
Correct Audit Logging: Theory and Practice

Sepehr Amir-Mohammadian1, Stephen Chong2, and Christian Skalka1

1 University of Vermont, {samirmoh,ceskalka}@uvm.edu
2 Harvard University, chong@seas.harvard.edu

Abstract. Retrospective security has become increasingly important to the the-
ory and practice of cyber security, with auditing a crucial component of it. How-
ever, in systems where auditing is used, programs are typically instrumented to
generate audit logs using manual, ad-hoc strategies. This is a potential source of
error even if log analysis techniques are formal, since the relation of the log itself
to program execution is unclear. This paper focuses on provably correct program
rewriting algorithms for instrumenting formal logging specifications. Correctness
guarantees that the execution of an instrumented program produces sound and
complete audit logs, properties defined by an information containment relation
between logs and the program’s logging semantics. We also propose a program
rewriting approach to instrumentation for audit log generation, in a manner that
guarantees correct log generation even for untrusted programs. As a case study,
we develop such a tool for OpenMRS, a popular medical records management
system, and consider instrumentation of break the glass policies.

1 Introduction

Retrospective security is the enforcement of security, or detection of security violations,
after program execution [33, 36, 40]. Many real-world systems use retrospective secu-
rity. For example, the financial industry corrects errors and fraudulent transactions not
by proactively preventing suspicious transactions, but by retrospectively correcting or
undoing these problematic translations. Another example is a hospital whose employ-
ees are trusted to access confidential patient records, but who might (rarely) violate this
trust [17]. Upon detection of such violations, security is enforced retrospectively by
holding responsible employees accountable [41].

Retrospective security cannot be achieved entirely by traditional computer security
mechanisms, such as access control, or information-flow control. Reasons include that
detection of violations may be external to the computer system (such as consumer re-
ports of fraudulent transactions, or confidential patient information appearing in news
media), the high cost of access denial (e.g., preventing emergency-room physicians
from accessing medical records) coupled with high trust of systems users (e.g., users
are trusted employees that rarely violate this trust) [42]. In addition, remediation actions
to address violations may also be external to the computer system, such as reprimand-
ing employees, prosecuting law suits, or otherwise holding users accountable for their
actions [41].

Auditing underlies retrospective security frameworks and has become increasingly
important to the theory and practice of cyber security. By maintaining a record of ap-
propriate aspects of a computer system’s execution, an audit log (and subsequent exam-
ination of the audit log) can enable detection of violations, provide sufficient evidence

to hold users accountable for their actions, and support other remediation actions. For
example, an audit log can be used to determine post facto which users performed dan-
gerous operations, and can provide evidence for use in litigation.

However, despite the importance of auditing to real-world security, relatively little
work has focused on the formal foundations of auditing, particularly with respect to
defining and ensuring the correctness of audit log generation. Indeed, correct and effi-
cient audit log generation poses at least two significant challenges. First, it is necessary
to record sufficient and correct information in the audit log. If a program is manually
instrumented, it is possible for developers to fail to record relevant events. Recent work
showed that major health informatics systems do not log sufficient information to de-
termine compliance with HIPAA policies [30]. Second, an audit log should ideally not
contain more information than needed. While it is straightforward to collect sufficient
information by recording essentially all events in a computer system, this can cause per-
formance issues, both slowing down the system due to generating massive audit logs,
and requiring the handling of extremely large audit logs. Excessive data collection is a
key challenge for auditing [23, 14, 29], and is a critical factor in the design of tools that
generate and employ audit logs (e.g., spam filters [15]).

A main goal of this paper is to establish formal conditions for audit logs, that can be
used to establish correctness conditions for logging instrumentation. We define a gen-
eral semantics of audit logs using the theory of information algebra [32], and interpret
both program execution traces and audit logs as information elements. A logging spec-
ification defines the intended relation between the information in traces and in audit
logs. An audit log is correct if it satisfies this relation. A benefit of this formulation is
that it separates logging specifications from programs, rather than burying them in code
and implementation details.

Separating logging specifications from programs allows a clean declaration of what
instrumentation should accomplish, and enables algorithms for implementing general
classes of logging specifications that are provably correct. As we will show, correct in-
strumentation of logging specifications is a safety property, hence enforceable by secu-
rity automata [38]. Inspired by related approaches to security automata implementation
[21], we focus on program rewriting to automatically enforce correct audit instrumenta-
tion. Program rewriting has a number of practical benefits versus, for example, program
monitors, such as lower OS process management overhead.

We consider a case study of our approach, a program rewriting algorithm for correct
instrumentation of logging specifications in OpenMRS (openmrs.org), a popular
open source medical records software system. Our tool allows system administrators to
define logging specifications which are automatically instrumented in OpenMRS legacy
code. Implementation details and optimizations are handled transparently by the general
program rewriting algorithm, not the logging specification. Formal foundations ensure
that logging specifications are implemented correctly by the algorithm. In particular,
we show how our system can implement “break the glass” auditing policies.

1.1 A Motivating Example from Practice

Although audit logs contain information about program execution, they are not just
a straightforward selection of program events. Illustrative examples from practice in-

2

clude so-called “break the glass policies” used in electronic medical record systems
[35]. These policies use access control to disallow care providers from performing sen-
sitive operations such as viewing patient records, however care providers can “break the
glass” in an emergency situation to temporarily raise their authority and access patient
records, with the understanding that subsequent sensitive operations will be logged and
potentially audited. One potential accountability goal is the following:

In the event that a patient’s sensitive information is inappropriately leaked,
determine who accessed a given patient’s files due to “breaking the glass.”

Since it cannot be predicted a priori whose information may leak, this goal can be
supported by using an audit log that records all reads of sensitive files following glass
breaking. To generate correct audit logs, programs must be instrumented for logging
appropriately, i.e., to implement the following logging specification that we call LSH :

LSH : Record in the log all patient information file reads following a break the
glass event, along with the identity of the user that broke the glass.

If at some point in time in the future it is determined that a specific patient P’s informa-
tion was leaked, logs thus generated can be analyzed with the following query that we
call LQH :

LQH : Retrieve the identity of all users that read P’s information files.

The specification LSH and the query LQH together constitute an auditing policy that
directly supports the above-stated accountability goal. Their separation is useful since
at the time of execution the information leak is unknown, hence P is not known. Thus
while it is possible to implement LSH as part of program execution, LQH must be
implemented retrospectively.

It is crucial to the enforcement of the above accountability goal that LSH is im-
plemented correctly. If logging is incomplete then some potential recipients may be
missed. If logging is overzealous then bloat is possible and audit logs become “write
only”. These types of errors are common in practice [30]. To establish formal correct-
ness of instrumentation for audit logs, it is necessary to define a formal language of log-
ging specifications, and establish techniques to guarantee that instrumented programs
satisfy logging specifications. That is the focus of this paper. Other work has focused
on formalisms for querying logs [39, 18], however these works presuppose correctness
of audit logs for true accountability.

1.2 Threat Model

With respect to program rewriting (i.e., automatic techniques to instrument existing
programs to satisfy a logging specification), we regard the program undergoing instru-
mentation as untrusted. That is, the program source code may have been written to
avoid, confuse, or subvert the automatic instrumentation techniques. We do, however,
assume that the source code is well-formed (valid syntax, well-typed, etc.). Moreover,
we trust the compiler, the program rewriting algorithm, and the runtime environment in
which the instrumented program will ultimately be executed. Confidentiality and non-
malleability of generated audit logs, while important, is beyond the scope of this paper.

