
Scalaness/nesT: Type Specialized Staged
Programming for Sensor Networks

Peter Chapin
University of Vermont

pchapin@cs.uvm.edu

Christian Skalka
University of Vermont
skalka@cs.uvm.edu

Scott Smith
The Johns Hopkins University

scott@cs.jhu.edu

Michael Watson
University of Vermont

mpwatson@cs.uvm.edu

Abstract
Programming wireless embedded networks is challenging due to
severe limitations on processing speed, memory, and bandwidth.
Staged programming can help bridge the gap between high level
code refinement techniques and efficient device level programs by
allowing a first stage program to specialize device level code. Here
we introduce a two stage programming system for wireless sen-
sor networks. The first stage program is written in our extended
dialect of Scala, called Scalaness, where components written in
our type safe dialect of nesC, called nesT, are composed and spe-
cialized. Scalaness programs can dynamically construct TinyOS-
compliant nesT device images that can be deployed to motes. A key
result, called cross-stage type safety, shows that successful static
type checking of a Scalaness program means no type errors will
arise either during programmatic composition and specialization of
WSN code, or later on the WSN itself. Scalaness has been imple-
mented through direct modification and plug-in extension of the
Scala compiler. Implementation of a staged public-key cryptogra-
phy calculation shows the sensor memory footprint can be signifi-
cantly reduced by staging.

1. Introduction
Programming wireless embedded networks is challenging because
their architectures are severely resource constrained in terms of
memory and processor speed. This paper describes a programming
language designed to support the automatic generation of more
runtime-efficient code for wireless sensor network (WSN) devices.
The language enables dynamic specialization of device code on a
nearby hub or other more resource-rich device, allowing adaptation
to properties of a device’s deployment environment such as neigh-
borhood characteristics, network interference factors, etc.

Our programming language system supports dynamic genera-
tion of TinyOS programs, a popular platform for WSNs. It features
programming abstractions for specializing WSN code, allowing on-
the-fly adaptation to current WSN deployment conditions. The sys-
tem has been implemented as an extension to Scala [29], through
modification of the Scala compiler. We use a restricted form of
staging [8, 30, 31] to achieve well founded dynamic program gen-
eration. First stage code is written in an extended version of Scala,
called Scalaness, that includes high level abstractions to ease pro-

[Copyright notice will appear here once ’preprint’ option is removed.]

gram development. Scalaness program execution yields a residual
second stage WSN node program written in nesT, a variant of the
popular nesC WSN programming language [12] with a stronger
type checking analysis. The second stage program is constructed
from module components treated as first class values, which may
be type and value specialized during the course of first stage com-
putation to yield more compact and efficient code. A code rewrit-
ing strategy in the implementation transforms nesT code into nesC
code, which can be compiled using standard TinyOS tools.

While staging is well-studied and has been explored in a WSN
context [23], our work is novel in that we achieve stronger static
safety guarantees than previous work. At the point of Scalaness
program compilation, our compiler can statically verify that any
nesT program produced by the Scalaness runtime will be statically
type-safe when deployed and run on a network device, even if mod-
ule parameters are specialized during the course of nesT module
composition. We call this property cross-stage type safety, which
has been previously studied in a foundational language context
[19]. In this paper we apply these concepts to the more practical
Scalaness/nesT language, and illustrate how they support the im-
plementation and efficiency of real WSN applications.

1.1 Application Setting and Contributions
The diagram in Fig. 1 provides an overview of the Scalaness/nesT
language architecture. Scalaness source code is compiled in a mod-
ified Scala compiler to Java bytecode, and run in a standard JVM.
At runtime this Scalaness program may generate nesT code, which
is subsequently rewritten to nesC and compiled using the standard
TinyOS compiler (ncc). The resulting image can then be installed
on nodes in a WSN. Observe that more than one code image can be
generated during program execution, so code can be specialized for
each node in a network, or a single Scalaness program can refine
and redeploy network code, allowing programmatic specification
of evolving network behavior.

Another interesting feature of our intended application set-
ting, captured in Fig. 1, is the physical platform on which dif-
ferent elements of the Scalaness/nesT “workflow” may be exe-
cuted. Scalaness source code will typically be compiled in the lab,
prior to deployment. There are two distinct deployment scenarios
where compiled bytecode execution, TinyOS image generation,
and mote (re)programming (the rightmost two boxes in Fig. 1) can
occur. Clearly these activities can take place in the lab, where WSN
motes can be easily imaged over e.g. USB connections prior to de-
ployment. But the more interesting scenario we aim to support is
generation of TinyOS images on a “hub” device in situ, and then to
automatically reprogram WSN nodes over the air (OTA) from the
nearby hub.

In WSN applications such as our Snowcloud snow telemetry
system [11, 25], sensor motes report data to higher powered hubs,
pictured in Fig. 2. The hub device in the figure uses an ARM pro-

1 2013/6/14

Figure 1. Scalaness/nesT Compilation and Execution Model

cessor, runs full-featured Debian Linux, and is in direct radio com-
munication with the sensor network via a physically attached mote.
Such a system can execute bytecode compiled from Scalaness
source code, at run-time generate and compile TinyOS images, and
deploy them to nearby motes. Since the hub is in communication
with the network, Scalaness/nesT is uniquely positioned to evolve
network behavior based on a global view of observed data, a tech-
nique called backcasting [32] when used specifically for network
control. In this context the benefit of cross-stage type safety is clear:
type-checked Scalaness compilation in the lab ensures type safety
of bytecode execution on the hub, and type-safety of dynamically
generated TinyOS image execution on the WSN. Manual correc-
tion of type errors in generated TinyOS images in this scenario is
infeasible since these systems run automatically in remote settings.

Figure 2. A Sensor Node (L,C) and Hub Device (R).

Paper Outline. The main contributions of the work presented
here are the specification, implementation, and prototype ap-
plication of the Scalaness and nesT languages, including their
syntax, semantics, and type analysis. In Sect. 2 we summarize
Scalaness/nesT via discussion of an extended example. Formal
specifications of the nesT and Scalaness languages are presented in
Sect. 3 and Sect. 4, respectively. Their semantics and type theory
possess several novel and challenging features, which we show in
Sect. 5 are grounded in principles studied in a previous founda-
tional setting [19]. We describe our implementation and present
an extended example application of our system to resource access
control in WSNs in Sect. 6 and Sect. 7, along with some empiri-
cal results demonstrating efficiency benefits of our approach. We
conclude with remarks on related work in Sect. 8

2. An Example: Authenticated Messaging
In this section we provide a high-level overview of Scanaless/nesT
usage and applications via an example. (This example is in fact
written in DScalaness/DnesT, a simplified formalization of the im-
plemented Scalaness/nesT, which is defined later in this paper.) The
example illustrates both the type and value specializations that can
occur in our system.

Program description. To illustrate type specialization, we refine
address bitsize. It is well-known that minimizing address space size
in WSN message packets can obtain significant energy savings by
reducing message sizes, since each bit of transmission is known to
consume energy similar to 800 instructions [21]. However, WSNs
are “ad hoc” precisely in the sense that positions and densities
of nodes in space are unpredictable, so “minimal” address space
is an environmental property, where minimality may need to be
determined in situ.

