMEDILLA , D. 2005a. Policy language specification. REWERSE Deliverable I2-D2, Feb-
ruary 2005.http://rewerse.net/deliverables.html .

BONATTI , P. AND SAMARATI , P. 2000. Regulating service access and information release on the web. In
Proceedings of the 7th ACM conference on computer and communications security. ACM Press, 134–143.

BONATTI , P. AND SAMARATI , P. 2003. Logics for authorizations and security. InLogics for Emerging Applica-
tions of Databases, J. Chomicki, R. van der Meyden, and G. Saake, Eds. Springer-Verlag.

BONATTI , P. A. AND OLMEDILLA , D. 2005b. Driving and monitoring provisional trust negotiation with
metapolicies. InIEEE 6th International Workshop on Policies for Distributed Systems and Networks. Stock-
holm, Sweden.

BONATTI , P. A., OLMEDILLA , D., AND PEER, J. 2006. Advanced policy queries. InProceedings of the 17th
European Conference on Artificial Intelligence. IOS Press, 200–204.

ACM Computing Surveys

48 · Peter Chapin and Christian Skalka and X. Sean Wang

BURROWS, M., ABADI , M., AND NEEDHAM, R. M. 1990. A logic of authentication.ACM Transactions on
Computer Systems 8,1 (February), 18–36.

CHU, Y.-H., FEIGENBAUM, J., LAMACCHIA , B., RESNICK, P., AND STRAUSS, M. 1997. REFEREE: Trust
management for web applications.World Wide Web Journal 2,3 (Summer), 127–139.

CLARKE , D., ELIEN , J.-E., ELLISON, C., FREDETTE, M., MORCOS, A., AND RIVEST, R. L. 2001. Certificate
chain discovery in SPKI/SDSI.Journal of Computer Security 9,4, 285–322.

DETREVILLE , J. 2002a. Binder, a logic-based security language. InProceedings of the 2002 IEEE Symposium
on Security and Privacy. IEEE Computer Society.

DETREVILLE , J. 2002b. Making certificates programmable. InProceedings of the First Annual PKI Workshop.
Hanover, NH, USA.

DIMMOCK , N., BELOKOSZTOLSZKI, A., EYERS, D., BACON, J.,AND MOODY, K. 2004. Using trust and risk
in role-based access control policies. InProceedings of the Ninth ACM Symposium on Access Control Models
and Technologies. ACM Press, New York, NY, USA, 156–162.

EITER, T., GOTTLOB, G., AND MANNILA , H. 1997. Disjunctive datalog.ACM Trans. Database Syst. 22,3,
364–418.

ELLISON, C., FRANTZ, B., LAMPSON, B., RIVEST, R., THOMAS, B., AND YLONEN, T. 1999. RFC-2693:
SPKI Certificate Theory. Internet Engineering Task Force.

FERRAIOLO, D. AND KUHN, R. 1992. Role-based access controls. In15th NIST-NCSC National Computer
Security Conference. 554–563.

GAVRILOAIE , R., NEJDL, W., OLMEDILLA , D., SEAMONS, K. E., AND WINSLETT, M. 2004. No registration
needed: How to use declarative policies and negotiation to access sensitive resources on the semantic web. In
Proceedings of the 1st European Semantic Web Symposium. Lecture Notes in Computer Science, vol. 3053.
Springer, Heraklion, Crete, Greece, 342–356.

GUNTER, C. A. AND JIM , T. 1997. Design of an application-level security infrastructure. InProceedings of the
DIMACS Workshop on Design and Formal Verification of Security Protocols.

GUNTER, C. A. AND JIM , T. 2000a. Generalized certificate revocation. InProceedings of the 27th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 316–329.

GUNTER, C. A. AND JIM , T. 2000b. Policy-directed certificate retrieval.Software: Practice & Experience 30,15,
1609–1640.

GUNTER, C. A., JIM , T., AND WANG, B.-Y. 1997. Authenticated data distribution using query certificate
managers. unpublished extended abstract.

HALPERN, J. AND VAN DER MEYDEN, R. 1999. A logic for SDSI’s linked local name spaces. InProceedings
of the 12th IEEE Computer Security Foundations Workshop. 111–122.

HALPERN, J. Y. AND VAN DER MEYDEN, R. 2001. A logical reconstruction of SPKI. InProceedings of the
14th IEEE Computer Security Foundations Workshop. 59–70.

HAYTON , R. J., BACON, J. M., AND MOODY, K. 1998. OASIS: Access control in an open distributed envi-
ronment. InProceedings of the IEEE Symposium on Security and Privacy. IEEE Computer Society Press,
3–14.

HERZBERG, A., MASS, Y., M ICHAELI , J., NAOR, D., AND RAVID , Y. 2000. Access control meets public
key infrastructure, or: Assigning roles to strangers. InProceedings of the IEEE Symposium on Security and
Privacy.

HINE, J. A., YAO, W., BACON, J., AND MOODY, K. 2000. An architecture for distributed OASIS services.
In Middleware 2000: IFIP/ACM International Conference on Distributed Systems Platforms. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 104–120.