3

2 A Semantics of Audit Logging

Our goal in this Section is to formally characterize logging specifications and correct-
ness conditions for audit logs. To obtain a general model, we leverage ideas from the
theory of information algebra [32], which is an abstract mathematical framework for
information systems. In short, we interpret program traces as information, and logging
specifications as functions from traces to information. This separates logging specifica-
tions from their implementation in code, and defines exactly the information that should
be in an audit log. This in turn establishes correctness conditions for audit logging im-
plementations.

Following [38], an execution trace τ = κ0κ1κ2 . . . is a possibly infinite sequence of
configurations κ that describe the state of an executing program. We deliberately leave
configurations abstract, but examples abound and we explore a specific instantiation
for a λ-calculus in Section 4. Note that an execution trace τ may represent the partial
execution of a program, i.e. the trace τ may be extended with additional configurations
as the program continues execution. We use metavariables τ and σ to range over traces.

An information algebra contains information elements X (e.g. a set of logical as-
sertions) taken from a set Φ (the algebra). A partial ordering is induced on Φ by the
so-called information ordering relation ≤, where intuitively for X,Y ∈ Φ we have
X ≤ Y iff Y contains at least as much information as X , though its precise meaning
depends on the particular algebra. We say thatX and Y are information equivalent, and
write X = Y , iff X ≤ Y and Y ≤ X . We assume given a function b·c that is an injec-
tive mapping from traces to Φ. This mapping interprets a given trace as information,
where the injective requirement ensures that information is not lost in the interpretation.
For example, if σ is a proper prefix of τ and thus contains strictly less information, then
formally bσc ≤ bτc. We intentionally leave both Φ and b·c underspecified for general-
ity, though application of our formalism to a particular logging implementation requires
instantiation of them. We discuss an example in Section 3.

We let LS range over logging specifications, which are functions from traces to Φ.
As for Φ and b·c, we intentionally leave the language of specifications abstract, but con-
sider a particular instantiation in Section 3. Intuitively, LS (τ) denotes the information
that should be recorded in an audit log during the execution of τ given specification LS ,
regardless of whether τ actually records any log information, correctly or incorrectly.
We call this the semantics of the logging specification LS .

We assume that auditing is implementable, requiring at least that all conditions for
logging any piece of information must be met in a finite amount of time. As we will
show, this restriction implies that correct logging instrumentation is a safety property
[38].

Definition 1. We require of any logging specification LS that for all traces τ and in-
formation X ≤ LS (τ), there exists a finite prefix σ of τ such that X ≤ LS (σ).

It is crucial to observe that some logging specifications may add information not
contained in traces to the auditing process. Security information not relevant to program
execution (such as ACLs), interpretation of event data (statistical or otherwise), etc.,
may be added by the logging specification. For example, in the OpenMRS system,
logging of sensitive operations includes a human-understandable “type” designation

4

which is not used by any other code. Thus, given a trace τ and logging specification
LS , it is not necessarily the case that LS (τ) ≤ bτc. Audit logging is not just a filtering
of program events.

2.1 Correctness Conditions for Audit Logs

A logging specification defines what information should be contained in an audit log.
In this section we develop formal notions of soundness and completeness as audit log
correctness conditions. We use metavariable L to range over audit logs. Again, we in-
tentionally leave the language of audit logs unspecified, but assume that the function b·c
is extended to audit logs, i.e. b·c is an injective mapping from audit logs to Φ. Intuitively,
bLc denotes the information in L, interpreted as an element of Φ.

An audit log L is sound with respect to a logging specification LS and trace τ if the
log information is contained in LS (τ). Similarly, an audit log is complete with respect
to a logging specification if it contains all of the information in the logging specifi-
cation’s semantics. Crucially, both definitions are independent of the implementation
details that generate L.

Definition 2. Audit log L is sound with respect to logging specification LS and execu-
tion trace τ iff bLc ≤ LS (τ). Similarly, audit log L is complete with respect to logging
specification LS and execution trace τ iff LS (τ) ≤ bLc.

The relation to log queries. As discussed in Section 1.1, we make a distinction be-
tween logging specifications such as LSH which define how to record logs, and log
queries such as LQH which ask questions of logs, and our notions of soundness and
completeness apply strictly to logging specifications. However, any logging query must
assume a logging specification semantics, hence a log that is demonstrably sound and
complete provides the same answers on a given query that an “ideal” log would. This is
an important property that is discussed in previous work, e.g. as “sufficiency” in [6].

2.2 Correct Logging Instrumentation is a Safety Property

In case program executions generate audit logs, we write τ ; L to mean that a finite
trace τ generates L, i.e. τ = κ0 . . . κn and logof (κn) = L where logof (κ) denotes the
audit log in configuration κ, i.e. the residual log after execution of the full trace. Ideally,
information that should be added to an audit log, is added to an audit log, immediately
as it becomes available. This ideal is formalized as follows.

Definition 3. For all logging specifications LS , the trace τ is ideally instrumented for
LS iff for all finite prefixes σ of τ we have σ ; L where L is sound and complete with
respect to LS and σ.

We observe that the restriction imposed on logging specifications by Definition 1,
implies that ideal instrumentation of any logging specification is a safety property in
the sense defined by Schneider [38]1.

1 The proofs of Theorems 1-5 in this text are omitted for brevity, but are available in a related
Technical Report [3].

5

Theorem 1. For all logging specifications LS , the set of ideally instrumented traces is
a safety property.

This result implies that e.g. edit automata can be used to enforce instrumentation of
logging specifications (see our Technical Report [3]). However, theory related to safety
properties and their enforcement by execution monitors [38, 4] do not provide an ad-
equate semantic foundation for audit log generation, nor an account of soundness and
completeness of audit logs.

2.3 Implementing Logging Specifications with Program Rewriting

The above-defined correctness conditions for audit logs provide a foundation on which
to establish correctness of logging implementations. Here we consider program rewrit-
ing approaches. Since rewriting concerns specific languages, we introduce an abstract
notion of programs p with an operational semantics that can produce a trace τ . We
write p ⇓ σ iff program p can produce execution trace τ , either deterministically or
non-deterministically, and σ is a finite prefix of τ .

A rewriting algorithm R is a (partial) function that takes a program p in a source
language and a logging specification LS and produces a new program, R(p,LS), in a
target language.2 The intent is that the target program is the result of instrumenting p to
produce an audit log appropriate for the logging specification LS . A rewriting algorithm
may be partial, in particular because it may only be intended to work for a specific set
of logging specifications.

Ideally, a rewriting algorithm should preserve the semantics of the program it in-
struments. That is, R is semantics-preserving if the rewritten program simulates the
semantics of the source code, modulo logging steps. We assume given a correspon-
dence relation :≈ on execution traces. A coherent definition of correspondence should
be similar to a bisimulation, but it is not necessarily symmetric nor a bisimulation,
since the instrumented target program may be in a different language than the source
program. We deliberately leave the correspondence relation underspecified, as its defi-
nition will depend on the instantiation of the model. We provide an explicit definition
of correspondence for λ-calculus source and target languages in Section 4.

Definition 4. Rewriting algorithmR is semantics preserving iff for all programs p and
logging specifications LS such thatR(p,LS) is defined, all of the following hold:

1. For all traces τ such that p ⇓ τ there exists τ ′ with τ :≈ τ ′ andR(p,LS) ⇓ τ ′.
2. For all traces τ such that R(p,LS) ⇓ τ there exists a trace τ ′ such that τ ′ :≈ τ

and p ⇓ τ ′.