To illustrate value specialization, we define a DnesT code tem-
plate that can be instantiated with specific session keys for secure
communication in a WSN. We imagine that the template is instan-
tiated on high powered hub or lab device, where session keys are
generated. In previous work it has been shown how symmetric key
signatures can be used to support language based resource autho-
rization in WSNs [4, 5]. In particular, communication between se-
curity domains in a WSN is mediated by credentials implemented
as keys, and nodes lying at domain frontiers can use different keys
to send (to the other domain) and receive (to their own) over se-
cured link layer channels. Since it is unpredictable where nodes
will be physically distributed in space, appropriate keys for each
node need to be established in situ. Defining node functionality us-
ing generic code that must be instantiated with specific keys al-
lows adaptation to a deployment environment, and allows expen-
sive computations for establishing session keys to be offloaded
from the WSN to a higher powered device. Experience with an ac-
tual implementation of this application is discussed Sect. 7.

The Code. To distinguish Scalaness and nesT code in examples
we will use a darker font for Scalaness code and a lighter font
for nesT code, and line numbers for reference. We begin with the
definition of a parameterized type mesgT(t), where an instance
mesgT(τ) is just an abbreviation for the specified record type with
a type τ substituted for t.

1 typedef mesgT(t) = { src : t; dest : t; data : uint8[] };

2 2013/6/14

Next, we define a type radioT, which is the type of nesT modules
that provide an API to the radio.

2 typedef radioT = < mt 4 mesgT(uint) >
3 { export radio_x(mt*);
4 import handle_radio_r(mt*); };

The nesT module language is a simplified version of the nesC
component language. In this example, any module of type radioT
exports a radio_x function for sending messages, and imports a
handle_radio_r function that allows received messages to be
handled in a user-defined manner. Both take message references
as arguments1. Furthermore, the module is parameterized by the
type of messages mt, where the address type is upper-bounded by
32-bit unsigned integer. Thus, any module of type radioT can
be dynamically specialized to a 32, 16, or 8 bit address space by
type instantiation. Module type parameters are always defined with
brackets < ... >.

Now we define another type commT which is the type of modules
providing a QOS layer over a specialized radio.

5 typedef commT = (mt 4 mesgT(uint)) ◦
6 < >
7 { export send(mt*);
8 import handle_receive(mt*); };

Although this type is also parameterized by a bounded message
type mt, as is radioT, the parameterization is subtly different syn-
tactically and semantically, since commT expects a program context
where the radio has been specialized. Thus, in commT, mt is under-
stood as being “some” type with an upper bound of mesgT(uint)
which occurs in the module signature, whereas the module itself
has no parameters to be instantiated– note the empty instance pa-
rameter brackets <> in the module type after the ◦ delimeter. This
sort of type is needed in the presence of dynamic type construction,
a useful Scalaness feature we exemplify below.

Next we define modules for sending and receiving messages that
provide a layer of authentication security over the radio.

9 authSend = < mt 4 mesgT(uint); sendk : uint8[],>
10 { import radio_x(mt*),
11 export send(m : mt*)
12 { radio_x(AES_sign(m, sendk)); }, };
13

14 authRecv = < mt 4 mesgT(uint); recvk : uint8[] >
15 { import handle_recv(mt*);
16 export handle_radio_r(m : mt*)
17 { if AES_signed(m, recvk)
18 handle_recv(m); } };

Observe that in the implementation of send in module authSend,
messages are signed with a key sendk, whereas when messages are
received they must be signed with a possibly different key recvk
before being passed on to the user’s receive handler, as specified in
module authRecv. These modules are parameterized by a message
type mt, and also the sendk and recvk key values.

To generalize a technique for composing these modules with a
radio to yield a module of type commT, that is abstract wrt neigh-
borhood sizes, radio implementations, and session key material, we
define the Scalaness authSpecialize function as follows:

19 def authSpecialize
20 (nmax : uint16, radioM : radioT, keys : uint8[][]) : commT {
21 typedef adt 4 uint = if (nmax ≤ 256) uint8 else uint16;
22 val sendM = authSend〈mesgT(adt); keys[0]〉;
23 val recvM = authRecv〈mesgT(adt); keys[1]〉;
24 (sendM n radioM〈mesgT(adt)〉) n recvM;
25 }

The first-class status of nesT modules in Scalaness is apparent
here. On line 20 the function is specified to take a module parameter
radioM of type radioT among its arguments, and to return a

1 For brevity the return type on all commands is omitted. In all cases it is
the TinyOS error type error_t

module of type commT as a result. It also takes an array of keys
as an argument, and on lines 22 and 23 it instantiates sendMesg
and recvMesg with the keys in the array. It also uses the type
adt in the instantiations, which we see in line 21 is dynamically
constructed on the basis of the input variable nmax which defines
the needed address space size. This illustrates a key novelty of
our system, the ability to dynamically set a type to use on a mote
based on a decision made in the Scalaness runtime. Since the value
of nmax cannot be statically determined, the type analysis only
knows that adt is some subtype of uint. Finally, on line 24 the
instantiated radio module is composed with the instantiated send
and receive modules via the Scalaness n operator. The semantics
of module composition here is standard [2]; in a composition aka
wiring µ1 n µ2, the exports of µ2 one are connected to imports of
µ1. The function result is a module of type commT.

To obtain a module defining a mote OS image in a program
context where neighborhood size is known, a radio implementation
has been provided, and session keys have been computed. We can
then compose the results of an authSpecialize function with
modules specifying top-level message send and receive behaviors,
and a main application entry point as follows (here we assume it
is known that address sizes can be limited to 8 bits, so nmax < 256).
At line 30 a closed module is defined and a binary mote image can
be produced by a call to image.

26 appMR =
27 < > { export handle_recv(m : mesgT(uint8)*) {...} };
28 appM =
29 < > { import send(mesgT(uint8)*); export main() {...} };
30 image(appM n (authSpecialize(nmax, radioM, keys) n appMR));

In DScalaness, image is an assertion that its argument is a runnable
module, with no unresolved parameters or imports. In the Scalaness
implementation, this is the point where nesT source code is actually
generated. Successful Scalaness/nesT type checking (which occurs
during stage 1 compilation as per Fig. 1) statically guarantees that
specialized code generated at the point of image will run in a type-
safe manner when it is eventually loaded and run on a mote.

3. The nesT Language Distilled
In this section we summarize a Distilled version of nesT, called
DnesT, that isolates novel elements of nesT, specifically paramet-
ric types, subtyping, type safety, and modules. DnesT serves as a
formal specification for the nesT implementation – given the novel
type theory a specification is crucial as a guide for the implemen-
tation, and DnesT also serves as documentation for the language
design. For lack of space in this article we summarize only the
top-level structure of DnesT modules and our type checking algo-
rithm, in order to focus more on the more central technical issues
of module composition, instantiation, and typing at the Scalaness
level. The DnesT language syntax is a reduced version of C which
is largely standard.

The goal of nesT is to be a type-safe variant of nesC, and DnesT
serves as the specification for how type safety is achieved. Our ap-
proach is another species of “safe C” language design projects such
as [28]. In particular, in DnesT all array bound accesses are checked
at run-time, and pointer arithmetic and casting are restricted to safe
forms only. We have developed a new type checking algorithm that
incorporates subtyping, which supports bounded type parameters
in DnesT module definitions and a more accurate static analysis of
Scalaness code in the presence of type construction and nesT mod-
ule instantiation.

