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Abstract

Infrastructure for the automatic collection of single-point measurements

of snow water equivalent (SWE ) is well-established. However, because SWE

varies significantly over space, the estimation of SWE at the catchment scale

based on a single-point measurement is error-prone. We propose low-cost,

lightweight methods for near-real-time estimation of mean catchment-wide

SWE using existing infrastructure, wireless sensor networks, and machine

learning algorithms. Because snowpack distribution is known to be highly

nonlinear, we focus on genetic programming (GP), a nonlinear, white-box,

inductive machine learning algorithm.

Because we did not have access to near-real-time catchment-scale SWE

data, we used available data as ground truth for machine learning in a set of

experiments that are successive approximations of our goal of catchment-wide

SWE estimation.

First, we used a history of maritime snowpack data collected by manual

snow courses as our ground truth estimate of mean catchment SWE . Second,
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we used distributed snow depth (HS ) data collected automatically by wire-

less sensor networks. Thus HS served as an alternative to SWE . Because

HS variability is significantly greater than density variability, the primary

requirement for estimating SWE over an area is an understanding of HS .

We compared the performance of GP against linear regression (LR), binary

regression trees (BT), and a widely used basic method (BM) that naively

assumes non-variable snowpack. In the first experiment set, GP and LR

models predicted SWE with lower error than BM. In the second experiment

set, GP had lower error than LR, but outperformed BT only when we applied

a technique for determining training and testing datasets that specifically

mitigated the possibility of over-fitting.

Keywords: snow water equivalent, machine learning, wireless sensor

network, snowpack modeling, genetic programming

1. Introduction1

There has been extensive research on techniques for measuring and model-2

ing snowpack because it affects many hydrological, atmospheric, and biological3

processes (Tappeiner et al., 2001). The accurate estimation of snowpack at the4

catchment scale is useful in many applications, including agricultural planning,5

metropolitan use, flood risk evaluation, planning of hydropower production6

potential, weather forecasting, and climate monitoring (Marofi et al., 2011;7

Schmucki et al., 2014). More than 1/6 of people globally depend on snowpack8

for water supplies (Bales et al., 2006), and in the western United States the9

majority of surface water resources is derived from snowpack (Serreze et al.,10

1999). However, snowpack has declined across much of the US over the last11
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half-century (Pierce et al., 2008). The current severe drought in California,12

with record low snowpack measurements, threatens water supplies throughout13

the state (Boxalla, 2014) and highlights the importance of snowpack research.14

Snowpack both influences climate and responds directly to climate change15

(Engeset et al., 2004). While climate change warrants increased snowpack16

monitoring, existing techniques perform poorly under extreme climatic condi-17

tions (Molotch et al., 2005; Balk and Elder, 2000), and it has been argued that18

the stationarity of hydrological processes can no longer be assumed (Milly19

et al.). Furthermore, high costs of data gathering constrain the temporal and20

spatial granularity of estimation methods. New techniques are needed.21

We propose new low-cost techniques for modeling snowpack using machine22

learning algorithms, especially genetic programming. These algorithms use23

data gathered from existing sensor infrastructure, and possibly short-term24

deployments of wireless sensor networks. The manipulation of large data sets25

in order to gain insight into snow accumulation, melt, and runoff has been26

highlighted as a necessary next step in mountain hydrology (Dozier, 2011).27

The long-term, overarching goal of our research project is to achieve better28

near-real-time (NRT), estimation of SWE at the catchment scale. By NRT,29

we mean automated reporting at fine-grained timescales, for example hourly.30

By better, we mean more accurate estimation without significantly increased31

infrastructure cost. Our strategy is to generate snow telemetry datasets using32

short-term, low-cost field campaigns that can be used by machine learning33

algorithms to generate snowpack models. Following field campaigns and the34

termination of associated measurement techniques, these models can be used35

for NRT SWE estimations with no new instrumentation overhead.36
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The key idea behind our approach is that machine learning models are37

able to induce mathematical relationships between input variables and some38

sort of “ground truth”, given adequate training datasets. The machine39

learning method we emphasize is genetic programming (GP), which generates40

equations relating a dependent variable to some set of independent variables.41

Machine learning draws connections between input parameters and an output42

value, if such exist, on the basis of the ground truth data it is provided.43

In our case, we argue that if we obtain multiple years of “true” average44

SWE for a catchment, machine learning will be able to induce a meaningful45

mathematical relation between telemetry, such as proximal snow pillow read-46

ing(s), and true average SWE . Then, in years when true average SWE is not47

available, inputs such as snow pillow readings can be translated into average48

SWE estimates for the catchment. This approach assumes interannual conti-49

nuity in snow distributions over a catchment, which has been demonstrated50

by previous research (Scipión et al., 2013; Tappeiner et al., 2001; Schirmer51

et al., 2011).52

Thus, the ideal we aim for is a generally applicable technique for inducing53

models that take as input parameters existing infrastructure NRT telemetry,54

such as snow pillow readings, meteorological data, and date/time informa-55

tion, and output accurate estimates of mean catchment SWE . This would56

allow more accurate SWE estimation to be provided without additional cost57

beyond that of the initial field campaign for obtaining a ground truth dataset58

(Figure 1).59

Several theoretical and practical challenges exist on the way to achieving60

this goal. The purpose of this paper is to address them and make progress in61
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three particular ways.62

First, we explore the issue of what sort of machine learning approaches63

are best in this context. In general, we argue that techniques that are able to64

learn nonlinear relationships are needed due to the known non-linear nature of65

snow distribution in alpine environments (Tappeiner et al., 2001; Marofi et al.,66

2011). We also argue that so-called white-box tools are best, since these can67

provide physical insights for scientists (Schmidt et al., 2011). Furthermore,68

we emphasize resiliency against over-fitting, which is especially important69

given that the datasets available for machine learning may be relatively small.70

Second, we investigate what sort of input parameters should be used by71

SWE estimation models, especially in light of practical concerns, i.e. available72

telemetry and datasets. In fact, we have learned that availability of data73

is a key issue in this effort, and defines what is possible. We acknowledge74

the importance of terrain effects in determining snowpack distribution, in-75

fluencing both accumulation and ablation patterns (Winstral et al., 2013;76

Fassnacht et al., 2003; Marks et al., 1999). However, because we were unable77

to precisely geolocate the key snow sensors that we used with respect to78

topographic maps, we did not include topographic data as explicit inputs to79

our models. We emphasize the flexibility of inductive machine learning, which80

can accommodate arbitrary new input modalities. Only those that are pre-81

dictive of the dependent variable of interest will be significantly incorporated82

into the generated models. In this paper we focus on several potential snow83

telemetry and meteorological inputs in order to demonstrate the applicability84

of our techniques to catchment-scale SWE estimation, while considering the85

potential for future work to explore other inputs such as topographic data.86
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Third, we grapple with the issue of ground-truth for catchment-scale SWE87

and usable datasets. Constraints on our goal were imposed by the availability88

of snowpack data for the training and evaluation of machine learning models.89

We are not aware of catchment-wide SWE datasets with sufficiently fine time90

granularity to support our ideal scenario. Although datasets such as those91

provided by the Cold Land Processes Field Experiment (National Snow &92

Ice Data Center) and numerous others provide catchment-scale snowpack93

measurements, their time granularity is on the order of several months at least.94

Airborne techniques in general are cost-prohibitive for real-time reporting95

(Bühler et al., 2011). Although satellites are used to measure snow-covered96

area and albedo (Dozier and Painter, 2004), satellite retrievals of SWE97

are not feasible. Manual snow courses provide better temporal resolution98

than airborne methods (e.g. biweekly) but at low spatial resolution: snow99

courses measure SWE at a single location. We emphasize the Snowcloud100

wireless sensor network, which measures HS (an effective predictor of SWE )101

in NRT (e.g.. hourly) at multiple locations distributed over an area of interest.102

However, this technology is new, and available data collected by Snowcloud103

deployments is limited.104

2. Background and contributions105

Here we briefly define and summarize the machine learning methods used106

in this work. These techniques are described in more detail, with special107

emphasis on GP, in Section 4. The basic method (BM) assumes the spatial108

homogeneity of SWE . It naively estimates mean catchment-wide SWE to109

be the same as the single-point SWE measurement taken at a snow pillow.110
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Linear regression (LR) fits a least-squares linear model to training data111