In addition to preserving program semantics, a correctly rewritten program con-
structs a log in accordance with the given logging specification. More precisely, if LS
is a given logging specification and a trace τ describes execution of a source program,
rewriting should produce a program with a trace τ ′ that corresponds to τ (i.e., τ :≈ τ ′),

2 We use metavariable p to range over programs in either the source or target language; it will
be clear from context which language is used.

6

where the log L generated by τ ′ contains the same information as LS (τ), or at least a
sound approximation. Some definitions of :≈ may allow several target-language traces
to correspond to source-language traces (as for example in Section 4, Definition 10). In
any case, we expect that at least one simulation exists. Hence we write simlogs(p, τ) to
denote a nonempty set of logs L such that, given a finite source language trace τ and
target program p, there exists some trace τ ′ where p ⇓ τ ′ and τ :≈ τ ′ and τ ′ ; L.
The name simlogs evokes the relation to logs resulting from simulating executions in
the target language.

The following definitions then establish correctness conditions for rewriting algo-
rithms. Note that satisfaction of either of these conditions only implies condition (1) of
Definition 4, not condition (2), so semantics preservation is an independent condition.

Definition 5. Rewriting algorithm R is sound/complete iff for all programs p, logging
specifications LS , and finite traces τ where p ⇓ τ , for all L ∈ simlogs(R(p,LS), τ) it
is the case that L is sound/complete with respect to LS and τ .

3 Languages for Logging Specifications

Now we go into more detail about information algebra and why it is a good foundation
for logging specifications and semantics. We use the formalism of information algebras
to characterize and compare the information contained in an audit log with the informa-
tion contained in an actual execution. For a detailed account of information algebra, the
reader is referred to a definitive survey paper [32]– available space disallows a detailed
account here. In short, in addition to a definition of the elements of Φ, any information
algebra Φ includes two basic operators:

– Combination: The operation X ⊗ Y combines the information in elements X,Y ∈
Φ.

– Focusing: The operation X⇒S isolates the elements of X ∈ Φ that are relevant to
a sublanguage S, i.e. the subpart of X specified by S.

Focusing and combination must additionally satisfy certain properties (see our Techni-
cal Report [3]). The definitions of elements X ∈ Φ, sublanguages S, combination, and
focusing constitute the definition of the algebra. In all cases, the relation X ≤ Y holds
iff X ⊗ Y = Y . Proving that ⊗ has been correctly defined for an algebra implies that
≤ is a partial order [32].

3.1 Support for Various Approaches

Various approaches are taken to audit log generation and representation, including log-
ical [18], database [1], and probabilistic approaches [43]. Information algebra is suf-
ficiently general to contain relevant systems as instances, so our notions of soundness
and completeness can apply broadly. Here we discuss logical and database approaches.

7

First Order Logic (FOL) Logics have been used in several well-developed auditing
systems [24, 10], for the encoding of both audit logs and queries. FOL in particular is
attractive due to readily available implementation support, e.g. Datalog and Prolog.

Let Greek letters φ and ψ range over FOL formulas and let capital letters X,Y, Z
range over sets of formulas. We posit a sound and complete proof theory supporting
judgements of the form X ` φ. In this text we assume without loss of generality a
natural deduction proof theory.

Elements of our algebra are sets of formulas closed under logical entailment. Intu-
itively, given a set of formulas X , the closure of X is the set of formulas that are log-
ically entailed by X , and thus represents all the information contained in X . In spirit,
we follow the treatment of sentential logic as an information algebra explored in related
foundational work [32], however our definition of closure is syntactic, not semantic.

Definition 6. We define a closure operation C, and a set ΦFOL of closed sets of formu-
las:

C(X) = {φ | X ` φ} ΦFOL = {X | C(X) = X}

Note in particular that C(∅) is the set of logical tautologies.

Let Preds be the set of all predicate symbols, and let S ⊆ Preds be a set of predicate
symbols. We define sublanguage LS to be the set of well-formed formulas over predi-
cate symbols in S (and including boolean atoms T and F , and closed under the usual
first-order connectives and binders). We will use sublanguages to define refinement
operations in our information algebra. Subset containment induces a lattice structure,
denoted S, on the set of all sublanguages, with F = LPreds as the top element.

Now we can define the focus and combination operators, which are the fundamental
operators of an information algebra. Focusing isolates the component of a closed set of
formulas that is in a given sublanguage. Combination closes the union of closed sets of
formulas. Intuitively, the focus of a closed set of formulas X to sublanguage L is the
refinement of the information inX to the formulas in L. The combination of closed sets
of formulas X and Y combines the information of each set.

Definition 7. Define:

1. Focusing: X⇒S = C(X ∩ LS) where X ∈ ΦFOL, S ⊆ Preds
2. Combination: X ⊗ Y = C(X ∪ Y) where X,Y ∈ ΦFOL

These definitions of focusing and combination enjoy a number of properties within
the algebra, as stated in the following Theorem, establishing that the construction is a
domain-free information algebra [31]. FOL has been treated as an information algebra
before, but our definitions of combination and focusing and hence the result are novel.

Theorem 2. Structure (ΦFOL,S) with focus operation X⇒S and combination opera-
tion X ⊗ Y forms a domain-free information algebra.

In addition, to interpret traces and logs as elements of this algebra, i.e. to define
the function b·c, we assume existence of a function toFOL(·) that injectively maps
traces and logs to sets of FOL formulas, and then take b·c = C(toFOL(·)). To define

8

the range of toFOL(·), that is, to specify how trace information will be represented in
FOL, we assume the existence of configuration description predicates P which are each
at least unary. Each configuration description predicate fully describes some element of
a configuration κ, and the first argument is always a natural number t, indicating the
time at which the configuration occurred. A set of configuration description predicates
with the same timestamp describes a configuration, and traces are described by the
union of sets describing each configuration in the trace. In particular, the configuration
description predicates include predicate Call(t, f, x), which indicates that function f
is called at time t with argument x. We will fully define toFOL(·) when we discuss
particular source and target languages for program rewriting.

Example 1. We return to the example described in Section 1.1 to show how FOL can
express break the glass logging specifications. Adapting a logic programming style, the
trace of a program can be viewed as a fact base, and the logging specification LSH
performs resolution of a LoggedCall predicate, defined via the following Horn clause
we call ψH :

∀t, d, s, u.(Call(t, read, u, d) ∧ Call(s,breakGlass, u) ∧ s < t ∧ PatientInfo(d))
=⇒ LoggedCall(t, read, u, d)

Here we imagine that breakGlass is a break the glass function where u identifies the
current user and PatientInfo is a predicate specifying which files contain patient infor-
mation. The log contains only valid instances of LoggedCall given a particular trace,
which specify the user and sensitive information accessed following glass breaking,
which otherwise would be disallowed by a separate access control policy.

Formally, we define logging specifications in a logic programming style by using
combination and focusing. Any logging specification is parameterized by a sublanguage
S that identifies the predicate(s) to be resolved and Horn clauses X that define it/them,
hence we define a functional spec from pairs (X,S) to specifications LS , where we use
λ as a binder for function definitions in the usual manner:

Definition 8. The function spec is given a pair (X,S) and returns a FOL logging spec-
ification, i.e. a function from traces to elements of ΦFOL:

spec(X,S) = λτ.(bτc ⊗ C(X))
⇒S

.