3.1 Syntax and Semantics of DnesT
Module definitions rely on a notion of lists aka sequences of syn-
tactic entities, so we begin with a definition of relevant notation.

Notation and identifiers. Sequences are notated x1, . . . , xn, and
are abbreviated x; x(i) is the i-th element, ∅ denotes the empty

3 2013/6/14

ς, τ ::= t | > | uint8 | uint16 | uint | types
uninit | {l : τ} | τ [] | τ*

T ::= t 4 τ type parameters
V ::= x : τ value parameters
c ::= f(V) : τ = {e} command definition
s ::= f(V) : τ command signature
ι ::= s imports
ξ ::= c exports
ε ::= s export types
d ::= τ x = e | τ x = [| e |] | declarations

τ x = {l = e} | c
µ ::= <T;V>{ι; d; ξ} module definitions
µτ ::= <T;V>{ι; ε} module signatures

Figure 3. Syntax of DnesT Types and Modules

sequence, and |x| is the size. We write x ∈ x to denote membership
in sequences, and xx denotes a sequence with head x and tail x.
We denote append as x@y. For relational symbols R ∈ {4,=, :},
we use the abbreviation: xR y = x1Ry1, . . . , xnRyn. So for
example, x : τ = x1 : τ1, . . . , xn : τn.

Syntactic sorts of identifiers are partitioned as follows. We use
metavariable f (of set F) for function names, l (of set L) for field
names, x (of set V) for term variables, t (of set T) for type variables.

Module syntax. The syntax of DnesT modules is defined in
Fig. 3. Modules µ are written <T; V>{ι; d; ξ} with T and V being
generic type and term parameters, d being module scope identifier
declarations, including function definitions, and ι and ξ being im-
ports and exports. In Sect. 2 and elsewhere we use the keywords
import and export in module and module type definitions that
do not exist in the syntactic definition, but merely make explicit the
categorization of module elements.

All type parameters are assigned an upper bound, and term
parameters are explicitly typed. Imports and export types are se-
quences of imported and exported command type signatures. Ex-
ports are sequences of command definitions. Exports are defined
in terms of expressions e, the syntax of which we omit here for
brevity. Declarations d; are a sequence of typed variable declara-
tions. Base values, arrays (in brackets [| · |]), structs (in braces {·}),
and commands may all be declared, and the scope of declared vari-
able names is restricted to the module. Declarations are important
to include in DnesT, as they support serialization of value parame-
ters during Scalaness instantiation as we describe in Sect. 4.3.

While we have elided the specifics of DnesT syntax from this
shortened presentation, we now give a high-level summary of its
largely standard features. Expressions include standard C-like con-
ditional branching, looping, sequencing of expressions, function
calls, arrays, structs, numeric base datatypes and basic arithmetic
operations. As in nesC, no dynamic memory allocation is possi-
ble; all memory layout is established by static variable declarations.
DnesT disallows pointer arithmetic, to support stronger type safety
guarantees. Type casting and array access have run time checks im-
posed: types may never be cast to a pointer, and array accesses are
always checked to be in bounds at runtime. As in nesC, DnesT in-
cludes a post operation for posting tasks, although we make no
syntactic distinction between tasks and commands. The meaning
of post corresponds to the “run-to-completion” model of TinyOS
tasks. Interrupts are omitted from DnesT since they do not signifi-
cantly affect the typing issues we are concerned with here.

Module semantics A “runnable” module – one without imports
or generic parameters – is the DnesT model of a node OS image.
The declarations in the module defines a load sequence establishing

an initial machine configuration, and the application entry point is
defined in a required command main.

DEFINITION 3.1. A module of the form <∅;∅>{; d; ξ}, where
main() : uninit ∈ ξ, is called runnable.

This model is consistent with nesC, where an application is defined
as a top-level component that establishes an initial configuration
through variable declarations, and requires user definition of an
entry point (an event handler called Booted). Formally speaking,
type safety in nesT is a dynamic property of runnable modules.

3.2 Type Checking and Subtyping
The type system for DnesT combines a standard procedural lan-
guage typing approach with subtyping techniques adapted from
previous foundational work [13, 19].

At the heart of our system is a decidable subtyping judgment
T ` τ1 4 τ2, where T is a coercion and defines a system of upper
bounds for type variables. This establishes a subtype ordering on
base types, and also allows for width subtyping of records. The re-
lation is defined in Fig. 4. Algorithms for deciding the relation and
integrating it with dynamic type construction and other Scalaness
(stage 1) type features was a central topic of [19].

REFLS
T ` τ 4 τ

TOPS
T ` τ 4 >

TRANSS
T ` τ1 4 τ2 T ` τ2 4 τ3

T ` τ1 4 τ3

UINTS
T ` uint8 4 uint16 4 uint

STRUCTS
T ` τ1 4 τ3

T ` {l1 : τ1] l2 : τ2} 4 {l1 : τ3}

Figure 4. Subtyping Rules

The type checking algorithm for DnesT expressions is a combi-
nation of standard procedural type systems and standard subtyping
systems. Module typing is obtained by type checking module ex-
ports, using a coercion obtained from the module type parameters
and a typing environment obtained from a combination of module
value parameters, imports, and variable type declarations. A valid
module type checking judgement is written as:

<T,V>{ι; d; ξ} : <T,V>{ι; ε}

Where ε is just the type signatures of ξ, and each of the command
bodies in ξ is proven to respect its type signature.

EXAMPLE 3.1. The module authSend defined in Sect. 2 code line
9 can be assigned the following type in DnesT:

< mt 4 mesgT(uint); sendk : uint8[] >
{ import radio_x(mt*), export send(mt*) }

4. The Scalaness Language Distilled
Scalaness serves as the language for nesT module composition in
the same manner as nesC configurations serve to compose nesC
modules, but Scalaness is a much more powerful metalanguage
since modules are treated as a new category of first class values
in Scalaness. Instantiation, composition (aka wiring), and imaging
of modules are defined as operations on module values. Because
instantiation of modules with both types and values is allowed,
values and types may migrate from the Scalaness level to the nesT
level after programmatic refinement, realizing a disciplined form of
code specialization.

Our goal in this Section is to describe the Scalaness syntax
and semantics realized in our implementation. Since Scala is too

4 2013/6/14

L ::= class C〈X̄ <: N̄〉 extends N {T̄ f̄; K M̄} classes
K ::= C(T̄ f̄){super(f̄); this.f̄ = f̄; } constructors
M ::= T m(T̄ x̄){return e; } methods
e ::= x | e.f | e.m(ē) | new C〈T̄〉(ē) | (N)e | expressions

e.f = e | l | def x : T = e in e |
µ | en e | e〈ē; ē〉 | image e

T ::= X | N | T ◦ µτ types
N ::= C〈T̄〉 class types
l ::= (p, N) references

Figure 5. The Syntax of DScalaness

large to easily formalize, we define here a Distilled Scalaness,
DScalaness, that extends a core typed object-oriented language to
include syntax and semantics for defining and composing DnesT
modules. The particular object-oriented core calculus we use is
a combination of two Featherweight Java variants: Featherweight
Generic Java (FGJ) [16] and Assignment Featherweight Java (AFJ)
[26].