(Hastie et al., 2009). The prediction is a weighted linear combination of the112

input variables. Binary regression trees (BT) are nonlinear models which are113

generated using training data (Hastie et al., 2009). A BT model partitions a114

set of predictions according to the input variables such that a given set of115

input values results in a specific prediction. Genetic Programming (GP) is a116

symbolic regression algorithm that uses training data to iteratively improve a117

population of nonlinear models through a combination of stochastic variation118

and performance-based selection (Koza, 1992).119

Our goal is to develop models that predict mean catchment SWE in120

NRT. Therefore in our ideal situation we would use a large set of accurate121

measurements of mean catchment SWE as ground truth data to train and122

evaluate models. However, the only SWE measurements available at this123

spatial scale are generated by airborne techniques with time resolutions124

that are insufficient for machine learning (e.g. twice per year). Because125

machine learning needs a large number of samples for model training and126

because we want to predict SWE in near-real-time, we require much more127

frequent measurements. We therefore developed a series of experiments using128

available snowpack data in lieu of NRT catchment-scale SWE measurements129

to explore successive approximations of our ideal scenario. Approximations of130

average catchment SWE , obtained via snow courses and distributed ground-131

based sensor readings, serve as ground truth for machine learning in our132

experiments. Implicit in our work is the importance of new methods for133

obtaining NRT catchment-scale SWE ground-truthing via low-cost distributed134

sensor networks.135
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First, we used snow course measurements, which involve the manual col-136

lection of SWE and/or HS at a single location, as a proxy for catchment-wide137

SWE . Although snow courses do not directly measure snowpack distribution138

at the catchment scale, they are likely to provide estimates that are closer139

to mean catchment SWE than do snow pillows. Snow courses take multiple140

measurements over approximately 200 meters, so they involve a much larger141

sample size than the single-point measurements of snow pillows. Furthermore,142

pillow under-measurement or over-measurement errors may occur when the143

base of the snow cover is at melting temperature (Johnson and Marks, 2004).144

Thus, we used snow course data as a first approximation of mean catchment145

SWE to provide ground-truth data for machine learning. We generated146

models that use readily available information such as meteorological telemetry147

and snow pillow measurements as input variables. These models may allow148

for shorter or less frequent snow courses or for their discontinuation and,149

because it uses previously collected data, incurs no data gathering costs. This150

technique is explored in Experiment Set I.151

Second, we used HS data collected by the Snowcloud (Skalka and Frolik,152

2014) wireless sensor network (WSN) at sites in Norway and California, each153

for only one snow season, as a proxy for catchment-wide SWE data. Snowcloud154

is a WSN-based data gathering system for snow hydrology, notable for its155

low-cost and ease of deployment, developed and operated by the University156

of Vermont. A network of light-weight sensor towers (nodes) is deployed157

over an area of interest for a short term field campaign to collect spatially158

distributed measurements of relevant meteorological processes (Figure 4). In159

addition to HS , Snowcloud measures air temperature, soil temperature, and160
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solar radiation. Mesh wireless communication allows data from the entire161

network to be collected wirelessly by communication with a single node.162

We used measurements collected from Snowcloud over the course of a single163

snow season to generate ground-truth estimates for model-training. Note that164

it may be desirable to collect data over multiple seasons as models trained165

on multi-year data may be more robust against internal-annual variations166

in snowpack distribution. Once a model has been obtained, the WSN may167

be recovered for re-deployment at another site. Unlike pillows and snow168

courses, Snowcloud collects NRT data from multiple locations, potentially169

capturing more of the variability of snowpack distribution than is possible170

with single-location measurements. Thus, we use Snowcloud data as a second171

approximation of catchment mean SWE to provide ground-truth data for172

machine learning. This technique is explored in Experiment Set II.173

2.1. Suitability of machine learning174

Snow pillows are large, expensive, permanent installations that measure175

SWE at a single location (Figure 2). The infrastructure for the automatic176

collection of single-point SWE is well established. For example, there are177

830 Snowpack Telemetry (SNOTEL) sites in the United States (Snow Sur-178

veyor, 2014). However, the extrapolation from single-point measurements179

to surrounding areas is error prone. The spatial distribution of alpine snow180

cover is highly variable (Balk and Elder, 2000; Elder et al., 1991; Jost et al.,181

2007), due to a variety of environmental forcing effects, such as topography182

(Anderton et al., 2004), canopy cover (Moeser, 2010), and wind and solar183

exposure (Moeser, 2010; Moeser et al., 2011).184
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Meromy et al. (2013) studied 15 snow stations across the western United185

States and found that snow station biases were frequently greater than 10%186

of the surrounding mean observed snow depth. The flat-field areas where187

snow pillows are commonly located are usually not typical of more complex188

nearby terrain, causing the vast majority of such stations to overestimate snow189

depth in their vicinity (Grünewald et al., 2013). Snow cover persistence at190

SNOTEL sites is generally greater than the mean persistence of the watershed191

because SNOTEL stations do not exist in terrain classes located in upper192

elevations (Molotch and Bales, 2006). Molotch and Bales (2005) studied the193

areas surrounding six SNOTEL stations in the Rio Grande headwaters. They194

found that only a small fraction of grid elements were representative of mean195

grid SWE during accumulation, and that no elements were representative of196

mean grid SWE during both accumulation and ablation. Rittger (2012) found197

that errors based on statistical relationships between point measurements of198

snow and streamflow in the Sierra Nevada can reach 25% to 70% in one out199

of five years.200

The relative importance of separate processes which govern snow distribu-201

tion varies over the course of a snow season. Elder et al. (1991) summarize the202

various processes and explain how their influence changes over time. During203

the winter, accumulation and redistribution processes dominate. Precipitation204

is determined by regional climate and latitude as well as by local orographic205

effects, and redistribution by wind, avalanches, and sloughs are the primary206

causes of spatial heterogeneity. In the spring, however, snow distribution is207

controlled mainly by ablation. Of the many energy sources, solar and long-208

wave radiation dominate. This decreases water in a basin through sublimation209
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and when runoff leaves the basin. It also redistributes SWE, affecting spatial210

variability. These dynamics highlight the need for NRT modeling of snowpack,211

as the forcing effects that establish snow distribution vary drastically over212

the course of a snow season.213

However, the significant consistency of snowpack between years encourages214

investment into the development of reusable models. Strong inter-annual215

consistency in the spatial distribution of snow (Scipión et al., 2013), in216

SCA (Tappeiner et al., 2001), and in the snow depth patterns of maximum217

accumulation (Schirmer et al., 2011), have been observed in the Swiss and218

Italian Alps. In the western United States, consistent wind directions produce219

stable snow accumulation patterns from year-to-year (Winstral and Marks,220

2014). These findings suggest a strong link between accumulation patterns and221

geophysical terrain and indicate that site-specific snow distribution models222

may be able to accurately characterize snowpack distribution over multiple223

years.224

It may also be desirable to produce non-cite-specific models. Trained at225

catchments where ground truth data is available, and making use of predictor226

variables that vary between catchments, such as topography, such models227

could then be applied to catchments where no ground truth data exists. The228

precise coordinates of the snow pillows we used in California are not publicly229

available, preventing us from geolocating them with respect to topographic230

data. We therefore focus on site-specific models and use model inputs that231

vary over time at a given catchment.232
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2.2. Why GP?233

It has been demonstrated that the relationships between snow distribution234

and the topographic and meteorological forcing effects include nonlinearities235

(Tappeiner et al., 2001). The spatial distribution of SWE is nonlinear because236

it is influenced simultaneously by numerous processes including accumulation,237

ablation, and snow drifting (Marofi et al., 2011). GP can produce both238

linear and nonlinear models. If the data used to train GP contain only linear239

relationships, the resulting models will be linear, and the performance of GP240

will be similar to that of LR.241

White-box models, such as those produced by GP, can be interpreted by242

human analysis, potentially yielding new information about the modeled data243

(Schmidt et al., 2011). Some nonlinear regressors, such as artificial neural244

networks, produce models that are difficult or impossible to interpret. GP245

trees, however, can be expressed as mathematical equations (Figure 3). It is246

possible that by examining these equations domain experts could gain novel247

insight into the processes governing snow distribution.248

Unlike regression techniques that constrain the form of the regressor, GP249

can combine operators, variables, and constants into arbitrary arrangements.250

GP does not require any assumptions about the form that a model should251

take: form is left open to inductive search. By generating models that use252

predictor variables in unexpected ways, GP may help discover previously253

unknown relationships underlying snowpack distribution.254

Finally, as will discuss further, GP may be augmented with multi-objective255

optimization, which constrains GP to produce parsimonious models. This256

mitigates against over-fitting, a significant concern in the case that relatively257
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small datasets are used for machine learning.258