HOWELL, J. 2000. Naming and sharing resrouces across administrative boundaries. Ph.D. thesis, Dartmouth
College.

HOWELL, J. AND KOTZ, D. 2000. A formal semantics for SPKI. Tech. Rep. 2000-363, Dartmouth College.

International Telecommunications Union 2000.Information Technology - Open Systems Interconnection - The
Directory: Public Key and Attribute Certificate Frameworks. International Telecommunications Union.

International Telecommunications Union 2001.Information Technology - Open Systems Interconnection - The
Directory: Overview of Concepts, Models, and Services. International Telecommunications Union.

JAFFAR, J. AND MAHER, M. J. 1994. Constraint logic programming: A survey.Journal of Logic Program-
ming 19/20, 503–581.

ACM Computing Surveys

Authorization in Trust Management: Features and Foundations · 49

JHA , S. AND REPS, T. 2002. Analysis of SPKI/SDSI certificates using model checking. InProceedings of the
15th IEEE Computer Security Foundations Workshop. IEEE Computer Society, Washington, DC, USA, 129.

JIM , T. 2001. SD3: A trust management system with certified evaluation. InProceedings of the 2001 IEEE
Symposium on Security and Privacy. IEEE Computer Soceity.

JIM , T. AND SUCIU, D. 2001. Dynamically distributed query evaluation. InProceedings of the Twentieth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. ACM Press, New York, NY, USA,
28–39.

L I , N. 2000. Local names in SPKI/SDSI. InProceedings of the 13th IEEE Computer Security Foundations
Workshop. IEEE Computer Society Press, Cambridge, UK, 2–15.

L I , N. AND FEIGENBAUM, J. 2002. Nonmonotonicity, user interfaces, and risk assessment in certificate re-
vocation. InProceedings of the 5th International Conference on Financial Cryptography. Springer-Verlag,
London, UK, 166–177.

L I , N., GROSOF, B. N., AND FEIGENBAUM, J. 2003. Delegation logic: A logic-based approach to distributed
authorization.ACM Transactions on Information and System Security 6,1 (February), 128–171.

L I , N. AND M ITCHELL , C. 2006. Understanding spki/sdsi using first-order logic.International Journal of
Information Security 5,1, 48–64.

L I , N. AND M ITCHELL , J. C. 2003a. Datalog with constraints: A foundation for trust management languages.
In Proceedings of the Fifth International Symposium on Practical Aspects of Declarative Languages.

L I , N. AND M ITCHELL , J. C. 2003b. RT: A role-based trust-management framework. InProceedings of the
Third DARPA Information Survivability Conference and Exposition. IEEE Computer Society Press, 201–212.

L I , N., MITCHELL , J. C.,AND WINSBOROUGH, W. H. 2002. Design of a role-based trust-management frame-
work. In Proceedings of the 2002 IEEE Symposium on Security and Privacy. IEEE Computer Society Press,
114–130.

L I , N., MITCHELL , J. C.,AND WINSBOROUGH, W. H. 2005. Beyond proof-of-compliance: Security analysis
in trust management.Journal of the ACM 52,3 (May), 474–514.

L I , N., WINSBOROUGH, W. H., AND M ITCHELL , J. C. 2003. Distributed chain discovery in trust management.
Journal of Computer Security 11,1 (Feb), 35–86.

L IU , Y. D. AND SMITH , S. 2002. A component security infrastructure. InProceedings of the 2002 Foundations
of Computer Security Workshop.

MCDANIEL , P. AND RUBIN , A. D. 2001. A response to ”can we eliminate certificate revocation lists?”. In
Proceedings of the 4th International Conference on Financial Cryptography. Springer-Verlag, London, UK,
245–258.

NECULA, G. C. 1997. Proof-carrying code. InProceedings of the 24th ACM SIGPLAN-SIGACT Symposium on
Principles of programming languages. ACM Press, New York, NY, USA, 106–119.

NIKANDER , P.AND V ILJANEN, L. 1998. Storing and retrieving internet certificates. InProceedings of the Third
Nordic Workshop on Secure IT Systems.

OASIS. 2006a. OASIS eXtensible Access Control Markup Language Technical Committee athttp://www.
oasis-open.org/committees/tc_home.php?wg_abbrev=xacml .

OASIS. 2006b. OASIS Security Services Technical Committee athttp://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=security .

OASIS. 2006c. OASIS Web Services Security Technical Committee athttp://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=wss .

OFFICE OFTECHNOLOGY ASSESSMENT. 1993. Protecting privacy in computerized medical information, OTA-
TCT-576. U.S. Government Printing Office.

POLAKOW, J. AND SKALKA , C. 2006. Specifying distributed trust management in LolliMon. InProceedings of
the ACM Workshop on Programming Languages and Analysis for Security.

RESNICK, P. AND M ILLER , J. 1996. PICS: Internet access controls without censorship.Communications of the
ACM 39,10 (October), 87–93.