4.1 Syntax of DScalaness
The DScalaness language syntax is presented in Fig. 5. We refer
the reader to [16, 26] for details on the FGJ and AFJ object oriented
calculi, which are represented in the languages of class definitions,
constructors, methods, and the first line of expression forms defined
in Fig. 5. DScalaness extends these features with a typed variable
declaration form def x : T = e1 in e2 where the scope of x is e2, a
dynamic type construction form typedef x <: T = e1 in e2 with
similar scoping rules (although this is defined as syntactic sugar in
Definition 4.1), and several features for module definition and ma-
nipulation. First, we include DnesT modules µ in the DScalaness
expression and value spaces: instantiation is obtained via the form
e1〈ē1; ē2〉, where ē1 are type parameters and ē2 are value param-
eters. Wiring of modules is denoted e1 n e2. Imaging of modules,
denoted image e, ensures that e computes to a runnable DnesT
module.

Syntactic sugaring. The upper bound of x in any typedef of the
form typedef x = τ is implicitly τ , see for example radioT in
Sect. 2. A type of the form x(τ) in the scope of parameterized type
definition typedef x(t) = τ ′ is just an abbreviation for τ ′[τ/t],
see in particular mesgT in Sect. 2.

4.2 Semantics of DScalaness
The semantics of DScalaness is an extension of the semantics of
AFJ and FGJ to incorporate DnesT modules and operations. Com-
putations assume a fixed class table CT allowing access to class
definitions via class names, which always decorate an object’s type.
A store ST is a function from memory locations p to object rep-
resentations. Objects are represented in memory by lists of object
references l̄, which refer to the locations of the objects stored in
mutable field values. A reference l is a pair (p, N) where p is the
memory location of an object representation and N is the nominal
type of the object, including its class name. Hence, given an object
reference (p, C〈T̄〉), we can access and mutate its fields l̄ = ST (p),
and access and use its methods via the definition CT (C).

Following AFJ, the semantics of DScalaness is defined as a
labeled transition system, where transitions are of the form e−{s =
ST, s′ = ST ′} → e′. Intuitively, this denotes that given an initial
store ST and expression e, one step of evaluation results in a
modified store ST ′ and contractum e′. We write e → e′ as an
abbreviation when the store is not altered.

The primary novelty of DScalaness is the formal semantics
of type and module construction. We begin with type construc-
tion, which is provided to allow programmers to dynamically con-
struct module type instances. The appropriate behavior is obtained
by treating dynamically constructed types as extensions of a ba-
sic class of objects, and declarations of DnesT level types via a
typedef construct as syntactic sugar for ordinary object construc-
tion. We define a LiftableType class as the supertype of all types
of objects that can be used to instantiate a module, and dynamically
constructed types are defined as instances of a generic MetaType
class.

DEFINITION 4.1. Any DScalaness class table CT comprises the
following definitions:

CT (LiftableType) =
class LiftableType〈〉 extends Object {. . .}
CT (MetaType) =
class MetaType〈X <: LiftableType〉 extends Object {. . .}

And we take as given the following syntactic sugar:

typedef x <: T = e1 in e2 , def x : MetaType〈T〉 = e1 in e2

Class type MetaType is generalized on a single type variable. For
brevity of notation, we define:

MetaType〈T̄〉 , MetaType〈T〉
A crucial fact of DScalaness type construction is that any dynami-
cally constructed type cannot be treated as a type at the DScalaness
level. This is a more restrictive mechanism than envisioned in our
foundational model [19], however it allows us to define DScalaness
as a straightforward extension to Scala, especially in terms of type
checking.

Module instantiation is the only point where specialization of
DnesT modules is allowed. Since DScalaness and DnesT are two
different language spaces, some sort of transformation must occur
when values migrate from DScalaness to DnesT via module instan-
tiation. This lifting transformation involves both data mapping and
serialization since the process spaces also differ. We aim to be flex-
ible and allow the user to specify how values are lifted and how
types are transformed. We only require that lifting and type trans-
formation are coherent, in the sense that the lifting of an object
should be typeable at the object’s type transformation. We formal-
ize this in the following definition.

DEFINITION 4.2. We assume given a relation
lift
↪→ which transforms

a DScalaness reference l into DnesT declarations d and expression
e. We also assume given a DScalaness-to-DnesT transformation
of types J·K. To preserve type safety, we require in all cases that

(p, N)
lift
↪→ d, e implies both of the following for some type environ-

ment G:

∅,∅ ` d : G and G,∅ ` e : JNK

The full definition of serialization and an example are given and
discussed below in Sect. 4.3.

Module wiring is given a standard component composition se-
mantics. We only allow wiring of instantiated modules, which is
consistent with nesC and simpler to implement. In a wiring e1ne2,
the exports of e1 are wired to the imports of e2. This is specified in
the MODWIRE rule in Fig. 6, which relies on the following auxil-
iary definition of operations for combining mappings.

DEFINITION 4.3 (Special Mapping Operations). Letm range over
vectors with mapping interpretations, in particular T, V, ι, and
ξ. Binary operator m1 . m2 represents (non-exclusive) map
merge, i.e. m1 . m2 = m1@m2 with the requirement that
id ∈ Dom(m1) ∩ Dom(m2) implies m1(id) = m2(id). The

5 2013/6/14

MODINST
µ = <t 4 τ ;x : ς>{ι; d; ξ} serialize(x, ς, l̄) = d′

µ〈(p, MetaType〈T̄〉); l̄〉 → <>{ι; d′@d; ξ}[JT̄K/t]

MODWIRE
ι = (ι1/Dom(ξ2))@ι2 d = d2@ξ2 |Dom(ι1)

<>{ι1; d1; ξ1} n<>{ι2; d2; ξ2}→ <>{ι; d . d1; ξ1}

MODIMAGE
main defined in ξ

image (<>{; d; ξ})→ <>{; d; ξ}

Figure 6. DScalaness Module Semantics

mapping m/S is the same as m except undefined on domain el-
ements in set S, and the mapping m | S is the same as m except
undefined on elements not in S.

Finally, the MODIMAGE rule in Fig. 6 shows that imaging it is an
assertion requiring its arguments to be a runnable module.

EXAMPLE 4.1. Given code definitions in Sect. 2 and an invoca-
tion:

authSpecialize(50, radioM, [| k1, k2 |])
where radioM : radioT, and k1, k2 are keys, the evaluation of the
expression sendMn radioM〈mesgT(adt)〉 on line 24 will evaluate
to the following module:

< > (
{ import handle_radio_r(mesgT(uint8)*);

...;
export send(m : mesgT(uint8)*)

{ radio_x(AES_sign(m, k1)); } }

where the elided declarations include a definition of a com-
mand radio_x imported from radioM also with argument type
mesgT(uint8)*.

4.3 Serialization and Lifting
Serialization generates a flattened DnesT source code version of a
DScalaness object in memory. At the top level, serialization binds
the value parameters of a module to the results of flattening, aka
lifting, via a sequence of declarations. Here is the precise definition.