While many regression techniques possess one or more of these desirable259

qualities, GP possesses all of them, making it an ideal candidate for snowpack260

modeling.261

2.3. The primacy of snow depth262

While SWE is a product of HS and density (ρ), there is significant evidence263

that HS is the essential determining metric for SWE estimation. Models264

have been developed to derive ρ estimates from HS measurements (Logan,265

1973; Sturm et al., 2010), and measurements of HS are highly predictive of266

SWE (Adams, 1976). Analysis of the spatial variability of HS and ρ has267

revealed that the variability of HS is significantly greater than that of ρ268

(López-Moreno et al., 2012). Variation of SWE is therefore overwhelmingly269

a product of HS variation (Moeser et al., 2011; Molotch et al., 2005; Sturm270

et al., 2010; Elder et al., 1991, 1998). The effect of ρ variation on SWE is small271

by comparison, and estimates of areal SWE derived from one or several SWE272

measurements can be greatly improved by incorporating a larger number of273

HS measurements (Elder et al., 1998; Moeser et al., 2011), which are much274

less labor intensive than manual SWE measurements (Sturm et al., 2010).275

Snowcloud, which provides ground-truth data Experiment Set II, measures276

HS . Therefore, as has been done elsewhere (Winstral et al., 2002), we use HS277

as a “surrogate for SWE”.278

2.4. Related work279

Moeser et al. (2011) explored three models for estimating SWE in the area280

around a meteorological station using ground based measurements. The first281
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model used meteorological data such as air temperature and solar radiation,282

tree canopy cover measurements, and HS measurements collected by the283

Snowcloud WSN, as well as a single-point SWE measurement. The second284

model used multiple HS measurements and single-point SWE measurements,285

but no meteorological or tree canopy data. The third model used meteoro-286

logical and tree canopy data, along with multiple HS measurements, but no287

single-point SWE measurement. The meteorological and tree-canopy inputs288

used in these models were obtained through a two-phase statistical analysis289

using correspondence analysis and LR. It was found that increasing the num-290

ber of HS measurements can improve areal SWE measurements because HS291

varies more than snow density. While this work used linear modeling; our292

work expands upon it by developing nonlinear models.293

Grünewald et al. (2013) used LR to model HS distribution on the294

catchment-scale at seven sites using topographic parameters. They found295

that elevation, slope, and northing are good predictors of snow distribution.296

Models calibrated to local conditions performed much better than a global297

model that combined data from all the sites. They suggest that local statisti-298

cal models of snowpack distribution based on topographic parameters cannot299

be transferred to different regions. However, models developed one year are300

good predictors at the same site for other years. Instead of LR, our work301

emphasizes nonlinear regression.302

Marofi et al. (2011) compared three methods for modeling SWE : mul-303

tivariate nonlinear regression (MNLR), artificial neural networks (ANN),304

and a neural network-genetic algorithm (NNGA), where genetic algorithms305

were used to parameterize ANNs and the learning process. ANN performed306
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better than MNLR, suggesting that computational intelligence approaches307

may outperform MNLR for modeling SWE . NNGA performed better than308

ANN, suggesting that evolution-inspired genetic algorithms can be used to309

develop effective models of SWE . Tabari et al. (2010) estimated HS and SWE310

using multiple methods and also found that NNGA provided the best results.311

Unlike neural networks, GP produces white box models.312

Tappeiner et al. (2001) compared the performance of LR-based and ANN-313

based snowpack models, which used topographic and meteorological data314

to estimate SWE . The authors compared the results of LR with ANN to315

estimate the degree of necessary nonlinearity in SWE modeling. The ANN316

performed significantly better than LR, demonstrating nonlinearity in the317

relationships between topographic and meteorological variables and SWE .318

Several studies have used binary regression trees, which are nonlinear,319

white-box models, to model snowpack. Winstral et al. (2002) derived terrain-320

based parameters from digital elevation models (DEM) which were used as321

input variables to binary regression trees. They found that binary tree models322

based on terrain-based parameters as well as elevation, solar radiation, and323

slope performed better than models based only on elevation, solar radiation,324

and slope. Elder et al. (1998) modeled the distribution of SWE by merging325

remotely sensed snow-covered area data with binary tree models applied326

to field measurements of HS and SWE . Balk and Elder (2000) combined327

binary regression trees, which related HS to solar radiation, elevation, slope328

and vegetation cover, with kriging of manual snow survey measurements329

and snow-covered area determined by aerial photographs, to estimate SWE .330

They found that this technique was an improvement over previous methods.331

15



While the tree-based models alone explained 54-56% of HS variance, the332

combined depth estimates explained 60-85%. Anderton et al. (2004) used333

binary regression trees to relate HS and disappearance date to terrain indices.334

They found that the topographic effects on snow redistribution by wind335

primarily determined SWE distribution at the start of the melt season which,336

more than melt rates, determined the patterns of snow disappearance. Molotch337

et al. (2005) compared binary regression tree models using various sources of338

DEMs. They found that differences in DEMs make significant differences in339

modeled snowpack distribution.340

We observe that the binary regression trees used in this previous work341

are classifiers which, given a set of input values, select from a finite set of342

possible values. GP, on the other hand, is a regressor, and uses input values343

to produce an output value taken from the real numbers. In Experiment344

Set II we compare the performance of BT to GP. Unlike this previous work345

which used binary regression trees to produce spatially distributed models346

of snowpack, our models predict a single value: mean HS measured by a347

wireless sensor network.348

Marks et al. (1999) also developed spatially distributed models. They used349

topographic data to determine estimates of radiation, temperature, humidity,350

wind, and precipitation for use in a coupled energy and mass-balance model351

called ISNOBAL. Simulations conducted at several basins all closely matched352

independently measured SWE .353

Recent research has made significant advances in simulating the effects354

of wind on snow distribution. Winstral et al. (2009) developed a simplified355

wind model that uses upwind topography to accurately predict wind speeds.356
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Winstral et al. (2013) developed a snow distribution algorithm that uses terrain357

structure, vegetation, wind, and precipitation data to simulate wind-affected358

snow accumulation. It accurately predicted disparate snow distribution caused359

by inhomogeneous precipitation and redistribution by wind. Winstral and360

Marks (2014) analyzed the effects of wind on snow distribution. They found361

that high wind speeds increased snow depth variability and that forested sites362

decreased variability by moderating wind effects. Furthermore, consistent363

wind directions produced accumulation patterns that were stable between364

years.365

Sturm et al. (2010) used HS , day of the year, and climate classes to366

estimate snowpack density. Estimated snowpack density was used to convert367

HS measurements into SWE estimates. The use of climate classes, such368

as Alpine, Maritime, and Tundra, improved density estimates, and 90% of369

computed SWE values fell within 8 cm of measured values.370

SNOWPACK is a numerical model that simulates snowpack layering char-371

acteristics such as density, temperature, and crystal type (Bartelt and Lehning,372

2002). Schmucki et al. (2014) analyzed the performance of SNOWPACK373

when predicting HS and SWE given input data commonly available from374

weather stations. They found that SNOWPACK successfully modeled HS375

with a mean error of less than 8 cm and SWE with a mean error of less than376

55 mm, but that precipitation measurements must be either corrected or377

calibrated for correct modeling.378

Chang and Li (2000) used multivariate regression to model snow distri-379

bution using independent variables derived from a DEM. These variables380

included easting, southing, elevation, slope, and aspect, as well as more381
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complex derived measures such as “shadow”, which considers the angle of382

solar illumination, and various metrics of ground curvature. This multivariate383

regression of derived topographic features performed better at estimating384

SWE distribution than traditional interpolation methods.385

Guan et al. (2010) found that atmospheric rivers (ARs), are associated with386

intense storms that contribute a large percentage of snow during most years.387

Because AR storms are relatively warm (close to 0.6,◦ C), the participation of388