In any logging specification spec(X,S), we call X the guidelines.

The above example LSH would then be formally defined as spec(ψH , {LoggedCall}).

Relational Database Relational algebra is a canonical example of an information al-
gebra, though we provide a different formulation than the standard one [32] since the
latter is not suited to our purpose here. We define databasesD as sets of relations, where
a relation X is a set of tuples. We write ((a1 : x1), ..., (an : x1)) to denote an n-ary
tuple with attributes (aka label) ai associated with values xi. Databases are elements of
the information algebra, and sublanguages S are collections of sets of attributes. Each
set of attributes corresponds to a specific relation. We define focusing as the restric-
tion to particular relations in a database, and combination as the union of databases.

9

Hence, letting≤RA denote the relational algebra information ordering, D1 ≤RA D2 iff
D1 ⊗ D2 = D2. We refer to this algebra as ΦRA. The details of our formulation and
the proof that it satisfies the required properties is given in our Technical Report [3].
Relational databases are heavily used for storing and querying audit logs, so this for-
mulation is crucial for practical application of our correctness properties, as discussed
in Section 5.

3.2 Transforming and Combining Audit Logs

Multiple audit logs from different sources are often combined in practice. Also, log-
ging information is often transformed for storage and communication. For example,
log data may be generated in common event format (CEF), which is parsed and stored
in relational database tables, and subsequently exported and communicated via JSON.
In all cases, it is necessary to characterize the effect of transformation (if any) on log
information, and relate queries on various representations to the logging specification
semantics. Otherwise, it is unclear what is the relation of log queries to log-generating
programs.

To address this, information algebra provides a useful concept called monotone
mapping. Given two information algebras Ψ1 and Ψ2 with ordering relations ≤1 and
≤2 respectively, a mapping µ from elements X,Y of Ψ1 to elements µ(X), µ(Y) of Ψ2

is monotone iff X ≤1 Y implies µ(X) ≤2 µ(Y). For example, assuming that Ψ1 is our
FOL information algebra while Ψ2 is relational algebra, we can define a monotone map-
ping using a least Herbrand interpretation [11], denoted H, and by positing a function
attrs from n-ary predicate symbols to functions mapping numbers 1, ..., n to labels.
That is, attrs(P)(n) is the label associated with the nth argument of predicate P. We
require that if P 6= Q then attrs(P)(j) 6= attrs(Q)(k) for all j, k. To map predicates
to tuples we have:

tuple(P(x1, . . . , xn)) = ((attrs(P)(1) : x1), . . . , (attrs(P)(n) : xn))

Then to obtain a relation from all valid instances of a particular predicate P given for-
mulas X we define:

RP(X) = {tuple(P(x1, . . . , xn)) | P(x1, . . . , xn) ∈ H(X)}

Now we define the function rel which is collection of all relations obtained from
X , where P1, ...,Pn are the predicate symbols occurring in X:

rel(X) = {RP1
(X), · · · , RPn

(X)}

Theorem 3. rel is a monotone mapping.

Thus, if we wish to generate an audit log L as a set of FOL formulas, but ultimately
store the data in a relational database, we are still able to maintain a formal relation
between stored logs and the semantics of a given trace τ and specification LS . E.g., if
a log L is sound with respect to τ and LS , then rel(bLc) ≤RA rel(LS (τ)). While the
data in rel(bLc) may very well be broken up into multiple relations in practice, e.g. to

10

compress data and/or for query optimization, the formalism also establishes correctness
conditions for the transformation that relate resulting information to the logging seman-
tics LS (τ) by way of the mapping. We reify this idea in our OpenMRS implementation
as discussed in Section 5.2.

4 Rewriting Programs with Logging Specifications

Since correct logging instrumentation is a safety property (2.2), there are several pos-
sible implementation strategies. For example, one could define an edit automata that
enforces the property (see our Technical Report [3]), that could be implemented either
as a separate program monitor or using IRM techniques [21]. But since we are interested
in program rewriting for a particular class of logging specifications, the approach we
discuss here is more simply stated and proven correct than a general IRM methodology.

We specify a class of logging specifications of interest, along with a program rewrit-
ing algorithm that is sound and complete for it. We consider a basic λ-calculus that
serves as formal setting to establish correctness of a program rewriting approach to cor-
rect instrumentation of logging specification. We use this same approach to implement
an auditing tool for OpenMRS, described in the next Section. The supported class of
logging specifications is predicated on temporal properties of function calls and char-
acteristics of their arguments. This class has practical potential since security-sensitive
operations are often packaged as functions or methods (e.g. in medical records software
[37]), and the supported class allows complex policies such as break the glass to be ex-
pressed. The language of logging specifications is FOL, and we use ΦFOL to define the
semantics of logging and prove correctness of the algorithm.

4.1 Source Language

We first define a source language Λcall, including the definitions of configurations, ex-
ecution traces, and function toFOL(·) that shows how we concretely model execution
traces in FOL.

Language Λcall is a simple call-by-value λ-calculus with named functions. A Λcall

program is a pair (e, C) where e is an expression, and C is a codebase which maps
function names to function definitions. A Λcall configuration is a triple (e, n, C), where
e is the expression remaining to be evaluated, n is a timestamp (a natural number) that
indicates how many steps have been taken since program execution began, and C is a
codebase. The codebase does not change during program execution.

The syntax of Λcall is as follows.

v ::= x | f | λx. e values

e ::= e e | v expressions

E ::= [] | E e | v E evaluation contexts

κ ::= (e, n, C) configurations

p ::= (e, C) programs

11

The small-step semantics of Λcall is defined as follows.

β

((λx. e) v, n, C)→ (e[v/x], n+ 1, C)

βCall

C(f) = λx. e

(f v, n, C)→ (e[v/x], n+ 1, C)

Context
(e, n, C)→ (e′, n′, C)

(E[e], n, C)→ (E[e′], n′, C)

An execution trace τ is a sequence of configurations, and for a program p = (e, C)
and execution trace τ = κ0 . . . κn we define p ⇓ τ if and only if κ0 = (e, 0, C) and for
all i ∈ 1..n we have κi−1 → κi.

We now show how to model a configuration as a set of ground instances of pred-
icates, and then use this to model execution traces. We posit predicates Call, App,
Value, Context, and Codebase to logically denote run time entities. For κ = (e, n, C),
we define toFOL(κ) by cases, where 〈C〉n =

⋃
f∈dom(C)

{Codebase(n, f , C(f))}3.

toFOL(v, n, C) = {Value(n, v)} ∪ 〈C〉n
toFOL(E[f v], n, C) = {Call(n, f , v),Context(n,E)} ∪ 〈C〉n

toFOL(E[(λx. e) v)], n, C) = {App(n, (λx.e), v),Context(n,E)} ∪ 〈C〉n
We define toFOL(τ) for a potentially infinite execution trace τ = κ0κ1 . . . by defining
it over its prefixes. Let prefix(τ) denote the set of prefixes of τ . Then, toFOL(τ) =⋃
σ∈prefix(τ) toFOL(σ), where toFOL(σ) = toFOL(κ0) ∪ · · · ∪ toFOL(κn), for σ =

κ0 . . . κn. Function toFOL(·) is injective up to α-equivalence since toFOL(τ) fully
and uniquely describes the execution trace τ .