RIVEST, R. L. 1998. Can we eliminate certificate revocation lists? InProceedings of the Second International
Conference on Financial Cryptography. Springer-Verlag, London, UK, 178–183.

RIVEST, R. L. AND LAMPSON, B. 1996a. SDSI — A Simple Distributed Security Infrastructure. Version 1.0, at
http://theory.lcs.mit.edu/~rivest/sdsi10.html , September 15, 1996.

RIVEST, R. L. AND LAMPSON, B. 1996b. SDSI — A Simple Distributed Security Infrastructure. Version 1.1, at
http://theory.lcs.mit.edu/~rivest/sdsi11.html , October 2, 1996.

ACM Computing Surveys

50 · Peter Chapin and Christian Skalka and X. Sean Wang

SANDHU , R. S., COYNE, E. J., FEINSTEIN, H. L., AND YOUMAN , C. E. 1996. Role-based access control
models.Computer 29,2, 38–47.

SEAMONS, K., WINSBOROUGH, W., AND WINSLETT, M. 1997. Internet credential acceptance policies. In
Proceedings of the Workshop on Logic Programming for Internet Applications. Leuven, Belgium.

SEAMONS, K., WINSLETT, M., AND YU, T. 2001. Limiting the disclosure of access control policies during
automated trust negotiation.

SEAMONS, K., WINSLETT, M., YU, T., SMITH , B., CHILD , E., JACOBSON, J., MILLS , H., AND YU, L. 2002.
Requirements for policy languages for trust negotiation. InProceedings of the 3rd International Workshop on
Policies for Distributed Systems and Networks. IEEE Computer Society, Washington, DC, USA, 68.

SIMON , R. T. AND ZURKO, M. E. 1997. Separation of duty in role-based environments. InProceedings of the
10th IEEE Computer Security Foundations Workshop. IEEE Computer Society Press, 183–194.

SKALKA , C., WANG, X. S.,AND CHAPIN, P. 2007. Risk management for distributed authorization.Journal of
Computer Security. To appear.

STUBBLEBINE, S. 1995. Recent-secure authentication: Enforcing revocation in distributed systems. InProceed-
ings of the 1995 IEEE Symposium on Security and Privacy. IEEE Computer Society, 224–235.

STUBBLEBINE, S. G.AND WRIGHT, R. N. 1996. An authentication logic supporting synchronization, revoca-
tion, and recency. InProceedings of the 3rd ACM Conference on Computer and Communications Security.
ACM Press, New York, NY, USA, 95–105.

TOMAN , D. 1997. Memoing evaluation for constraint extensions of datalog.Constraints 2, 337–359.
WEEKS, S. 2001. Understanding trust management systems. InProceedings of the 2001 IEEE Symposium on

Security and Privacy. IEEE Computer Society, Washington, DC, USA, 94.
WINSBOROUGH, W. H. AND L I , N. 2002. Towards practical automated trust negotiation. InProceedings of the

IEEE 3rd International Workshop on Policies for Distributed Systems and Networks. IEEE Press.
WINSBOROUGH, W. H. AND L I , N. 2004. Safety in automated trust negotiation. InProceedings of the 2004

IEEE Symposium on Security and Privacy. IEEE Computer Society, Los Alamitos, CA, USA, 147.
WINSBOROUGH, W. H., SEAMONS, K. E.,AND JONES, V. E. 2000. Automated trust negotiation. InProcedings

of the DARPA Information Survivability Conference and Exposition. Volume 1. IEEE Computer Society, 88–
102.

WINSLETT, M., CHING, N., JONES, V., AND SLEPCHIN, I. 1997. Assuring security and privacy for digital
library transactions on the web: Client and server security policies. InProceedings of the IEEE International
Forum on Research and Technology Advances in Digital Libraries. IEEE Computer Society, Washington, DC,
USA, 140–151.

WINSLETT, M., YU, T., SEAMONS, K. E., HESS, A., JACOBSON, J., JARVIS, R., SMITH , B., AND YU, L.
2002. Negotiating trust on the web.IEEE Internet Computing 6,6 (November/December), 30–37.

WOBBER, E., ABADI , M., BURROWS, M., AND LAMPSON, B. 1993. Authentication in the taos operating
system.SIGOPS Operating Systems Review. 27,5, 256–269.

WOO, T. Y. C. AND LAM , S. S. 1993. Authorizations in distributed systems: A new approach.Journal of
Computer Security 2,2-3, 107–136.

XSB INC. 2006. XSB home page.http://xsb.sourceforge.net .
YU, T., MA , X., AND WINSLETT, M. 2000. PRUNES: An efficient and complete strategy for automated trust

negotiation over the internet. InProceedings of the 7th ACM conference on Computer and communications
security. ACM Press, New York, NY, USA, 210–219.

YU, T., WINSLETT, M., AND SEAMONS, K. E. 2001. Interoperable strategies in automated trust negotiation. In
Proceedings of the 8th ACM conference on Computer and Communications Security. ACM Press, New York,
NY, USA, 146–155.

ACM Computing Surveys