AR participation into snowfall versus rainfall is sensitive to minor variation389

in surface air temperature.390

Rittger et al. (2011) combined satellite-based measurements of snow-391

covered area with energy balance calculations to retroactively calculate dis-392

tributed SWE at the date of maximum accumulation, using the the “recon-393

struction” technique originally developed by Martinec and Rango (1981).394

This calculation was then used to evaluate the accuracy of two real-time395

models. They found that at elevations below 1500 m, the real-time models396

overestimated SWE because of early season melt, and at elevations above397

3000 m, the real-time models underestimated SWE because they do not398

sample these higher elevations. It is possible that this technique could be399

used to evaluate the effectiveness of the inductive learning methods that we400

describe in this work.401

3. Training data and model inputs402

Inductive machine learning requires substantial datasets for developing and403

evaluating models, and we acquired extensive hydrological and meteorological404

data for use in our experiments. Lacking access to accurate measurements405
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of mean catchment SWE with NRT granularity, we focused on two types of406

available datasets that are approximations of mean catchment SWE. First,407

we consider a record of SNOTEL snow courses from the Sierra Nevada. We408

observe that SNOTEL snow courses are intended to provide an estimation409

of SWE at a particular elevation (United States Department of Agriculture,410

2014), though in fact they are linear transects of SWE samples. Second, we411

consider a record of Snowcloud sensor network readings from Norway and412

California. Snowcloud sensor networks provide distributed coverage of snow413

depth readings for the deployment area, as well as fine time granularity, and414

can support better estimations of mean catchment SWE than periodic snow415

courses.416

3.1. Experiment Set I data417

Experiment Set I uses data collected from several sites across California.418

There were three main types of data: SWE from manual snow courses, SWE419

measurements from snow pillows, and air temperature data.420

The California Data Exchange Center (CDEC) provided an extensive421

database of snow data. SWE measurements were available from 63,287 snow422

courses conducted at 404 sites across California between 1930 and 2012. The423

snow courses that we used, which are described in Table 1, were performed424

monthly, were about 200 meters long, and consisted of 10 measurements, the425

mean of which was recorded. These mean snow course measurements serve as426

ground-truth estimates of mean catchment-wide SWE in Experiment Set I.427

CDEC also maintains single-point SWE measurement data from snow pillows428

at sites throughout California. Of the 404 snow course sites, 59 are co-located429

with snow pillows.430
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The National Climate Data Center (NCDC) maintains meteorological431

data, such as air temperature, wind speed, and solar radiation measurements,432

collected at thousands of weather stations across the United States. Four433

NCDC stations are located within 20 miles of CDEC snow courses. We434

arbitrarily chose a 20 mile cutoff because we suspected that meteorological435

activity within 20 miles of a snow course might be predictive of measurements436

at the snow course. If this data is not predictive, the models generated by437

machine learning will not make significant use of it.438

Significant gaps exist in the NCDC database, and of the various sensor439

modalities, air temperature data is the most complete. Using more meteo-440

rological inputs and necessarily fewer data samples, we had previously been441

unable to generate effective models of SWE . For Experiment Set I, therefore,442

air temperature is the only meteorological input, making possible the com-443

position of the large data sets necessary for effective machine learning and444

demonstrating the use of readily available meteorological data to augment445

the prediction of SWE . Air temperature is known to be a highly effective446

predictor of melt rate because it is correlated with longwave atmospheric447

radiation, the most important heat source for snowmelt (Ohmura, 2001). Air448

temperature is made accessible to the models by three variables: minTemp7,449

maxTemp7, and meanTemp7, which aggregate daily values over the seven450

days inclusively preceding the day for which SWE is estimated.451

We used the temporal and spatial intersection of available data from452

these three sources (CDEC snow courses, CDEC snow pillows, NCDC air453

temperature data) to construct eight datasets, based on eight snow course454

sites. These snow courses were selected because they are coincident with455
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either snow pillow data, NCDC air temperature data, or both, over a range456

of time that includes a large number of samples points (greater than 100457

except for one site). Some days are skipped because one or more data source458

is unavailable. All sites include snow course data, which serves as a ground459

truth estimate of mean catchment SWE . Three include snow pillow data460

but no meteorological data, three include meteorological data but no pillow461

data, and two include both snow pillow data and meteorological data. The462

constructed datasets are summarized in Table 2.463

3.2. Experiment Set II data464

Experiment Set II used HS data collected from multiple sources in Norway465

and in California. Four Snowcloud sensor nodes have been deployed in466

Sulitjelma, Norway since January, 2013. Data collected between January467

and April, 2013 were used in this experiment. During that time, each node468

sampled HS every six hours. We averaged HS measurements from the four469

nodes and then over each day to produce 93 estimates of mean catchment470

HS . For the few days when HS measurements from one or more sensor nodes471

was missing, the mean of the available measurements was used. These values472

served as ground-truth HS for experiments at Sulitjelma.473

Approximately 16 km away from the Sulitjelma Snowcloud deployment site474

is Storstilla nedanför Balvatn in Nordland County, station number 164.12.0475

(Balvatn). The Balvatn station records both HS and SWE . Daily HS mea-476

surements collected at Balvatn compose the HS input variable to models477

developed for Sulitjelma in Experiment Set II.478

Six Snowcloud wireless sensor network sensor nodes were deployed within479

the Sagehen Creek Field Station, near Truckee, California, from January to480
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May, 2010. Each node reported daily HS measurements, which we averaged481

to generated 99 estimates of mean catchment SWE . For the few days when482

HS measurements from one or more sensor nodes was missing, the mean of483

the available measurements was used. These values served as ground-truth484

HS for experiments at Sagehen. Note that the same WSN data was used by485

Moeser (2010).486

In order to assess the significance of the source of single-point HS input487

variables, we developed models for estimating mean HS at the Sagehen Snow-488

cloud deployment using inputs from two different CDEC sites, Independence489

Camp (IDC) and Huysink (HYS). Note that in Experiment Set I, snow490

courses at CDEC sites provide SWE ground truth (dependent) data, while491

in the California experiments in Experiment Set II single-point HS measure-492

ments at CDEC sites provide input (independent) data. IDC is approximately493

5.5 km away from the Snowcloud deployment and, like Sagehen, is on the494

Eastern side of the Sierra crest. HYS is approximately 30 km away, on the495

Western side of the crest.496

3.3. Time of year497

Because the dynamics underlying snowpack distribution vary over the498

course of a snow season, for example between periods dominated by deposition499

and periods dominated by ablation, we introduce time of year (TOY ) as500

an independent variable for both experiment sets. This allows models to501

distinguish parts of the snow season. Time of year is an integer value expressing502

the number of days since the beginning of the snow season.503
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3.4. Preparation of datasets504

We define a dataset, D, for each experiment (each row of Table 8 and505

each location in each row of Table 7). Elements of a dataset D take the form506

of a 3-tuple:507

< T , θ, ~p >

where T , time, specifies a calendar date, θ is ground truth, an estimate of the508

true value of the independent variable, and ~p is a vector of predictor variables.509

T is unique in D so that no two data samples in D have the same T :510

∀ < T1, θ1, ~p1 >,< T1, θ2, ~p2 >∈ D θ1 = θ2 and ~p1 = ~p2 (1)

In Experiment Set I, θ is an approximation of mean catchment SWE511

derived by manual snow course. In Experiment Set II, θ is an approximation512

of mean catchment HS derived from Snowcloud WSN measurements.513

Depending on the experiment, ~p includes some combination of HS mea-514

sured at a snow pillow, SWE measured at a snow pillow, TOY (an integer515

representation of T ), and air temperature, (which is composed of three vari-516

ables: minTemp7, maxTemp7, and meanTemp7 ). The Model inputs columns517

of Table 7 and Table 8 specify the contents of ~p for each experiment.518

In order that a model developed from D may be evaluated on new, unseen519

data, D is divided into training, %, and testing, τ , subsets. The training set520
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is twice as large as the testing set:521

D = % ∪ τ and % ∩ τ = ∅ and |%| = 2|τ | (2)

However, GP and BT require that % be further divided into grow, g , and522

selection, s , subsets:523

% = g ∪ s and g ∩ s = ∅ and |g | = |s| (3)

In all experiments, D is first divided into g , s , and τ :524

D = g ∪ s ∪ τ and g ∩ s ∩ τ = ∅ and |g | = |s| = |τ | (4)

For BM and LR, g and s are simply combined into % and used as training525

data. As discussed in more detail in Section 4, in the case of GP and BT g is526

used to generate a set of models and s is used to determine which one should527

be kept and evaluated on τ . In any case, % is used to obtain a single model,528

which is then exposed to τ to evaluate its ability to predict unseen data.529

We explored several methods for dividingD into g , s , and τ . In Experiment530

Set I and in the first part of Experiment Set II (Experiment Set II: Random531

Division), the chronologically ordered D is randomly shuffled and then divided532

into thirds, as illustrated by Figure 7a. This method has the effect that a533

large portion of the training data is likely to be temporally proximal to testing534

data.535

As discussed further in Section 5, we found in Experiment Set II that536

the temporal proximity between % and τ caused machine learning to map537
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TOY values to estimates of HS . The models memorized the data rather538

than capturing the relationships among the data. We therefore conducted539

Experiment Set II: 4 Bins. Instead of shuffling D, we maintained its ordering540

and divide it into four chronologically contiguous bins. Each bin is then541

subdivided into three chronologically contiguous subsets which are assigned542

to g , s , and τ . This method is illustrated by Figure 7b. We also conducted543

Experiment Set II: 3 Bins and Experiment Set II: 2 Bins, as illustrated in544

Figures 7c and 7d. As we move from Experiment Set II: Random Division545

to Experiment Set II: 2 Bins, the division of D transitions from finer to546

coarser temporal granularity. As this granularity becomes coarser, it becomes547

more difficult for machine learning to use TOY to simply memorize data.548

However, it also becomes more difficult for models to capture the variation549

of the dynamics of snowpack distribution over the course of a snow season.550

In the extreme hypothetical example of 1 bin, models would be trained551

on measurements taken during the first two thirds of the snow season and552

then evaluated on measurements taken during the final third. It would be553

impossible to model relationships that are unique to the end of the snow554

season.555

In order to introduce stochasticity into the division D and thus allow556

the repetition of experiments to produce a distributed sample of results, a557

randomly generated offset shifts the starting point of the division. Figure 7e558

illustrates the effect of this offset in the case of three bins.559
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4. Calculation560