4.2 Specifications Based on Function Call Properties

We define a class Calls of logging specifications that capture temporal properties of
function calls, such as those reflected in break the glass policies. We restrict specifica-
tion definitions to safe Horn clauses to ensure applicability of well-known results and
total algorithms such as Datalog [11]. Specifications in Calls support logging of calls
to a specific function f that happen after functions g1, . . . ,gn are called. Conditions
on all function arguments, and times of their invocation, can be defined via a predicate
φ. Hence more precise requirements can be imposed, e.g. a linear ordering on function
calls, particular values of functions arguments, etc.

Definition 9. Calls is the set of all logging specifications spec(X, {LoggedCall})
where X contains a safe Horn clause of the following form:

∀t0, . . . , tn, x0, . . . , xn .Call(t0, f , x0)

n∧
i=1

(Call(ti,gi, xi) ∧ ti < t0) ∧

φ((x0, t0), . . . , (xn, tn)) =⇒ LoggedCall(t0, f , x0).

3 While Λcall expressions and evaluation contexts appear as predicate arguments, their syntax
can be written as string literals to conform to typical Datalog or Prolog syntax.

12

While setX may contain other safe Horn clauses, in particular definitions of predicates
occurring in φ, no other Horn clause in X uses the predicate symbols LoggedCall,
Value, Context, Call, App, or Codebase. For convenience in the following, we define
Logevent(LS) = f and Triggers(LS) = {g1, ...,gn}.

We note that specifications in Calls clearly satisfy Definition 1, since preconditions for
logging a particular call to f must be satisfied at the time of that call.

4.3 Target Language

The syntax of target language Λlog extends Λcall syntax with a command to track log-
ging preconditions (callEvent(f , v)), i.e. calls to logging triggers, and a command to
emit log entries (emit(f , v)). Configurations are extended to include a set X of logging
preconditions, and an audit log L.

e ::= . . . | callEvent(f , v); e | emit(f , v); e expressions

κ ::= (e,X, n,L, C) configurations

The semantics of Λlog extends the semantics of Λcall with new rules for commands
callEvent(f , v) and emit(f , v), which update the set of logging preconditions and au-
dit log respectively. An instrumented program uses the set of logging preconditions to
determine when it should emit events to the audit log. The semantics is parameterized
by a guidelineXGuidelines , typically taken from a logging specification. Given the defi-
nition of Calls, these semantics would be easy to implement using e.g. a Datalog proof
engine.

Precondition

(callEvent(f , v); e,X, n,L, C)→ (e,X ∪ {Call(n− 1, f , v)}, n,L, C)

Log
X ∪XGuidelines ` LoggedCall(n− 1, f , v)

(emit(f , v); e,X, n,L, C)→ (e,X, n,L ∪ {LoggedCall(n− 1, f , v)}, C)

NoLog
X ∪XGuidelines 6` LoggedCall(n− 1, f , v)

(emit(f , v); e,X, n,L, C)→ (e,X, n,L, C)

Note that to ensure that these instrumentation commands do not change execu-
tion behavior, the configuration’s time is not incremented when callEvent(f , v) and
emit(f , v) are evaluated. That is, the configuration time counts the number of source
language computation steps.

The rules Log and NoLog rely on checking whether XGuidelines and logging pre-
conditions X entail LoggedCall(n− 1, f , v). For a target language program p = (e, C)
and execution trace τ = κ0 . . . κn we define p ⇓ τ if and only if κ0 = (e, ∅, 0, ∅, C) and
for all i ∈ 1..n we have κi−1 → κi.

13

To establish correctness of program rewriting, we need to define a correspondence
relation :≈. Source language execution traces and target language execution traces cor-
respond if they represent the same expression evaluated to the same point. We make
special cases for when the source execution is about to perform a function application
that the target execution will track or log via an callEvent(f , v) or emit(f , v) com-
mand. In these cases, the target execution may be ahead by one or two steps, allowing
time for addition of information to the log.

Definition 10. Given source language execution trace τ = κ0 . . . κm and target lan-
guage execution trace τ ′ = κ′0 . . . κ

′
n, where κi = (ei, ti, Ci) and κ′i = (e′i, Xi, t

′
i,Li, C′i),

τ :≈ τ ′ iff e0 = e′0 and either

1. em = e′n (taking = to mean syntactic equivalence); or
2. em = e′n−1 and e′n = callEvent(f , v); e′ for some expressions f , v, and e′; or
3. em = e′n−2 and e′n = emit(f , v); e′ for some expressions f , v, and e′.

Finally, we need to define toFOL(L) for audit logs L produced by an instrumented
program. Since our audit logs are just sets of formulas of the form LoggedCall(t, f , v),
we define toFOL(L) = L.

4.4 Program Rewriting Algorithm

Our program rewriting algorithm RΛcall
takes a Λcall program p = (e, C), a logging

specification LS = spec(XGuidelines , {LoggedCall}) ∈ Calls, and produces a Λlog

program p′ = (e′, C′) such that e and e′ are identical, and C′ is identical to C except for
the addition of callEvent(h, v) and emit(h, v) commands. The algorithm is straightfor-
ward: we modify the codebase to add callEvent(h, v) to the definition of any function
h ∈ Triggers(LS) ∪ {Logevent(LS)} and add emit(f , v) to the definition of function
f = Logevent(LS).

Definition 11. For Λcall program p = (e, C) and logging specifications LS ∈ Calls,
define:

RΛcall
((e, C),LS) = (e, C′)

where C′(f) =
λx.callEvent(f , x); emit(f , x); ef if f = Logevent(LS) and C(f) = λx.ef

λx.callEvent(f , x); ef if f ∈ Triggers(LS) and C(f) = λx.ef

C(f) otherwise

This algorithm obeys the required properties, i.e. it is both semantics preserving and
sound and complete for a given logging specification.

Theorem 4. AlgorithmRΛcall
is semantics preserving (Definition 4).

Theorem 5 (Soundness and Completeness). AlgorithmRΛcall
is sound and complete

(Definitions 5).

14

5 Case Study on a Medical Records System

As a case study, we have developed a tool [2] that enables automatic instrumentation
of logging specifications for the OpenMRS system. The implementation is based on
the formal model developed in Section 4 which enjoys a correctness guarantee. The
logging information is stored in a SQL database consisting of multiple tables, and the
correctness of this scheme is established via the monotone mapping defined in Section
3.2. We have also considered how to reduce memory overhead as a central optimization
challenge.

OpenMRS is a Java-based open-source web application for medical records, built
on the Spring Framework. Previous efforts in auditing for OpenMRS include recording
any modification to the database records as part of the OpenMRS core implementation,
and logging every function call to a set of predefined records. The latter illustrates the
relevance of function invocations as a key factor in logging. Furthermore, function calls
define the fundamental unit of “secure operations” in OpenMRS access control [37].
This highlights the relevance of our Calls logging specification class, particularly as it
pertains to specification of break the glass policies, which are sensitive to authorization.

In contrast to previous auditing solutions for OpenMRS, ours allows security admin-
istrators to define logging specifications separately from code. Our tool automatically
instruments code to correctly support these specifications. This is more convenient,
declarative, and less error prone than direct ad hoc instrumentation of code.