DEFINITION 4.4 (Serialization). Assume given a store ST which
is implicit in the following definitions. We define serialization of
DScalaness references as follows, along with an extension of the
user defined lifting relation to sequences of references:

l
lift
↪→ d, e

serialize(x, τ , l) = d@ τ x = e
∅

lift
↪→ ∅,∅

l
lift
↪→ d, e l̄

lift
↪→ d′, e

ll
lift
↪→ d@d′, ee

Although lifting is user defined, a standard strategy is to introduce
a new declared variable for each memory reference in the lifted
object, and bind the variable to the lifted referent. Hence, lifting
will typically be defined recursively. In our implementation, we
have adapted a “default” lifting which follows this strategy, and
also transforms objects by just transforming the fields into a repre-
sentative struct, and ignoring methods. We will illustrate this with
an example in Sect. 6. We can formally capture the essence of this
transformation with the following definitions. It is easy to see that
these definitions will satisfy the requirements of Definition 4.2.

EXAMPLE 4.2. In this example we allow lifting of any object ref-
erences, and transform the object o into a structure containing the
transformed fields of o. Methods are disregarded by the transfor-
mation. Here is the specification of the type transformation:

CT (C) = class C〈X̄ <: S̄〉 extends N {R̄ f̄; K M̄}
JC〈T̄〉K = {f : JR̄[T̄/X̄]K}

and here is the specification of lifting.

ST (p) = l̄ fields(C) = T̄ f̄ l̄
lift
↪→ d, e x fresh

(p, C〈R̄〉)
lift
↪→ d@(JC〈R̄〉K x = {f = e}), x

4.4 DScalaness Type Checking
The primary novelty of DScalaness are the rules for DnesT module
typing and composition, and that is the focus of this section. We
adopt the typing rules of FGJ in their entirety, and refer the reader
to [16] for relevant details.

DScalaness syntax for expressing DnesT module types is T◦µτ ,
where µτ is a DnesT module type. The T in this form represents
the type bounds of dynamically constructed types that have been
used to instantiate the module; we refer to this part of the type
as the instance coercion. Because these types are dynamically
constructed, their identity is not known statically, hence the need to
treat them as upper-bounded type names in the static type analysis.
This subtle technical point of our type system is discussed at more
length in Sect. 5. It is important to note that the type names in T
will be fully resolved at run time, so that any module generated
by a DScalaness program execution will have a fully reified DnesT
type.

This is reflected in the MODT rule in Fig. 7, which connects
the DnesT typing system with the DScalaness type system. Since
in this case we are typing an uninstantiated module definition
its instance coercion is empty. An instance coercion in a module
type is directly populated when a module is instantiated, as in the
MODINSTT rule. Here, the type instances ē1 are all dynamically
constructed, so they define the upper bounds of the instantiated
module’s instance coercion. We also expect all type and value
parameters to respect the typing bounds specified in the module
definition. The MODWIRET typing rule for module wiring is a
straightforward reflection of the operational rule for module wiring,
as is the MODIMAGET rule for module runnability imaging.

EXAMPLE 4.3. Returning to the code and type examples in Sect. 2,
we may assign the following typing:

G ` authSpecialize(50, radioM, [| k1, k2 |]) : commT

Given radioM : radioT, k1 : uint8[], k2 : uint8[] ∈ G.

5. Scalaness/nesT Foundations
The Scalaness/nesT type system design is based on principles stud-
ied in the foundational calculus 〈ML〉2 [19]. 〈ML〉 comprises F≤,
state, dynamic type construction, and staging features. In this sec-
tion we describe how the design of modules and module operations
in Scalaness can be modeled in 〈ML〉. Although the correspon-
dance is informal, these models directed the design of Scalaness
semantics and type checking, and provide confidence in its sound-
ness. While our choice of modules as the basic unit of nesT code is
based on obvious software engineering concerns and the need for a
tight relation with nesC, Scalaness modules are well correlated with
certain structures in 〈ML〉 and so are also technically appealing.

2 Pronounced “framed ML”.

6 2013/6/14

MODT
µ : µτ in DnesT type checking

Γ ` µ : ∅ ◦ µτ

MODIMAGET
Γ ` e : T ◦<>{ι; ε} main() : τ ∈ ε

Γ ` image e : T ◦<>{ι; ε}

MODINSTT
Γ ` e : ∅ ◦<t 4 τ1;x : τ2>{ι; ε} Γ ` ē1 : MetaType〈T̄1〉

Γ ` ē2 : T̄2 ` JT̄1K 4 τ1 ` JT̄2K 4 τ2

Γ ` e〈ē1; ē2〉 : t 4 JT̄1K ◦<>{ι; ε}

MODWIRET
Γ ` e1 : T1 ◦<>{ι1; ε1}

Γ ` e2 : T2 ◦<>{ι2; ε2} ι = (ι1/Dom(ε2))@ι2

Γ ` e1 n e2 : T1 . T2 ◦<>{ι; ε1}

Figure 7. DScalaness Module Typing Rules

The model of a module. Code as a datatype is available in 〈ML〉
as expressions of the form 〈e〉. While code as a datatype is a stan-
dard feature of staged/generative programming, 〈ML〉 has adapted
staged programming to a setting where different code levels are
intended for execution on different machines with distinct process
spaces. In particular, values, including code values, must be closed.
If a type or term variable occurs free in 〈e〉, it must be Λ or λ
bound, respectively, for closure. Hence, if a type variable t is free
in 〈e〉, then Λt 4 τ.〈e〉 binds it, and provides parametric subtyping
polymorphism for 〈ML〉 terms.

If the term variable x is free in 〈e〉, then λx : τ.〈e〉 binds it.
Furthermore, the type τ in the term λx : τ.〈e〉 must be of the form
〈ς〉, because the type discipline requires that x is of code type, since
it occurs within code. If the programmer wishes to pass a value
residing at the current execution stage to such a function, it must
be explicitly “lifted” in the now-standard style of [31]. However, in
〈ML〉, lifting a value entails serialization of it, which is non-trivial
in case the value is stateful.

We use 〈ML〉 type and term bindings to model Scalaness type
and term parameters. This is a standard strategy, in fact FGJ typing
[16] is based on it as well. Hence the basic analog of a module is:

Λt 4 τ.λx : 〈ς〉.〈e〉
where t is a bounded type parameter and x is a value parameter.

The model of instantiation. Most of the interesting parts of
Scalaness typing happen at instantiation. Given the above model
of a module, the 〈ML〉 analog of instantiation is a term of the form:

(Λt 4 τ.λx : 〈ς〉.〈e〉)(τ ′)(lift v)

where all parameters are instantiated. Note in particular that the
value parameter v must be explicitly lifted, since the model must
reflect that values passed in to modules are always constructed
at the first stage in a Scalaness program. This means that v must
be assumed to not be a code value, while the type annotation on
x requires that it be lifted. There is no explicit lift operation in
Scalaness, but the DSCalaness semantics (Fig. 6) specifies that
serialization is always implicit at module instantiation. Scalaness
typing of instantiation thus treats value instantion as λ application
with implicit lifting of the argument, and type instantiation as Λ
application, i.e. a form of bounded ∀-elimination.