In this section we first describe how we compared the performance of dif-561

ferent snowpack modeling techniques. We then describe the various modeling562

techniques that we used, with special emphasis on GP.563

4.1. Comparing estimation methods564

In order to compare the performance of two machine learning techniques,565

M and M ′, on a dataset D, D is divided into complementary subsets % and566

τ . Methods M and M ′ are applied to % to produce estimators θ̂ and θ̂′.567

This process may be deterministic or nondeterministic. In Experiment Set568

I and Experiment Set II: Random Division, nondeterminism is introduced569

by the random division of D. GP introduces further nondeterminism by the570

stochasticity of the GP algorithm. The BT algorithm is deterministic when a571

single input variable is used, but nondeterministic when applied to multiple572

input variables. Estimators θ̂ and θ̂′ are applied to τ to determine the mean573

absolute errors of the estimators MAE(θ̂) and MAE(θ̂′), as we will discuss in574

section 4.2.575

This process of randomly dividing D and applying M and M ′ to obtain576

MAE(θ̂) and MAE(θ̂′) is repeated 30 times, resulting in vectors of estimator577

errors ~eM and ~eM ′ each with cardinality 30. We consider ~eM and ~eM ′ to be578

statistical samples of errors drawn from the population of errors that method579

M and M ′ could produce given D. We chose to collect 30 samples because580

a sample size of at least 30 allows the Central Limit Theorem to be safely581

applied without assuming a normal population distribution, permitting the582

application of the one-sample t-test to calculate confidence intervals and the583
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paired two-sample t test to test hypotheses.584

The means of ~eM and ~eM ′ are unbiased estimates of the true population585

means µM and µM ′ . To find out if M ′ outperforms M on dataset D we the586

pose hypotheses:587

H0 : µM ′ = µM (Null hypothesis)

Ha : µM ′ < µM (alternative hypothesis)

and apply the Student’s t-test for paired samples to ~eM and ~eM ′ . If the Null588

hypothesis is rejected, we say that method M ′ produces lower error (performs589

better) on dataset D than does M . We report the p-value, the probability590

that the we have performed a Type I error by rejecting a true Null hypothesis.591

4.2. Evaluating estimator error592

Recall that an element d of dataset D takes the form < T , θ, ~p > and that593

D has been divided into % and τ . An estimation method M is applied to594

% ⊂ D to generate an estimator θ̂, which is a function from predictor variables595

~p to dependent variable y, an estimate of θ.596

θ̂ : ~p→ y y ≈ θ

The error of θ̂ on an input vector is the difference between the estimate it597

produces and ground truth.598

Eθ̂(~p) = θ̂(~p)− θ (5)

The error is calculated on each sample in τ to determine the mean absolute599
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error of the estimator:600

MAE(θ̂) =

k∑
i=1

|Eθ̂(~pi)|

k
(6)

Where

τ = (d1, ..., dk) and ~pi ∈ di ∈ τ ⊂ D

4.3. Basic method601

The basic method (BM) assumes that SWE as measured at a snow pillow602

is representative of catchment-wide SWE . It naively estimates ground truth603

(snow course-derived) SWE to be the same as the independent variable (snow604

pillow-derived) SWE measurement. Error in the predictive power of BM605

expresses the difference between snow pillow measurements and snow course606

SWE measurements. If x represent SWE measured at the snow pillow, then607

x ∈ ~p and θ̂(~p) = x (7)

Unlike the more sophisticated machine learning techniques, BM does not608

make use of training data to generate a model.609

4.4. Linear regression610

Linear regression (LR) fits a least-squares linear model to training data611

which is then evaluated on test data (Hastie et al., 2009). LR expresses the612

linear relationships between independent and dependent variables. We used613

the gsl multifit linear function from the GNU Scientific Library (GSL, 2014)614

to perform LR. We include LR in order to gain insight into the data we are615
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using. LR will perform less well than nonlinear techniques only if the modeled616

data contain nonlinear relationships.617

4.5. Genetic programming618

GP is an evolutionary algorithm, inspired by biological evolution, that619

iteratively evolves populations of parse trees to perform symbolic regression620

(Koza, 1992). In this work, the trees are snowpack models, estimator functions,621

that use available independent variables to estimate mean SWE (Experiment622

Set I) or HS (Experiment Set II) at the catchment scale. Tree terminals are623

input variables and constants, while internal nodes are arithmetic operators.624

The operators we used are listed in Table 5.625

We used the lil-gp Genetic Programming System (lil-gp Genetic Program-626

ming System, 2013), an open source implementation of GP, in order that627

we might make any needed modifications. We modified lil-gp to implement628

multi-objective Pareto optimization.629

GP begins by generating a starting population of randomly constructed630

trees. Each tree in the population is evaluated on training data to determine631

its fitness, defined as the inverse of mean error. Trees are selected according632

to their size and fitness to produce the population for the next generation.633

Genetic operators make stochastic modifications to the new trees, randomly634

perturbing their fitness values. The genetic operators we used were mutation635

and crossover. Mutation, which is applied to 40% of new trees, selects a636

subtree at random and replaces it with new, randomly generated subtree. In637

crossover, which is applied instead of mutation 60% of the time, two parent638

trees exchange subtrees, resulting in two novel offspring. Crossover allows639

recombination of subtrees from existing models while mutation introduces640
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new subtrees to the population, maintaining genetic diversity. Because it641

is likely that subtrees taken from existing, partially evolved models will be642

more useful than new, randomly generated subtrees, crossover is applied more643

frequently than mutation. This process is repeated for many generations,644

over time generating populations of increasing fitness.645

The average wall-clock time for one experiment using the Vermont Ad-646

vanced Computing Core (VACC) supercomputer was 333 seconds for Ex-647

periment Set I (3000 generations) and 1,207 seconds for Experiment Set II648

(10,000 generations). The total wall-clock time for all of Experiment Set I649

was approximately 89 hours. The total wall-clock time for all of Experiment650

Set II was approximately 321 hours.651

One challenge facing GP, like all techniques for deriving a model from652

training data, is over-fitting. An over-fit model performs well on training data653

but does not generalize well and fails on unseen data. It memorizes values654

instead of capturing the mathematical relationships among the data.655

The size of a GP model (number of nodes in a tree) constrains its com-656

plexity and fitness. Trees that are too small are too simple to accurately657

model the data and are under-fit. They perform poorly on both training and658

testing data. Trees that become too large perform extremely well on training659

data but, due to over-fitting, perform poorly on unseen data. Somewhere660

between these extremes lies the best, non-over-fit model.661

In order to explore the gradient from small, under-fit models to large,662

over-fit models, we added multi-objective Pareto optimization to lil-gp. Pareto663

optimization applies evolutionary pressure toward multiple simultaneous goals,664

in this case low error and small model size, by producing a population (front)665
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of non-dominated models. A tree is dominated by another tree if it is inferior666

by all objectives, i.e. it is both larger and has lower fitness. A Pareto front667

(non-dominated front) consists of a set of trees such that no tree is dominated668

by any other tree on the front. The non-dominated trees are selected at each669

GP generation so that each population is a non-dominated front, including670

the final population. The result of GP is therefore a set of trees of various671

sizes. We set an absolute upper bound at size 30 because we had observed672

that models with size larger than 30 were consistently over-fit. Arranged from673

smallest to largest, the error of these trees on the training data decreases674

monotonically. Error on unseen data, however, will decrease only to a point,675

and will then increase beyond some tree size as the models become over-fitted.676

At this point is the tree size that will maximize performance on % without677

over-fitting. Models no bigger than this can express features common to both678

training and testing data but cannot express features that are unique to the679

training data. However, this size threshold is not known while generating680

models because test data is not available. It must remain unseen for model681

testing.682

One possible technique for selecting a model exploits a common feature of683

Pareto fronts. Pareto fronts often exhibit a characteristic knee point where684

a small improvement in one objective would lead to a large deterioration in685

another objective (figure 8). There are several different technical definitions686

that can be used to automate knee identification (Deb and Gupta, 2011). In687

many multi-objective optimization applications the knee represents a good688

compromise among objectives (Das, 1999; Deb and Gupta, 2011). However,689

our goal is to identify the model that can be expected to perform best on690
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unseen data. We therefore developed a novel selection set method for selecting691

a model from the Pareto front.692

In the selection set method, the training data is further divided into two693

subsets of equal size, a growth set, g , and a selection set, s (Equation 3). GP694

is applied to g to obtain a Pareto front. Each model on the front is then695

evaluated on s . GP returns the model that performs best (lowest error) on s .696