System Architecture Summary To clarify the following discussion, we briefly summa-
rize the architecture of our system. Logging specifications are made in the style of
Calls (Definition 9), which can be parsed into JSON objects with a standard form
recognized by our system. Instrumentation of legacy code is then accomplished us-
ing aspect oriented programming. Parsed specifications are used to identify join points,
where the system weaves aspects supporting audit logging into OpenMRS bytecode.
These aspects communicate with a proof engine at the joint points to reason about audit
log generation, implementing the semantics developed for Λlog in Section 4.3. In our
deployment logs are recorded in a SQL database, but our architecture supports other
approaches via the use of listeners.

5.1 Break the Glass Policies for OpenMRS

Break the glass policies for auditing are intended to retrospectively manage the same
security that is proactively managed by access control (before the glass is broken). Thus
it is important that we focus on the same resources in auditing as those focused on by
access control. The data model of OpenMRS consists of several domains, e.g. “Patient”
and “User” domains contain information about the patients and system users respec-
tively, and the “Encounter” domain includes information regarding the interventions of
healthcare providers with patients. In order to access and modify the information in
different domains, corresponding service-layer functionalities are defined that are ac-
cessible through a web interface. These functionalities provide security sensitive opera-
tions through which data assets are handled. Thus, OpenMRS authorization mechanism
checks user eligibility to perform these operations [37]. Likewise, we identify these

15

functionalities in logging specifications, i.e. triggers and logging events are service-
layer methods that provide access to data domains, e.g., the patient and user data.

We adapt the logical language of logging specifications developed above (Definition
9), with the minor extension that we allow logging of methods with more than one
argument. We note that logging specifications can include other information specified
as safe Horn clauses, e.g. ACLs. Here is a simple example of a break the glass auditing
policy specified in this form, which states that if the glass is broken by some low-level
user, and subsequently patient information is accessed by that user, the access should
be logged. The variable U refers to the user, and the variable P refers to the patient.
This specification also defines security levels for two users, alice and admin. The
predicate @< defines the usual total ordering on integers.

loggedCall(T, getPatient, U, P) :-
call(T, getPatient, U, P), call(S, breakTheGlass, U),
@<(S, T), hasSecurityLevel(U, low).

hasSecurityLevel(admin, high).
hassecuritylevel(alice, low).

To enable these policies in practice, we have added a “break the glass” button to a
user menu in the OpenMRS GUI that can be manually activated on demand. Activa-
tion invokes the breakTheGlass method parameterized by the user id. We note that
breaking the glass does not turn off access control in our current implementation, which
we consider a separate engineering concern that is out of scope for this paper.

5.2 Code Instrumentation

To instrument code for log generation, we leverage the Spring Framework that supports
aspect-oriented programming (AOP). AOP is used to rewrite code where necessary with
“advice”, which in our case is before certain method invocations (so-called “before ad-
vice”). Our advice checks the invoked method names and implements the semantics
given in Section 4.3, establishing correctness of audit logging. Join points are automat-
ically extracted from logging specifications, and defined with service-level granularity
in a configuration file. Weaving into bytecode is also performed automatically by our
system.

For example, in the following excerpt of a configuration file, every interface method
of the service PatientService is a join point so before invoking each of those
methods the advice in RetroSecurityAdvice will be woven into the control flow.
The RetroSecurityAdvice is automatically generated by our system based on the
logging specification, but essentially determines whether a method call is a trigger or a
logging event and interacts with the proof engine appropriately in each case.

<advice>
<point>org.openmrs.api.PatientService</point>
<class>
org.openmrs.module.retrosecurity.advice.RetroSecurityAdvice
</class>
</advice>

16

Proof Engine According to the the semantics of Λlog, it is necessary to perform logi-
cal deduction, in particular resolution of LoggedCall predicates. To this end, we have
employed XSB Prolog as a proof engine, due to its reliability and robustness. In order
to have a bidirectional communication between the Java application and the engine,
InterProlog Java/Prolog SDK [27] is used.

The proof engine is initialized in a separate thread with an interface to the main
execution trace. The interface includes methods to define predicates, and to add rules
and facts. Asynchrony of the logic engine avoids blocking the “normal” execution trace
for audit logging purposes, preserving its original performance. The interface also pro-
vides an instant querying mechanism. The instrumented program communicates with
the XSB Prolog engine as these interface methods are invoked in advices.

Writing and Storing the Log Asynchronous communication with the proof engine
through multi-threading enables us to modularize the deduction of the information that
we need to log, separate from the storage and retainment details. This supports a vari-
ety of possible approaches to storing log information– e.g., using a strict transactional
discipline to ensure writing to critical log, and/or blocking execution until log write
occurs. Advice generated by the system for audit log generation just needs to include
event listeners to implement the technology of choice for log storage and retainment.

In our application, the logging information is stored in a SQL database consisting
of multiple tables. In case new logging information is derived by the proof engine,
the corresponding listeners in the main execution trace are notified and the listeners
partition and store the logging information in potentially multiple tables. Correctness
of this storage technique is established using the monotone mapping rel defined in
Section 3.2.

Consider the case where a loggedCall is derived by the proof engine given the
logging specification in Section 5.1. Here, the instantiation of U and P are user and pa-
tient names, respectively, used in the OpenMRS implementation. However, logged calls
are stored in a table called GetPatL with attributes time, uid, and pid, where uid
is the primary key for a User table with a uname attribute, and pid is the primary
key for a Patient table with a patient_name attribute. Thus, for any given log-
ging specification of the appropriate form, the monotonic mapping rel of the following
select statement gives us the exact information content of the logging specification
following execution of an OpenMRS session:

select time, "getPatient", uname, patient_name
from GetPatL, User, Patient
where GetPatL.uid = User.uid and GetPatL.pid = Patient.pid

5.3 Reducing Memory Overhead

A source of overhead in our system is memory needed to store logging preconditions.
We observe that a naive implementation of the intended semantics will add all trig-
ger functions to the logging preconditions, regardless of whether they are redundant in
some way. To optimize memory usage, we therefore aim to refrain from adding infor-
mation about trigger invocations if it is unnecessary for future derivations of audit log
information. As a simple example, in the following logging specification it suffices to

17

add only the first invocation of g to the set of logging preconditions to infer the relevant
logging information.

∀t0, t1, x0, x1 .Call(t0, f , x0) ∧ Call(t1,g, x1) ∧ t1 < t0 =⇒ LoggedCall(t0, f , x0).

Intuitively, our general approach is to rewrite the body of a given logging specifi-
cation in a form consisting of different conjuncts, such that the truth valuation of each
conjunct is independent of the others. This way, the required information to derive each
conjunct is independent of the information required for other conjuncts. Then, if the in-
ference of a LoggedCall predicate needs a conjunct to be derived only once during the
program execution, following derivation of that conjunct, triggers in the conjunct are
“turned off”, i.e. no longer added to logging preconditions when encountered during
execution. Otherwise, the triggers are never turned off. This way, we ensure that none
of the invocations of the logging event is missed.

Formally, the logging specification is rewritten in the form

∀t0, . . . , tn, x0, . . . , xn .

n∧
i=1

(ti < t0)

L∧
k=1

Qk =⇒ LoggedCall(t0,g0, x0),

where each Qk is a conjunct of literals with independent truth valuation resting on dis-
jointness of predicated variables. In what follows, a formal description of the technique
is given.

Consider the Definition 9. We define Ψ to be the set of all positive literals in the
body of LoggedCall excluding literals ti < t0 for all i ∈ {1, · · · , n}. Moreover, let’s
denote the set of free variables of a formula φ as FV (φ), and abuse this notation to
represent the set of free variables that exist in a set of formulas. Next, we define the
relation ~FV over free variables of positive literals in Ψ , which represents whether
they are free variables of the same literal, and extend this transitively in the relation
~TFV .