Type construction and variable escape. A central technical nov-
elty and core feature of DScalaness is dynamic type construction
for module instantiation. As we discussed in Sect. 2, this feature

is technically challenging since constructed types can escape their
scope of declaration. Similarly, in 〈ML〉, types may be dynamically
constructed that can escape their declaration scope, in particular if
they are used as function type annotations. An ∃ type binder was
introduced in 〈ML〉 for this purpose; intuitively a type of the form
∃t 4 τ.ς is a type containing a dynamically constructed type term
t with upper bound τ . 〈ML〉 includes a “tlet” expression form for
constructing types, so for example:

tlet t 4 uint16 = if e then uint8 else uint16 in (λx : t.x)

:

∃t 4 uint16.t→ t

Here a type t is dynamically constructed to be either uint8 or
uint16, and then used in the type annotation of a type-specialized
identity function. Furthermore, t escapes its declaration scope since
it annotates a function argument. Since e is some arbitrary compu-
tation, we cannot statically predict what t will be, other than “some
type with upper bound uint16”. Note also that since t can appear
in contravariant positions, it is unsound to perform a covariant sub-
stitution of uint16 for t, so the ∃ bound is needed. Although this
usage of ∃ types is somewhat non-standard, an egenvariable inter-
pretation of the bound type variable is sound and also consistent
with standard existential type interpretations.

Inspired by these foundations, in DScalaness the type form:

T1 ◦<T2; V>{ι; ε}
captures the same typing mechanisms, in particular the instance
coercion T1 is the analog of ∃ bound type variables, in contrast to
the type parameters T2 which are implictly ∀ bound, as discussed
above. The static semantics of T1 and T2 are distinguished appro-
priately, especially in the treatment of the typing rules for module
instantiation and module wiring in Fig. 7.

6. Implementation
Scalaness is implemented as a modification to the open source
Scala compiler. Although the Scala compiler supports a plug-in
architecture, Scalaness is not implemented as a plug-in since the
needed modifications to the type checker can only be made by
direct modification of the compiler code. In addition to static type
checking, runtime support is needed to support Scalaness module
operations. Also, facilities are required to read nesT modules from
the file system and parse them into ASTs, and to write TinyOS
image source code files defined by constructed nesT modules at
image invocations.

6.1 Online Repository and Examples
The Scalaness/nesT compiler and several code examples are avail-
able for download from a GitHub repository, accessible via an in-
formative webpage at the following URL:

http : //tinyurl.com/a85z8cu

The examples include code for applications discussed in Sect. 2 and
Sect. 7.

6.2 nesT Type Checking and Program Transformation
The nesT language is treated by two major components in the
implementation, the type checker and the nesT-to-nesC rewriting
transformation. The nesT type checker was written from the ground
up, in contrast to Scalaness type checker which was defined as an
extension to the Scala type checker. The rewriting transformation
yields TinyOS2-compliant source code, which can be separately
compiled.

The nesT language is defined as a subset of the nesC language.
An AST yielded by parsing is type checked by our algorithm, which

7 2013/6/14

incorporates subtyping and other features not present in nesC type
checking. This algorithm is a nearly direct encoding of the type
discipline described in Sect. 3. Following type checking, the AST
is submitted to a rewriting transformation that imposes semantic
disciplines discussed in Sect. 3, in particular type safe casting and
array bounds checks, also in nesC. For example, a statement of the
form x = a[e] will be rewritten to:

int _x = e; if (_x >= a_SIZE) fail(); x = a[_x];

where a_SIZE is an automatically generated variable containing
the size of a and fail is some user-defined function that handles
array bounds check failure.

Source code for nesT module definitions is written in separate
files that are included in Scalaness code, as discussed below. This
separation is mainly for software engineering purposes, since we
imagine that module definitions will be reused in various Scalaness
programs.

6.3 Scalaness Module Language Syntax
In order to limit modifications of the Scala compiler and reduce en-
gineering problems in our implementation, we have avoided modi-
fying Scala syntax to represent Scalaness features. Hence, modules
are represented as class instances, which must satisfy the following
trait:

trait NesTModule {
def image(): Unit // Generates residual nesC program.
def +>(m: NesTModule): NesTModule // Wires this to m.

}

This trait is implemented by a NesTModule class that provides the
appropriate semantics for wiring and TinyOS image generation, in-
cluding translation to nesC and file output. This class also manages
parsing and storage of nesT ASTs from source code files, and type
checking of nesT ASTs.

Any nesT module definition is a subclass of NesTModule. Some
subtleties are involved in supporting first class generic modules.
Instantiation is implemented by method call, but since type and
value parameters vary per module, particular modules must define
their own parameters and instantiation methods. For example, we
would represent the authSend component definition from Sect. 2,
line 9 as follows:
class authSend extends NesTModule {

var mt : MetaType[LiftableType] = _
var sendk : LiftableType = _
def instantiate(m: MetaType[LiftableType], k: LiftableType) =
{ val result = new nodeC; result.mt = m; result.sendk = k }

"authSend.nt"
}

Although the instantiate method and parameter fields must be
defined in the implementation at the time of this writing, compiler
generation of these definitions is a topic for future work; any mod-
ules instantiate method can be easily inferred from its type anno-
tation. Note that the types at which parameters are declared are as
general as possible (e.g. s and n are not declared as uints but as
LiftableTypes. This is because class definitions support the se-
mantics of Scalaness, not Scalaness type checking (discussed be-
low), and declaring generic parameters at a maximally general type
removes interference related to Scala type checking. Finally, note
the string literal ′′nodeC.nt′′ at the end of the definition. This is the
file containing the nesT source code definition of the module. The
Scala compiler has been modified to input and parse the specified
source code when this literal is encountered during the Scala type
checking phase.

6.4 Type Annotation and Checking
Scalaness typing relies on native Scala syntax for terms, specifi-
cally Scala annotations and singleton types are utilized. Scala an-

notations allow metadata to be associated with definitions. A mod-
ule type annotation is of the form @ModuleType(”µτ”), where
µτ is defined using the syntax of Fig. 3. The compiler-defined
ModuleType class automatically associates the type with the iden-
tifier immediately following it. In the case of module class defi-
nitions, the type is assigned as a class field. In the case of vari-
able definitions, the type (in string literal form) is assigned as a
Scala singleton type of the object. For example, the declaration of
authSend on line 9 in as in Sect. 2 would be preceded by such
an annotation where µτ is the type specified in Example 3.1, and
sendM as on line 22 would be annotated with an instance of that
type. Similarly, annotations are required on method parameter and
result types, if those methods expect nesT modules as arguments or
return them, as for the radioC parameter of the authSpecialize
method defined in Sect. 2, and the method’s commT return type.
These requirements reflect the type discipline in Scalaness as spec-
ified in Sect. 4, which requires module type annotations at these
points.

Scalaness type checking has been implemented as an analysis of
these annotations during Scala type checking, piggybacking on that
process. When type checking a class that extends NesTModule, the
compiler uses its type annotation to perform nesT type checking
on the underlying AST representation of the module. When type
checking module operations (i.e. at invocations of instantiate,
+>, or image), the Scala compiler has been modified to examine
operand types for Scalaness type annotations, and to decorate re-
sultant singleton types of these operations with new Scalaness an-
notations, reflecting the typing rules in Fig. 7. A type checking ex-
ception is raised in case this analysis fails. Scalaness type checking
does not modify Scala type checking in any other way, so it is a
conservative extension of Scala typing.