We used the election set method in all experiments.697

4.6. Binary regression trees698

We include BT in Experiment Set II in order to compare GP to another699

nonlinear, less computationally demanding, modeling technique. Erxleben700

et al. (2002) compared the performances of four spatial interpolation methods701

to estimate SWE and found that a method combining binary regression trees702

with geostatistical methods was more accurate than other methods. We703

used the DecisionTreeRegressor class of the Scikit-learn machine learning704

module for Python (Pedregosa et al., 2011). This software implements the705

Classification and Regression Trees (CART) algorithm, which is similar to706

C4.5 (Hastie et al., 2009). BT is parameterized by the maximum tree depth;707

we used default options for other parameters. As with GP, the data for BT708

was divided into g , s , and τ . For each experiment, a set of trees was trained709

on g such that the nth tree had a maximum depth of n. The maximum value710

of n was determined by incrementing n until further increase did not result711

in larger trees. The maximum value of n varied between 7 and 13.712

Like the Pareto front produced by GP with multi-objective optimization,713

this methods results in a gradient of models ranging from very small models714

with high error on g to very large models with low error on g . Each is715
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evaluated on s and the one with the lowest error is returned by BT to be716

evaluated on τ in order to determine model error. Thus, we apply the same717

selection set method to BT as to GP in order to discourage over-fitting and to718

provide similar exposure to the data so that the performance of the techniques719

may be compared. Note, however, that in the case of GP, multi-objective720

optimization applies pressure toward model parsimony continuously over the721

course of the evolution of a population of models. In the case of BT, the722

selection set method is applied once to a set of models after they have been723

generated.724

5. Experiments: descriptions and results725

In this section we describe the experiments conducted in Experiment Sets726

I and II and report the results.727

5.1. Experiment Set I728

In Experiment Set I measurements from snow courses provided ground-729

truth SWE data. We developed models to predict snow course SWE at eight730

different sites in California where snow courses had been conducted (Table 1).731

Three sites (CAP, GRZ, KT L) were located at snow pillows but are not732

near any NCDC weather stations. Three sites (NT H, SPD, MSH) were733

near NCDC stations but are not at snow pillows. Two of the snow course734

sites (HYS and HIG) were located at snow pillows and are also near NCDC735

stations.736

First, we conducted experiments at sites with snow pillows but without737

weather stations (CAP , GRZ, KT L). These experiments explored how well738

linear and nonlinear models predict snow course-derived ground truth SWE739
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using only snow pillow measurements. Inputs to the models were pillow SWE740

and TOY . At each site we developed models with three combinations of input741

variables: TOY alone, pillow SWE alone, and TOY combined with pillow742

SWE . In each case, we compared the performance of GP, LR, and BM.743

Second, we conducted experiments at sites near weather stations but744

without snow pillows (KT L, MSH, NT H). These experiments explored745

how well linear and nonlinear models predict snow course-derived ground746

truth SWE using air temperature data without access to snow pillow SWE747

measurements. Inputs to the models were air temperature and TOY . At748

each site we develop models with three combinations of input variables:749

temperature alone, TOY alone, and temperature combined with TOY . In750

each case, we compare the performance of GP to LR. BM was not evaluated751

because it requires the pillow SWE variable.752

Third, we conducted experiments at sites that are near weather stations753

and have snow pillows (HIG, HYS). These experiments explored how well754

linear and nonlinear models predict snow course-derived ground truth SWE755

using both pillow SWE measurements and air temperature data. Inputs to756

the models were SWE , air temperature, and TOY . At each site we develop757

models with seven unique combinations of input variables: temperature alone,758

TOY alone, pillow SWE alone, temperature and TOY together, temperature759

and pillow SWE together, TOY and pillow SWE together, and, finally,760

temperature, TOY , and pillow SWE together.761

Table 7 summarizes Experiment Set I. Each experiment was repeated762

30 times to generate error samples for each method. Figures 9-12 plot the763

mean values of the samples. Error bars indicate 95% confidence intervals, i.e.764
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sample mean ±(SEM× 1.96). GP and LR had similar error, but both had765

lower error than BM with p-value less than 0.001 in all cases.766

The mean ground truth SWE value in inches at each site was: CAP:767

45.08, GRZ: 49.47, KT L: 27.08, MSH: 68.78, NT H: 13.29, SPD: 27.47,768

HIG: 23.39, HYS: 41.95.769

5.2. Experiment Set II770

In Experiment Set II models predicted HS instead of SWE . While research771

on the influence of meteorological factors on snowpack distribution is extensive772

(Logan, 1973; Elder et al., 1991; Schmucki et al., 2014; Hock and Noetzli, 1997),773

the inclusion of meteorological inputs does not always improve snowpack774

model performance (Moeser, 2010), and the inclusion of air temperature775

data did not improve model performance in Experiment Set I. Therefore, in776

Experiment Set II we focus on TOY and single-point HS measurements as777

predictors of mean catchment HS . Instead of manual snow course data as778

in Experiment Set I, ground-truth data are derived from HS measurements779

collected by the Snowcloud WSN. We compared the performance of three780

machine learning techniques: LR, BT, and GP.781

We developed estimators to predict HS at two sites: Sulitjelma, Norway782

and the Sagehen Experimental Forest, California. At Sulitjelma, model inputs783

were combinations of HS at Balvatn and TOY . At Sagehen, model inputs784

were combinations of HS atHYS, HS at IDC, and TOY . Table 8 summarizes785

Experiment Set II. We repeated each experiment four times (Random Division,786

4 Bins, 3 Bins, 2 Bins) and each of these 30 times to generate error samples.787

Each experiment was repeated 30 times to generate error samples for each788

method.789
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Figures 13-16 plot the mean values of the samples, i.e. the error of the790

modeling techniques on testing data. Error bars indicate 95% confidence791

intervals, i.e. sample mean ±(SEM× 1.96). Stars indicate p-values for the792

Student’s paired t-test with the hypothesis the GP does not have lower error793

than BT, i.e. the probability that GP does not outperform BT. One star, *,794

indicates that p is less than 0.05, ** indicates that p is less than 0.01, and ***795

indicates that p is less than 0.001. Similarly, plus signs indicate p-values for796

the hypothesis that GP does not have lower error than LR, i.e. the probability797

that GP does not outperform LR. One plus sign, +, indicates that p is less798

than 0.05, and ++ indicates that p is less than 0.01. The mean ground truth799

HS value at Sulitjelma was 1.1900 m. The mean ground truth HS value at800

Sagehen was 0.728 m.801

Figures 17-20 plot the mean sizes of the models whose performance is802

reported in figures 13-16. In the case of GP and BT, these are the models803

selected using the selection set method. For GP, model size is the number804

of nodes in the GP tree. For BT, model size is the number of nodes in805

the binary tree. For LR, model size is the number of operators and values,806

specifically 5 in the case of a single independent variable and 9 in the case of807

two independent variables. Stars indicate p-values for the Student’s paired808

t-test with the hypothesis the GP models are not smaller than BT models.809

One star, *, indicates that p is less than 0.05, ** indicates that p is less than810

0.01, and *** indicates that p is less than 0.001.811
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6. Discussion812