Definition 12. Let ~FV ⊆ FV (Ψ) × FV (Ψ) be a relation where α ~FV β iff there
exists some literal φ ∈ Ψ such that α, β ∈ FV (φ). Then, the transitive closure of ~FV
is denoted by ~TFV .

Note that ~TFV is an equivalence relation. Let [α]~TFV
denote the equivalence

class induced by ~TFV over FV (Ψ), where [α]~TFV
, {β | α ~TFV β}. Intuitively,

each equivalence class [α]~TFV
represents a set of free variables in Ψ that are free

in a subset of literals of Ψ , transitively. To be explicit about these subsets of literals,
we have the following definition (Definition 13). Note that rather than representing an
equivalence class using a representative α (i.e., the notation [α]~TFV

), we may employ
an enumeration of these classes and denote each class as Ck, where k ∈ 1 · · ·L. L
represents the number of equivalence classes that have partitioned FV (Ψ). In order to
map these two notations, we consider a mapping ω : FV (Ψ) → {1, · · · , L} where
ω(α) = k if [α]~TFV

= Ck.

Definition 13. Let C be an equivalence class induced by ~TFV . The predicate class
PC is a subset of literals of Ψ defined as PC , {φ ∈ Ψ | FV (φ) ⊆ C}. We define the
independent conjuncts as QC ,

∧
φ∈PC

φ. We also denote Q[α] as Qk if ω(α) = k.
Obviously, FV (Qk) = Ck.

18

The above described techniques are used to implement memory overhead mitigation
in our OpenMRS retrospective security module– the same mechanism used to perform a
loggedCall query is used to check whether the independent conjunctQC containing
a trigger method is satisfiable whenever the trigger is invoked, in which case all triggers
in the conjunct are turned off, i.e. no longer added to preconditions when called. In
order to prove the correctness of our approach, we have formalized a new calculus Λ′log

with memory overhead mitigation capabilities, and shown that the generated log is the
same as the log generated in Λlog for the same programs. The reader is referred to our
Technical Report [3] for this formalization.

6 Related Work

Previous work by DeYoung et al. has studied audit policy specification for medical
(HIPAA) and business (GLBA) processes [20, 19].This work illustrates the effective-
ness and generality of a temporal logic foundation for audit policy specification, which
is well-founded in a general theory of privacy [18]. Their auditing system has also been
implemented in a tool similar to an interactive theorem prover [24]. Their specification
language inspired our approach to logging specification semantics. However, this pre-
vious work assumes that audit logs are given, and does not consider the correctness of
logs. Some work does consider trustworthiness of logs [7], but only in terms of tamper-
ing (malleability). In contrast, our work provides formal foundations for the correctness
of audit logs, and considers algorithms to automatically instrument programs to gener-
ate correct logs.

Other work applies formal methods (including predicate logics [16, 10], process
calculi and game theory [28]) to model, specify, and enforce auditing and accountabil-
ity requirements in distributed systems. In that work, audit logs serve as evidence of
resource access rights, an idea also explored in Aura [39] and the APPLE system [22].
In Aura, audit logs record machine-checkable proofs of compliance in the Aura policy
language. APPLE proposes a framework based on trust management and audit logic
with log generation functionality for a limited set of operations, in order to check user
compliance.

In contrast, we provide a formal foundation to support a broad class of logging
specifications and relevant correctness conditions. In this respect our proposed system
is closely related to PQL [34], which supports program rewriting with instrumentation
to answer queries about program execution. From a technical perspective, our approach
is also related to trace matching in AspectJ [1], especially in the use of logic to specify
trace patterns. However, the concern in that work is aspect pointcut specification, not
logging correctness, and their method call patterns are restricted to be regular expres-
sions with no conditions on arguments, whereas the latter is needed for the specifica-
tions in Calls.

Logging specifications are related to safety properties [38] and are enforceable by
security automata, as we have shown. Hence IRM rewriting techniques could be used
to implement them [21]. However, the theory of safety properties does not address cor-
rectness of audit logs as we do, and our approach can be viewed as a logging-specific
IRM strategy. Guts et al. [25] develop a static technique to guarantee that programs

19

are properly instrumented to generate audit logs with sufficient evidence for auditing
purposes. As in our research, this is accomplished by first defining a formal seman-
tics of auditing. However, they are interested in evidence-based auditing for specific
distributed protocols.

Other recent work [23] has proposed log filters as a required improvement to the
current logging practices in the industry due to costly resource consumption and the
loss of necessary log information among the collected redundant data. This work is
purely empirical, not foundational, but provides practical evidence of the relevance of
our efforts since logging filters could be defined as logging specifications.

Audit logs can be considered a form of provenance: the history of computation and
data. Several recent works have considered formal semantics of provenance [9, 8]. Ch-
eney [12] presents a framework for provenance, built on a notion of system traces. Re-
cently, W3C has proposed a data model for provenance, called PROV [5], which enjoys
a formal description of its specified constraints and inferences in first-order logic, [13],
however the given semantics does not cover the relationship between the provenance
record and the actual system behavior. The confidentiality and integrity of provenance
information is also a significant concern [26].

7 Conclusion

In this paper we have addressed the problem of audit log correctness. In particular,
we have considered how to separate logging specifications from implementations, and
how to formally establish that an implementation satisfies a specification. This separa-
tion allows security administrators to clearly define logging goals independently from
programs, and inspires program rewriting tools that support correct, automatic instru-
mentation of logging specifications in legacy code.

By leveraging the theory of information algebra, we have defined a semantics of
logging specifications as functions from program traces to information. By interpreting
audit logs as information, we are then able to establish correctness conditions for audit
logs via an information containment relation between log information and logging spec-
ification semantics. These conditions allow proof of correctness of program rewriting
algorithms that automatically instrument general classes of logging specifications.

We define a particular program rewriting strategy for a core functional calculus that
supports instrumentation of logging specifications expressed in first order logic, and
then prove this strategy correct. This strategy is then applied to develop a practical
tool for instrumenting logging specifications in OpenMRS, a popular medical records
system. We discuss implementation features of this tool, including optimizations to
minimize memory overhead.

Acknowledgement. This work is supported in part by the National Science Founda-
tion under Grant No. 1408801 and Grant No. 1054172, and by the Air Force Office of
Scientific Research.