6.5 Importing nesC Libraries
Our preliminary experiments with nesT show that it is expressive
enough to write useful program components. However, any realis-
tic application will need to interact with various libraries written
in nesC. One library of critical importance is the TinyOS operat-
ing system itself. Our current solution is to allow non-generic nesC
components to be treated as nesT modules as long as they only use
or provide commands, which are interpreted as nesT imports and
exports. Support for specializable generic nesC library components
is a topic for future work. Events can be accessed through “shim”
modules provided by the user, since used or provided events are
really just syntactic sugar for provided or used commands respec-
tively. A library component defined in a file LibraryC.nc can be
defined as a nesT module as follows:

object LibraryC extends NesCModule { external("LibraryC.nc") }

Note that nesC code imported in this way is not type checked by
the Scalaness/nesT compiler, since nesT is a strict subset of nesC.
Rather, the programmer type annotates the shimmed module using
a @ModuleType annotation as for other module definitions, and
the compiler trusts that the annotation is correct. This introduces
a possibility for type safety failure in our system, if the imported
code contains a type error. A possible long term goal would be a
complete re-write of TinyOS in nesT, yielding full type safety of
all sensor code, but this is well beyond our current scope.

7. Application Example: Staged Authorization
and Access Control

In [5] the SpartanRPC architecture for link-layer resource autho-
rization in TinyOS-based WSNs is developed (as an extension of
[4]). In SpartanRPC, resources are accessed by link-layer remote
procedure calls (RPC) which require authorization for use. Users

8 2013/6/14

Figure 8. Staging Authorization and Authorized Access in a
Multi-Domain WSN.

are authorized by communicating credentials to the provider, ex-
pressed in an authorization logic based on RT [17] and imple-
mented using TinyECC [18] public key signatures. SpartanRPC
supports an “open world” security model, allowing WSNs in dif-
ferent security domains to interact without sharing secrets a priori.
However, public key encryption and signature verification is very
expensive in a WSN: a single signature may take several minutes
to verify. Hence, session keys are negotiated for ongoing resource
access (using a TinyECC-based Diffie-Hellman protocol).

In this section we describe a re-implementation of the Spartan-
RPC protocol in Scalaness/nesT that addresses several shortcom-
ings of SpartanRPC, and will thus serve to illustrate the power of
Scalaness/nesT. The central idea, illustrated in Fig. 8, is that respon-
sibility for authorization on the basis of public key credentials is
offloaded from the WSN to a Scalaness program running on a hub
device or lab computer. We assume a WSN comprising two sub-
networks under control of distinct security domainsA andB. Each
domain also controls a lab or hub device which is in communication
with WSN nodes in their domain, either prior to or during deploy-
ment. These devices are in communication with each other over the
Internet, and exchange authorization credentials for their domain
over that medium in the first-stage Scalaness program. Each de-
vice then confirms authorization for resource access according to
their own domain’s policies, and subsequently they negotiate ses-
sion keys over the Internet. These keys are then used to specialize
nesT code for imaging on WSN nodes. The overall architecture
of this application represents a concrete realization of the ideas of
Fig. 1, and also expands on and implements the idealized example
presented in Sect. 2.

Note that our current implementation assumes nodes are pro-
grammed in the lab since we have yet to implement a secure OTA
program dissemination library; the Deluge protocol has a secure
OTA reprogramming extension [9] that we plan on using to guar-
antee code dissemination is itself secure.

Evaluation on Snowcloud To empirically evaluate the staged
implementation of SpartanRPC in Scalness/nesT, we have imple-
mented and tested both the original SpartanRPC as well as the
Scalaness/nesT staged version in our deployed Snowcloud WSN
system architecture. Mobile gateway devices as pictured in Fig. 2
are provided to Snowcloud system users for data gathering, and are
also used by system administrators for controlling sampling rates.
The hardware both of these so-called “harvester” devices, the same
for users and administrators, is equipped with a mote for establish-
ing network communication. When the device is introduced to the
sensor network, the two together comprise a single network with
two distinct security domains – the sensor node subnetwork, and

the subnetwork of the single device mote. The mote on harvester
devices provided to system users is supplied with credentials for
collecting data, but not modifying network control, whereas system
administration harvester motes are supplied with stronger creden-
tials for both functions.

The original and Scalaness/nesT versions of this application can
be compared both in terms of performance and user experience. In
the unstaged version, the SpartanRPC protocol requires an initial
network configuration period when credentials are exchanged and
verified. Since a single TinyECC signature requires at least 90
seconds to verify on the Crossbow TelosB platform [5] with a
fully dedicated processor, there is an initial network “warmup”
period of at least a few minutes. Also, in the unstaged version,
upon first invocation of an RPC service Diffie-Hellman is used
in the network to negotiate a session key. In the staged version,
credential exchange, validation, and session key negotiation are all
performed on the high-powered hub. For this reason, mote code
size in ROM is significantly reduced. There are differences in
RAM usage as well, due to authorization overhead in the unstaged
version and also the storage of key material in RAM vs. ROM, since
specialization of code with key material in the staged version allows
the latter. Note that this difference is intensified by scale and the
number of keys (i.e. RPC services) needed by an application. Lower
RAM and ROM usage can have significant performance impacts
on deployed code. In the following table we summarize RAM and
ROM usage for the harvester and sensor node images for three
software versions: one with no security mechanisms in place, one
with unstaged SpartanRPC protocols in place, and one generated
by Scalaness evaluation in our staged version of the SpartanRPC
protocol.

Unsecured Unstaged Staged Savings

Sensor: ROM 36254 48616 36596 25%
RAM 2868 5417 3038 44%

Harvester: ROM 24316 35834 24436 32%
RAM 2274 4771 2402 50%

The “Savings” are the percent reduction from unstaged to staged
secure implementation, and these numbers show the potential for
saving both RAM and ROM space is significant. From the per-
spective of user experience, the staged version of this application
is more convenient, since no initial authorization period is needed
when the harvester is first introduced to the network. The staged
version also exposes the system to fewer bugs and failures that
would be obstacles to the primary goal of data collection.

8. Conclusion
We have introduced Scalaness/nesT, a two stage programming sys-
tem for wireless sensor networks. Our system provides a powerful
programming environment for dynamically specializing and com-
posing nesC modules in a type safe way; any type correct Scalaness
program will generate only type correct residual programs.

8.1 Related Work
We do not review the broader topic of sensor network programming
here; the reader is referred to [27] for a broader perspective.

We follow the foundational 〈ML〉 work in our language design
[19]; Sect. 5 discusses how it serves as the theoretical underpinning
of our approach. The primary aim of this work is to make the
theoretical insights of 〈ML〉 more practical. We accomplish this
by making a sensor language nesT that is based on the design of
nesC, and by implementing Scalaness and nesT and testing the
framework on examples.