In this section we discuss the results of our experiments, offer some813

hypotheses to explain our findings, and suggest ways to explore and test these814

hypotheses. We are especially interested in assessing the performance of GP815

and drawing conclusions that can inform future research.816

6.1. Experiment Set I817

In Experiment Set I GP performed at least as well as other methods in all818

experiments. This result was expected because GP is capable of generating the819

same models as LR and BM. We did not perform hypothesis tests comparing820

GP with LR because visual inspection of error means and 95% confidence821

intervals (figures 9-12) suggests that the methods performed similarly. At822

the sites where a snow pillow was present (CAP , GRZ, KT L, HIG, HYS),823

the performance of BM was evaluated. At all of these sites, in all of the824

experiments where pillow SWE was an input variable (b, c, f), both LR and825

GP performed significantly better (p-value less than 0.001) than BM.826

These results suggest that machine learning techniques can be used to827

develop models that predict mean catchment SWE more accurately than BM.828

However, GP does not do better than LR in any of these experiments. It is829

possible that ground truth data generated from snow courses, which measure830

SWE only at a single location, failed to capture nonlinearities present in the831

actual snowpack distribution. In general, models performed better when snow832

pillow data was included then when only TOY and air temperature were833

used. Neither the inclusion of air temperature data nor of TOY significantly834

affected model performance.835
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We did not evaluate BT in Experiment Set I. Because LR performed836

as well as GP in Experiment Set I, we suspected strict linearity among the837

explanatory relationships in the data and did not further pursue nonlinear838

modeling. As Experiment Set II used spatially distributed measurements839

to generate ground-truth data, it offered a more promising venue for the840

comparison of nonlinear modeling techniques.841

6.2. Experiment Set II842

First we conducted Experiment Set II: Random Division. GP outperformed843

LR in every experiment except in Norway when the only model input was HS844

at Balvatn. In every experiment in California where TOY was an input, BT845

has much lower error than either GP or LR. In all experiments where TOY846

was an input that the resulting BT models were very large. GP also had847

lower error and larger model sizes when TOY was used then when TOY was848

not used. We had originally introduced the TOY variable to allow models849

to distinguish different parts of the season. However, we hypothesized the850

BT, and to a lesser extent GP, were abusing the TOY variable to memorize851

snow data by mapping TOY data to ground truth HS . Even though training852

and testing data were technically distinct, many of the samples in the testing853

data were temporally proximal to samples in the training data. The testing854

data was not truly unseen with respect to the TOY variable. Even though855

models generalized well to the testing data, they were over-fitting to the856

TOY variable and would likely not generalize to truly unseen data, e.g. from857

another snow season.858

To test this hypothesis and address the possible problem of over-fitting859

to the TOY variable, we repeated Experiment Set II three more times. In860
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Experiment Set II: 4 Bins, 3 Bins, and 2 Bins, we successively decreased861

the temporal overlap between training and testing data and increase the862

coarseness of the temporal granularity of the division into training and testing863

data. Proceeding through this sequence, it became more difficult for machine864

learning to memorize HS data by over-fitting to the TOY variable. At the865

same time, BT error increased and the performance of GP with respect866

to BT improved. These results suggest that GP is more resilient against867

over-fitting than BT, possible as a result of multi-objective optimization.868

Furthermore, when the ability of machine learning to exploit the TOY variable869

by memorizing HS the data was minimized, GP significantly outperformed870

both LR and BT.871

6.3. Interpreting GP trees872

Several example GP trees are shown in figure 3. These were manually873

selected from the final populations of GP runs conducted for Experiment Set874

II. The leftmost tree represents a simple linear model. The middle tree is a875

nonlinear model. The rightmost tree is a more complex nonlinear model.876

6.4. Input variable usage counts877

Tables 9 and 10 show how frequently each input variable appears in the878

models generated by GP and BT in Experiment Set II. Only experiments879

where both HS and TOY were input variables are show. In general, the counts880

are higher for BT than for GP, reflecting the larger size of the BT models.881

Furthermore, model sizes decrease as the temporal granularity of the division882

into training and testing data becomes coarser. In Norway (Experiment c),883

the ratio of TOY to HS in GP models is high when this temporal granularity884
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is fine, but decreases as it becomes coarser. This may indicate that GP uses885

TOY less when datasets are constructed so as to prevent models from abusing886

the TOY variable. However, this pattern is not repeated in the California887

experiments or for BT in either location.888

6.5. Future work889

We believe that the preliminary results discussed in this work are promising890

and warrant further research into of the applicability of GP to snowpack891

modeling.892

This work should be expanded into a multi-year study. Although Ex-893

periment I used snow course data collected over several years, Snowcloud894

data used in Experiment II was limited to single snow season. A multi-year895

study would allow models trained on Snowcloud data during one or several896

years to be evaluated on unseen data from another year. Models trained on897

multi-year data may be more robust to application in future years than are898

models trained on single-year data, especially with respect to TOY . Even899

without collecting more data, Experiment Set I could be modified so that900

models are trained on data from earlier years and tested on unseen data from901

later years.902

Beyond those discussed here, there are many machine learning techniques903

that could be applied to the problem of catchment-scale SWE estimation.904

GP possesses a unique combination of desirable qualities, but its performance905

should be compared against other methods such as ANNs, nonlinear multi-906

ple regression, and FFX (McConaghy, 2011), a non-evolutionary symbolic907

regression technology.908

The only meteorological input to our models was air temperature. Future909
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work should incorporate more predictors of SWE and HS . Meteorological910

data involving wind, solar radiation, humidity, etc. are available for many911

locations and have been shown to influence snow distribution (Logan, 1973;912

Elder et al., 1991; Schmucki et al., 2014; Hock and Noetzli, 1997).913

Topographic features significantly shape snow distribution, and models of914

this relationship have been developed and used extensively (Winstral et al.,915

2013; Marofi et al., 2011; Chang and Li, 2000; Tabari et al., 2010; Anderton916

et al., 2004; Grünewald et al., 2013; Molotch et al., 2005; Elder et al., 1998).917

One challenge would be to make topographic data available to GP in an918

effective form. Some models (Winstral et al., 2002) derive real values from919

topographical features that are predictive of snow distributions. These values920

could be input variables for GP. It is possible that machine learning could use921

topographic and other data to produce non-cite-specific models. Such models922

would be trained on data from one or more catchments and then applied to923

other catchments.924

Schwaerzel and Bylander (2006) developed high-order statistical functions925

for GP to model financial data. These allowed GP models to dynamically926

select and aggregate a slice of time series data. Future work should apply927

these techniques to allow GP to determine how to select and aggregate928

meteorological and topographic data. We made air temperature available to929

GP by means of functions that aggregate daily measurements over an arbitrary930

seven day window. Instead, GP could inductively discover how models should931

dynamically select and aggregate a section of time series data according to932

changing circumstances. Previous efforts to model snowpack using topographic933

data have derived explicit model inputs from DEMs. However, the possibility934
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of GP playing an active role in determining which topographical features to935

use should be explored. It is possible that GP would discover new methods936

for extracting from digital elevation models information that is predictive of937

snowpack distribution.938

7. Conclusion939

In this paper we have described novel, low-cost methods for catchment-940

scale SWE estimation using machine learning algorithms. The commonly used941

method of estimating catchment-scale SWE from a single point measurement942

is error-prone because of the spatial heterogeneity of snowpack distribution.943

We envision an approach wherein short-term field campaigns collect ground-944

truth data for generating snowpack models which can subsequently augment945

existing NRT snow telemetry. Toward this end, we explored a suite of machine946

learning techniques to extrapolate estimates of mean catchment SWE from947

single point SWE measurements and other available data and pursued three948

key research directions. First, we addressed the question of which machine949

learning approaches are best for this problem. Second, we discussed and950

pursued the use of a range of possible input parameters. Finally, we grappled951

with the issue of ground-truthing given limited datasets.952

We compared the performance of a basic method (BM) which assumes no953

spatial variability of SWE , linear regression (LR), genetic programming (GP),954

and binary regression trees (BT). We emphasize GP because it produces955

nonlinear, white-box models without requiring assumptions about model956

form. GP can be augmented with multi-objective optimization to constrain957

model complexity and mitigate over-fitting. We found that machine learning958
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techniques generally outperformed BM, demonstrating the spatial variability959

of SWE . Nonlinear techniques outperformed linear models in Experiment960

Set II, but not in Experiment Set I, suggesting that there are nonlinear961

relationships among the modeled data used in Experiment Set II. Snowpack962

distribution at the catchment scale has been shown to be highly nonlinear. It is963

possible that the spatially distributed sampling technique (Snowcloud wireless964

sensor network) used for ground-truthing in Experiment Set II captured965

some of the nonlinearity of snowpack distribution, while the single-location966

sampling (manual snow courses) used for Experiment Set I did not.967

When we naively divided our data at random to generate training and968

testing data, BT had much lower error than GP in experiments where time969

of year (TOY ) was an input variable. In these cases, BT models were much970

larger than PG models and we suspected that they were memorizing data971

by mapping TOY to snow depth. When we instead divided the data into972

more temporally contiguous training and testing data in order to prevent this973

behavior, BT model size decreased and GP outperformed BT.974

We emphasize that GP can flexibly incorporate new predictors of catchment-975

scale SWE into the models generated, augmenting its capacity to extrapolate976

estimates of mean catchment-wide SWE from a single point measurement.977

Genetic programming will make use of input data that helps explain the978

dependent variable while ignoring data that doesn’t. Our choice of indepen-979

dent variables was a result of intuitive guesses combined with constraints980

on available data. Topographic information was ruled out because we were981

unable to determine the precise locations of snow pillows. Multiple forms982

of meteorological data were available, but air temperature was the most983
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complete, allowing us to compose datasets large enough for effective machine984

learning. However, the inclusion of air temperature did not have a significant985

impact on model performance in our first experiment set, and so we did not986

use any meteorological data in our second experiment set.987

Because it has been shown that the forcing effects underlying snowpack988

distribution change over the course of a snow season, we introduced time989

of year (TOY ) as an independent variable so that models can distinguish990

seasonal differences. However, we found that nonlinear models used TOY to991

memorize the data by mapping TOY to ground truth measurements instead992

of expressing the underlying relationships of snowpack distribution. The993

ideal solution to this problem would be a multi-year study using spatially994

distributed data collected by Snowcloud. However, given the limitation of a995

one year dataset, we modified how data was divided to constrain the temporal996

proximity of training and testing data.997

We conducted two sets of experiments, using available data, as successive998

approximations of our goal of near-real-time catchment-scale SWE estima-999

tion. When ground truth was obtained from distributed sampling techniques1000

and when we were careful to mitigate overfitting to the TOY variable, GP1001

outperformed other techniques.1002
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Table 1: CDEC snow course site Descriptions