20

References

[1] Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L.J., Kuzins, S., Lhoták, O., de Moor,
O., Sereni, D., Sittampalam, G., Tibble, J.: Adding trace matching with free variables to
AspectJ. In: OOPSLA 2005. pp. 345–364 (2005)

[2] Amir-Mohammadian, S., Chong, S., Skalka, C.: Retrospective Security Module for Open-
MRS. https://github.com/sepehram/retro-security-openmrs (2015)

[3] Amir-Mohammadian, S., Chong, S., Skalka, C.: The theory and practice of correct audit
logging. Tech. rep., University of Vermont (October 2015), https://www.uvm.edu/
~samirmoh/TR/TR_Audit.pdf

[4] Bauer, L., Ligatti, J., Walker, D.: More enforceable security policies. Tech. Rep. TR-649-02,
Princeton University (June 2002)

[5] Belhajjame, K., B’Far, R., Cheney, J., Coppens, S., Cresswell, S., Gil, Y., Groth, P., Klyne,
G., Lebo, T., McCusker, J., Miles, S., Myers, J., Sahoo, S., Tilmes, C.: PROV-DM: The
PROV data model. http://www.w3.org/TR/2013/REC-prov-dm-20130430
(2013), accessed: 2015-02-07

[6] Biswas, D., Niemi, V.: Transforming privacy policies to auditing specifications. In: HASE
2011. pp. 368–375 (2011)

[7] Böck, B., Huemer, D., Tjoa, A.M.: Towards more trustable log files for digital forensics by
means of “trusted computing”. In: AINA 2010. pp. 1020–1027. IEEE Computer Society
(2010)

[8] Buneman, P., Chapman, A., Cheney, J.: Provenance management in curated databases. In:
SIGMOD 2006. pp. 539 – 550 (2006)

[9] Buneman, P., Khanna, S., Tan, W.C.: Why and where: A characterization of data prove-
nance. Lecture Notes in Mathematics - Springer Verlag pp. 316–330 (2000)

[10] Cederquist, J.G., Corin, R., Dekker, M.A.C., Etalle, S., den Hartog, J.I., Lenzini, G.: Audit-
based compliance control. International Journal of Information Security 6(2-3), 133–151
(2007)

[11] Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about Datalog (And
never dared to ask). IEEE Transactions on Knowledge and Data Engineering 1(1), 146–166
(1989)

[12] Cheney, J.: A formal framework for provenance security. In: CSF 2011. pp. 281–293 (2011)
[13] Cheney, J.: Semantics of the PROV data model. http://www.w3.org/TR/2013/

NOTE-prov-sem-20130430 (2013), accessed: 2015-02-07
[14] Chuvakin, A.: Beautiful log handling. In: Oram, A., Viega, J. (eds.) Beautiful security:

Leading security experts explain how they think. O’Reilly Media Inc. (2009)
[15] Cook, D., Hartnett, J., Manderson, K., Scanlan, J.: Catching spam before it arrives: Domain

specific dynamic blacklists. In: AusGrid 2006. pp. 193–202. Australian Computer Society,
Inc. (2006)

[16] Corin, R., Etalle, S., den Hartog, J.I., Lenzini, G., Staicu, I.: A logic for auditing account-
ability in decentralized systems. In: FAST 2004. pp. 187–201 (2004)

[17] CPMC Press Release: Audit finds employee access to patient files without apparent business
or treatment purpose. http://www.cpmc.org/about/press/News2015/phi.
html (2015), accessed: 2015-01-30

[18] Datta, A., Blocki, J., Christin, N., DeYoung, H., Garg, D., Jia, L., Kaynar, D.K., Sinha, A.:
Understanding and protecting privacy: Formal semantics and principled audit mechanisms.
In: ICISS 2011. pp. 1–27 (2011)

[19] DeYoung, H., Garg, D., Jia, L., Kaynar, D., Datta, A.: Privacy policy specification and audit
in a fixed-point logic: How to enforce HIPAA, GLBA, and all that. Tech. Rep. CMU-
CyLab-10-008, Carnegie Mellon University (April 2010)

21

[20] DeYoung, H., Garg, D., Jia, L., Kaynar, D.K., Datta, A.: Experiences in the logical specifi-
cation of the HIPAA and GLBA privacy laws. In: WPES 2010. pp. 73–82 (2010)

[21] Erlingsson, Ú.: The inlined reference monitor approach to security policy enforcement.
Ph.D. thesis, Cornell University (2003)

[22] Etalle, S., Winsborough, W.H.: A posteriori compliance control. In: SACMAT 2007. pp.
11–20 (2007)

[23] Fu, Q., Zhu, J., Hu, W., Lou, J., Ding, R., Lin, Q., Zhang, D., Xie, T.: Where do developers
log? An empirical study on logging practices in industry. In: ICSE 2014. pp. 24–33 (2014)

[24] Garg, D., Jia, L., Datta, A.: Policy auditing over incomplete logs: Theory, implementation
and applications. In: CCS 2011. pp. 151–162 (2011)

[25] Guts, N., Fournet, C., Nardelli, F.Z.: Reliable evidence: Auditability by typing. In: ES-
ORICS 2014. pp. 168–183. Springer-Verlag (2009)

[26] Hasan, R., Sion, R., Winslett, M.: The case of the fake Picasso: Preventing history forgery
with secures provenance. In: FAST 2009. pp. 1–14 (2009)

[27] InterProlog Consulting: Logic for your app. http://interprolog.com/ (2014), ac-
cessed: 2015-09-27

[28] Jagadeesan, R., Jeffrey, A., Pitcher, C., Riely, J.: Towards a theory of accountability and
audit. In: ESORICS 2009. pp. 152–167 (2009)

[29] Kemmerer, R.A., Vigna, G.: Intrusion detection: A brief history and overview. Computer
35(4), 27–30 (2002)

[30] King, J.T., Smith, B., Williams, L.: Modifying without a trace: General audit guidelines are
inadequate for open-source electronic health record audit mechanisms. In: IHI 2012. pp.
305–314. ACM (2012)

[31] Kohlas, J.: Information Algebras: Generic Structures For Inference. Discrete mathematics
and theoretical computer science, Springer (2003)

[32] Kohlas, J., Schmid, J.: An algebraic theory of information: An introduction and survey.
Information 5(2), 219–254 (2014)

[33] Lampson, B.W.: Computer security in the real world. IEEE Computer 37(6), 37–46 (2004)
[34] Martin, M., Livshits, B., Lam, M.S.: Finding application errors and security flaws using

PQL: A program query language. In: OOPSLA 2005. pp. 365–383. ACM (2005)
[35] Matthews, P., Gaebel, H.: Break the glass. In: HIE Topic Series. Healthcare Informa-

tion and Management Systems Society (2009), http://www.himss.org/files/
himssorg/content/files/090909breaktheglass.pdf

[36] Povey, D.: Optimistic security: A new access control paradigm. In: NSPW 1999. pp. 40–45
(1999)

[37] Rizvi, S.Z., Fong, P.W.L., Crampton, J., Sellwood, J.: Relationship-based access control for
an open-source medical records system. In: SACMAT 2015. pp. 113–124 (2015)

[38] Schneider, F.B.: Enforceable security policies. ACM Transactions on Information and Sys-
tem Security 3(1), 30–50 (2000)

[39] Vaughan, J.A., Jia, L., Mazurak, K., Zdancewic, S.: Evidence-based audit. In: CSF 2008.
pp. 177–191 (2008)

[40] Weitzner, D.J.: Beyond secrecy: New privacy protection strategies for open information
spaces. IEEE Internet Computing 11(5), 94–96 (2007)

[41] Weitzner, D.J., Abelson, H., Berners-Lee, T., Feigenbaum, J., Hendler, J.A., Sussman, G.J.:
Information accountability. Communications of the ACM 51(6), 82–87 (2008)

[42] Zhang, W., Chen, Y., Cybulski, T., Fabbri, D., Gunter, C.A., Lawlor, P., Liebovitz, D.M.,
Malin, B.: Decide now or decide later? Quantifying the tradeoff between prospective and
retrospective access decisions. In: CCS 2014. pp. 1182–1192 (2014)

[43] Zheng, A.X., Jordan, M.I., Liblit, B., Naik, M., Aiken, A.: Statistical debugging: Simulta-
neous identification of multiple bugs. In: ICML 2006. pp. 1105–1112. ACM (2006)

22