The potential of applying metaprogramming to sensor networks
was explored in the functional sensor language Flask [23]. The

9 2013/6/14

main motivation for designing Flask was to allow FRP-based
stream combinators to be pre-computed before network deploy-
ment. The Flask designers did not focus on computing precise
types for the object stage code at the meta stage, so cross-stage
static type checking is not performed – it is possible to generate
ill-typed Flask object code. Hume [15] is a DSL for real-time em-
bedded device programming. It includes a metaprogramming layer
but that layer is more like nesC’s configuration files in that there is
a very restricted syntax for a few special metaprogramming opera-
tions including component wiring, macros, and code templating.

MetaML [30, 31] and MetaHaskell [22] have each been pro-
moted as effective foundations for embedded systems program-
ming with type safety, but neither addresses type specialization
or dynamic type construction. MetaHaskell does support hetero-
geneous language staging, the lower stage language is defined by a
plug-in and several instantiations have been defined including one
for a low-level C-like language.

Actor based sensor metaprogramming has been studied in [6];
this work shares our focus on high level dynamic reprogramma-
bility but is untyped. More broadly, meta programming is known
to be useful for increasing the efficiency of systems applications.
One example is Tempo [8], a system that integrates partial eval-
uation and type specialization for increasing efficiency of systems
applications. Ur [7] allows for type safe meta programming for web
applications.

The units of staged code composition in nesT programming
are modules. Countless different module systems exist, but they
are primarily designed to achieve separate compilation and sound
linking [2]. Our different design goal leads to different design
choices in nesT modules. For example, data crossing nesT module
boundaries needs to conform to the property of process separation,
a non-issue in standard module system designs. In addition, nesT
modules allow values/types across the boundary of modules to be
flexibly constructed, including dynamic construction of types, to
achieve maximal flexibility of cross-stage specialization. Module
systems such as ML modules [20] and Units [10] allow types to be
imported/exported as we also support; there are several features of
ML modules including type hiding that we do not aim to support.
nesT modules are more expressive in their support of first class
modules as values and the possibility of dynamic construction of
“type exports.” That said, first class modules are not new [1, 24],
we only claim novelty in their application to program staging and
the incorporation of dynamic type construction.

The type parametricity of System F and F≤ [3], and the practical
type systems it inspired such as Java’s generics, do not treat types
as first class values as we do. C++ templates support types as meta
values in template expansion, but type safety of generated code
is not guaranteed without full template expansion. Concepts [14]
improves on this, but types are still not first class values.

References
[1] D. Ancona and E. Zucca. A calculus of module systems. Journal of

functional programming, 11:91–132, 2002.
[2] Luca Cardelli. Program fragments, linking, and modularization. In

POPL, pages 266–277, 1997.
[3] Luca Cardelli and Peter Wegner. On understanding types, data abstrac-

tion, and polymorphism. ACM Comput. Surv., 17(4):471–523, 1985.
[4] Peter Chapin and Christian Skalka. SpartanRPC: Secure WSN mid-

dleware for cooperating domains. In MASS, November 2010.
[5] Peter Chapin and Christian Skalka. Technical report, University of

Vermont, In submission, 2013.
http://www.cs.uvm.edu/~skalka/skalka-pubs/
chapin-skalka-spartanrpctr.pdf.

[6] Elaine Cheong. Actor-Oriented Programming for Wireless Sensor
Networks. PhD thesis, University of California, Berkeley, 2007.

[7] Adam Chlipala. Ur: Statically-typed metaprogramming with type-
level record computation. In PLDI, 2010.

[8] C. Consel, L. Hornof, R. Marlet, G. Muller, S. Thibault, E.-N. Volan-
schi, J. Lawall, and J. Noyé. Tempo: specializing systems applications
and beyond. ACM Comput. Surv., page 19, 1998.

[9] Prabal K. Dutta, Jonathan W. Hui, David C. Chu, and David E. Culler.
Securing the deluge network programming system. In IPSN, pages
326–333, 2006.

[10] Matthew Flatt and Matthias Felleisen. Units: Cool modules for HOT
languages. In PLDI, 1998.

[11] Jeffrey Frolik and Christian Skalka. Technical report, University of
Vermont, 2013.
http://www.cs.uvm.edu/~skalka/skalka-pubs/
frolik-skalka-snowcloudtr.pdf.

[12] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer,
and David Culler. The nesC language: A holistic approach to net-
worked embedded systems. In PLDI, 2003.

[13] Giorgio Ghelli and Benjamin Pierce. Bounded existentials and mini-
mal typing. Theoretical Computer Science, 193(1-2):75 – 96, 1998.

[14] Douglas Gregor, Jaakko Järvi, Jeremy G. Siek, Gabriel Dos Reis,
Bjarne Stroustrup, and Andrew Lumsdaine. Concepts: Linguistic
support for generic programming in C++. In OOPSLA, 2006.

[15] Kevin Hammond and Greg Michaelson. Hume: A domain-specific
language for real-time embedded systems. In Conference on Gener-
ative Programming and Component Engineering (GPCE), pages 37–
56. Springer-Verlag, 2003.

[16] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Feather-
weight Java. ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001.

[17] Ninghui Li and John C. Mitchell. RT: A role-based trust-management
framework. In Proceedings of the 3rd DARPA Information Survivabil-
ity Conference and Exposition, pages 201–212, 2003.

[18] An Liu and Peng Ning. Tinyecc: A configurable library for elliptic
curve cryptography in wireless sensor networks. In IPSN, pages 245–
256, 2008.

[19] Yu Liu, Christian Skalka, and Scott Smith. Type-specialized staged
programming with process separation. Higher-Order and Symbolic
Computation, pages 341–385, 2011.

[20] D. MacQueen. Modules for Standard ML. In Proceedings of ACM
Conference on Lisp and Functional Programming, 1984.

[21] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei
Hong. TAG: a Tiny AGgregation service for ad-hoc sensor networks.
SIGOPS Oper. Syst. Rev., 36(SI):131–146, 2002.

[22] Geoffrey Mainland. Explicitly heterogeneous metaprogramming with
MetaHaskell. In ICFP, 2012.

[23] Geoffrey Mainland, Greg Morrisett, and Matt Welsh. Flask: staged
functional programming for sensor networks. In ICFP, 2008.

[24] John Mitchell, Sigurd Meldal, and Neel Madhav. An extension of
standard ML modules with subtyping and inheritance. In POPL, 1991.

[25] C. David Moeser, Mark Walker, Christian Skalka, and Jeff Frolik.
Application of a wireless sensor network for distributed snow water
equivalence estimation. In Western Snow Conference, 2011.

[26] Thomas Molhave and Lars H. Petersen. Assignment Featherweight
Java. Master’s thesis, University of Aarhus, 2005.

[27] Luca Mottola and Gian Pietro Picco. Programming wireless sensor
networks. ACM Computing Surveys, 43:19:1–19:51, April 2011.

[28] George C. Necula, Scott McPeak, and Westley Weimer. Ccured: type-
safe retrofitting of legacy code. In POPL, 2002.

[29] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala,
second edition. Artima, Inc, 2011.

[30] Walid Taha. Resource-aware programming. In ICESS, pages 38–43,
2004.

[31] Walid Taha and Tim Sheard. Multi-stage programming with explicit
annotations. In PEPM, pages 203–217, 1997.

[32] Rebecca Willett, Aline Martin, and Robert Nowak. Backcasting:
adaptive sampling for sensor networks. In IPSN, pages 124–133, 2004.

10 2013/6/14