ID EL(m) Name Asp. Exposure
CAP 2438 Caples Lake SW open meadow, low brush
GRZ 2103 Grizzly Ridge N meadow in scattered timber
KT L 2225 Kettle Rock S sloping, open meadow
MSH 2408 Mount Shasta SE grassy and rocky meadow
NT H 2835 North Lake SE grassy meadow
SPD 1585 Lake Spaulding level grassy meadow
HIG 1838 Highland Lakes NW medium sized meadow in

dense timber
HYS 2012 Huysink W open meadow on one leg,

opening in timber on
second leg

Table 2: Experiment Set I data summary by CDEC site.

ID Pillow NCDC base Dist (Mi) Samples Years
CAP YES N/A N/A 177 1970-2011
GRZ YES N/A N/A 207 1970-2011
KT L YES N/A N/A 159 1979-2011
MSH NO Mount Shasta 5.98 137 1973-2011
NT H NO Bishop Airport 18.27 147 1973-2011
SPD NO Blue Canyon Nyack 4.56 174 1977-2011
HIG YES Mount Shasta 18.31 75 1980-2012
HYS YES Blue Canyon Nyack 9.79 111 1984-2011
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Table 3: Snowcloud deployment at Sulitjelma, Norway.

Tower Latitude Longitude
1 67.0981 16.0488
2 67.0983 16.0497
3 67.0983 16.0482
4 67.0987 16.0487

Table 4: Snowcloud deployment at the Sagehen Field Station, CA.

Tower Latitude Longitude
1 39.431612 -120.239759
2 39.431556 -120.239369
3 39.431402 -120.239761
4 39.431735 -120.238826
5 39.431734 -120.238644
6 39.432041 -120.238724

Table 5: GP Parameters.

parameter value
population size 1000 (Experiment Set I), 2000 (Set II)
number of generations 3000 (Experiment Set I), 10,000 (Set II)
max tree size 30
mutation operators crossover (60%), mutation (40%)
binary operators addition, subtraction, mult., division, power
unary operators log, exponential, sine, cosine,
terminals independent variables, constants values
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Table 6: Experiment Set I available model inputs by CDEC site.

Temp.
Temp. Temp. TOY TOY

ID Temp. TOY Pillow TOY Pillow Pillow Pillow
CAP x x x
GRZ x x x
KT L x x x
MSH x x x
NT H x x x
SPD x x x
HIG x x x x x x x
HYS x x x x x x x

Table 7: Experiment Set I summary.

Experiment Model inputs Locations
a air temp. MSH, NT H, SPD, HIG, HYS
b TOY all
c pillow CAP , GRZ, KT L, HIG, HYS
d air temp., TOY MSH, NT H, SPD, HIG, HYS
e air temp., pillow HIG, HYS
f TOY , pillow CAP , GRZ, KT L, HIG, HYS
g air temp., TOY , HIG, HYS

pillow

56



Table 8: Experiment Set II summary.

Experiment Location Model inputs
a Sulitjelma, Norway TOY
b Sulitjelma, Norway HS at Balvatn
c Sulitjelma, Norway HS at Balvatn, TOY
d Sagehen, California TOY
e Sagehen, California HS at HYS
f Sagehen, California HS at IDC
g Sagehen, California HS at HYS, TOY
h Sagehen, California HS at IDC, TOY

Table 9: Number of time HS and TOY appear in GP models in Experiment Set II

Experiment mixed data 4 bins 3 bins 2 bins
HS TOY HS TOY HS TOY HS TOY

c 54 61 38 23 43 23 36 10
g 52 80 29 53 20 65 16 43
h 50 69 18 63 19 58 19 33

total 156 210 85 139 82 146 71 86

Table 10: Number of time HS and TOY appear in BT models in Experiment Set II

Experiment mixed data 4 bins 3 bins 2 bins
HS TOY HS TOY HS TOY HS TOY

c 213 285 161 230 185 239 77 138
g 274 532 128 304 106 242 105 233
h 235 561 114 314 92 239 96 289

total 722 1378 403 848 383 720 278 660
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Figure 1: Using machine learning to model snowpack. First, the Snowcloud wireless sensor
network is deployed in an area near a snow pillow to collect distributed ground truth data.
Next, data generated by Snowcloud, by the pillow, and potentially other sources, is used by
machine learning to generate a model of snowpack distribution. Finally, after Snowcloud
has been removed, the model is used to estimate snow levels in the area where Snowcloud
had been deployed.
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Figure 2: SNOTEL site with snow pillow (USDA, 2014).
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y = balSd+ 2.307

+

balSd 2.307

y = balSd+ TOY−0.29

+

balSd pow

TOY -0.29

y = sin(sin(cos(41.20− log(TOY)) ∗ balSd))

sin

sin

*
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–

41.20 log

TOY
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Figure 3: Example GP trees. These trees are models of mean snow depth and can be read
as parse trees.
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Figure 4: Snowcloud WSN sensor tower. A complete sensor stand with solar-recharged
battery power, wireless mesh communication, and multiple sensor modalities. October
2011, Mammoth Mountain, CA.
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Figure 5: Manual snow survey. Gene Gutenberger drops a sampling tube into the snow
along California’s Highway 88 at Carson Pass. Kelly Cross records measurements (Kellum,
2014).
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Initialize

Evaluate

Select
Replicate/

Mutate

Generation 0
y = (log(x) + 8.293)−2

y = sin(x) + 0.388
y = (−x− 0.319)x

y = 1.303 ∗ x(x1.07)

Generation 1
y = sin(x) + 0.388
y = sin(x− 0.026) + 0.388

y = 1.303 ∗ x(x1.07)
y = 0.912 ∗ x(x1.07)

...

Generation n
y = cos(x ∗ 1.309)− (x0.501)
y = ((x− 0.026) ∗ 1.204) + 0.388

y = (0.912 ∗ x(x1.81))− 0.441
y = (7.337 ∗ (x1.81))− 8.139

Figure 6: Genetic programming algorithm. The figure on the left demonstrates the iterative
process through which GP modifies a population of solutions over time. On the right,
a population of four models evolves as each iteration of the GP cycle produces a new
generation.
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(a) Random division: dataset is randomly divided into three subsets of equal size.

(b) Four bins: dataset is divided into four temporally contiguous bins, which are
each divided into three temporally contiguous subsets.

(c) Three bins: dataset is divided into three temporally contiguous bins, which are
each divided into three temporally contiguous subsets.

(d) Two bins: dataset is divided into two temporally contiguous bins, which are
each divided into three temporally contiguous subsets.

(e) Three bin case illustrating random offset.

Figure 7: Techniques for dividing a chronologically ordered dataset into g , s , and τ (white,
light grey, and dark grey respectively).

1209
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Figure 8: Example multi-objective optimization Pareto fronts. Squares mark the knee
model. Triangles mark the model returned by the selection set method. These plots
illustrate that Pareto fronts contain a range of solutions, from small models with high
error to large models with low error. It also shows that the model which represents an
optimal compromise between size and performance on training data (the knee model) may
not be the one that performs best on unseen data (the selection set model). This sample
of four fronts demonstrates the variety of non-dominated populations that multi-objective
optimization can generate.
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Figure 9: Experiment Set I results: CAP, GRZ, and KT L.
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Figure 10: Experiment Set I results: MSH, NT H, and SPD.
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Figure 11: Experiment Set I results: HIG.
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Figure 12: Experiment Set I results: HYS.
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Figure 13: Experiment Set II (random division) model error.
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Figure 14: Experiment Set II (four bins) model error.
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Figure 15: Experiment Set II (three bins) model error.
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Figure 16: Experiment Set II (two bins) model error.
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Figure 17: Experiment Set II (random division) model size.
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Figure 18: Experiment Set II (four bins) model size.
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Figure 19: Experiment Set II (three bins) model size.
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Figure 20: Experiment Set II (two bins) model size.
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